ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer Nature  (248,871)
  • American Chemical Society (ACS)  (66,957)
  • 2015-2019  (315,828)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2024-05-08
    Description: The authors regret an error in the published article, where incorrect data was used to produce Figure 2, showing the temporal development of pH over the duration of the experiment. The corrected Fig. 2 shows that the error did not affect the interpretation of nor the conclusions drawn from the present dataset. The original article has been corrected.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3BIOspektrum, Springer Nature, 24(7), pp. 750-751, ISSN: 0947-0867
    Publication Date: 2024-05-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3BIOspektrum, Springer Nature, 25(1), pp. 50-57, ISSN: 0947-0867
    Publication Date: 2024-05-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Chemical Society (ACS)
    In:  EPIC3Environmental Science and Technology, American Chemical Society (ACS), 53(15), pp. 8747-8756, ISSN: 0013-936X
    Publication Date: 2024-04-12
    Description: Recent studies pointed to a high ice nucleating activity (INA) in the Arctic sea surface microlayer (SML). However, related chemical information is still sparse. In the present study, INA and free glucose concentrations were quantified in Arctic SML and bulk water samples from the marginal ice zone, the ice-free ocean, melt ponds, and open waters within the ice pack. T50 (defining INA) ranged from −17.4 to −26.8 °C. Glucose concentrations varied from 0.6 to 51 μg/L with highest values in the SML from the marginal ice zone and melt ponds (median 16.3 and 13.5 μg/L) and lower values in the SML from the ice pack and the ice-free ocean (median 3.9 and 4.0 μg/L). Enrichment factors between the SML and the bulk ranged from 0.4 to 17. A positive correlation was observed between free glucose concentration and INA in Arctic water samples (T50(°C) = (−25.6 ± 0.6) + (0.15 ± 0.04)·Glucose(μg/L), RP = 0.66, n = 74). Clustering water samples based on phytoplankton pigment composition resulted in robust but different correlations within the four clusters (RP between 0.67 and 0.96), indicating a strong link to phytoplankton-related processes. Since glucose did not show significant INA itself, free glucose may serve as a potential tracer for INA in Arctic water samples.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-11
    Description: Arctic river deltas are highly dynamic environments in the northern circumpolar permafrost region that are affected by fluvial, coastal, and permafrost-thaw processes. They are characterized by thick sediment deposits containing large but poorly constrained amounts of frozen organic carbon and nitrogen. This study presents new data on soil organic carbon and nitrogen storage as well as accumulation rates from the Ikpikpuk and Fish Creek river deltas, two small, permafrost-dominated Arctic river deltas on the Arctic Coastal Plain of northern Alaska. A soil organic carbon storage of 42.4 ± 1.6 and 37.9 ± 3.5 kg C m− 2 and soil nitrogen storage of 2.1 ± 0.1 and 2.0 ± 0.2 kg N m− 2 was found for the first 2 m of soil for the Ikpikpuk and Fish Creek river delta, respectively. While the upper meter of soil contains 3.57 Tg C, substantial amounts of carbon (3.09 Tg C or 46%) are also stored within the second meter of soil (100–200 cm) in the two deltas. An increasing and inhomogeneous distribution of C with depth is indicative of the dominance of deltaic depositional rather than soil forming processes for soil organic carbon storage. Largely, mid- to late Holocene radiocarbon dates in our cores suggest different carbon accumulation rates for the two deltas for the last 2000 years. Rates up to 28 g C m− 2 year− 1 for the Ikpikpuk river delta are about twice as high as for the Fish Creek river delta. With this study, we highlight the importance of including these highly dynamic permafrost environments in future permafrost carbon estimations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Chemical Society (ACS)
    In:  EPIC3Analytical Chemistry, American Chemical Society (ACS), 90(24), pp. 14188-14197, ISSN: 0003-2700
    Publication Date: 2024-04-09
