ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:551.48  (11)
  • English  (11)
  • 2020-2023  (11)
Collection
Keywords
Language
Years
Year
  • 1
    Publication Date: 2022-10-04
    Description: The latest version of the Soil and Water Assessment Tool (SWAT+) features several improvements compared with previous versions of the model, for example, the definition of landscape units that allow for a better representation of spatio‐temporal dynamics. To evaluate the new model capabilities in lowland catchments characterized by near‐surface groundwater tables and extensive tile drainage, we assess the performance of two SWAT+ model setups in comparison to a setup based on a previous SWAT model version (SWAT3S with a modified three groundwater storage model) in the Kielstau catchment in Northern Germany. The Kielstau catchment has an area of about 50 km2, is dominated by agricultural land use, and has been thoroughly monitored since 2005. In both SWAT+ setups, the catchment is divided into upland areas and floodplains, but in the first SWAT+ model setup, runoff from the hydrologic response units is summed up at landscape unit level and added directly to the stream. In the second SWAT+ model setup, runoff is routed across the landscape before it reaches