    Description: Investigating the biogeochemistry of dissolved organic matter (DOM) requires the synthesis of data from several complementary analytical techniques. The traditional approach to data synthesis is to search for correlations between measurements made on the same sample using different instruments. In contrast, data fusion simultaneously decomposes data from multiple instruments into the underlying shared and unshared components. Here, Advanced Coupled Matrix and Tensor Factorization (ACMTF) was used to identify the molecular fingerprint of DOM fluorescence fractions in Arctic fjords. ACMTF explained 99.84% of the variability with six fully shared components. Individual molecular formulas were linked to multiple fluorescence components and vice versa. Molecular fingerprints differed in diversity and oceanographic patterns, suggesting a link to the biogeochemical sources and diagenetic state of DOM. The fingerprints obtained through ACMTF were more specific compared to traditional correlation analysis and yielded greater compositional insight. Multivariate data fusion aligns extremely complex, heterogeneous DOM data sets and thus facilitates a more holistic understanding of DOM biogeochemistry.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-12-13
    Description: Members of the archaeal phylum Bathyarchaeota are widespread and abundant in the energy-deficient marine subsurface sediments. However, their life strategies have remained largely elusive. Here, we provide genetic evidence that some lineages of Bathyarchaeota are acetogens, being capable of homoacetogenesis, a metabolism so far restricted to the domain Bacteria. Metabolic reconstruction based on genomic bins assembled from the metagenome of deep-sea subsurface sediments shows that the metabolism of some lineages of Bathyarchaeota is similar to that of bona fide bacterial homoacetogens, by having pathways for acetogenesis and for the fermentative utilization of a variety of organic substrates. Heterologous expression and activity assay of the acetate kinase gene ack from Bathyarchaeota, demonstrate further the capability of these Bathyarchaeota to grow as acetogens. The presence and expression of bathyarchaeotal genes indicative of active acetogenesis was also confirmed in Peru Margin subsurface sediments where Bathyarchaeota are abundant. The analyses reveal that this ubiquitous and abundant subsurface archaeal group has adopted a versatile life strategy to make a living under energy-limiting conditions. These findings further expand the metabolic potential of Archaea and argue for a revision of the role of Archaea in the carbon cycle of marine sediments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Scientific Reports, Springer Nature, 9(1), pp. 12268-12268, ISSN: 2045-2322
    Publication Date: 2023-09-25
    Description: Identifying stabilizing factors in foodwebs is a long standing challenge with wide implications for community ecology and conservation. Here, we investigate the stability of spatially resolved meta-foodwebs with far-ranging super-predators for whom the whole meta-foodwebs appears to be a single habitat. By using a combination of generalized modeling with a master stability function approach, we are able to efficiently explore the asymptotic stability of large classes of realistic many-patch meta-foodwebs. We show that meta-foodwebs with far-ranging top predators are more stable than those with localized top predators. Moreover, adding far-ranging generalist top predators to a system can have a net stabilizing effect. These results highlight the importance of top predator conservation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-09-22
    Description: Effects of temperature changes on phytoplankton communities seem to be highly context-specific, but few studies have analyzed whether this context specificity depends on differences in the abiotic conditions or in species composition between studies. We present an experiment that allows disentangling the contribution of abiotic and biotic differences in shaping the response to two aspects of temperature change: permanent increase of mean temperature versus pulse disturbance in form of a heat wave. We used natural communities from six different sites of a floodplain system as well as artificially mixed communities from laboratory cultures and grew both, artificial and natural communities, in water from the six different floodplain lakes (sites). All 12 contexts (2 communities × 6 sites) were first exposed to three different temperature levels (12, 18, 24 °C, respectively) and afterward to temperature pulses (4 °C increase for 7 h day(-1)). Temperature-dependent changes in biomass and community composition depended on the initial composition of phytoplankton communities. Abiotic conditions had a major effect on biomass of phytoplankton communities exposed to different temperature conditions, however, the effect of biotic and abiotic conditions together was even more pronounced. Additionally, phytoplankton community responses to pulse temperature effects depended on the warming history. By disentangling abiotic and biotic effects, our study shows that temperature-dependent effects on phytoplankton communities depend on both, biotic and abiotic constraints.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-09-22
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...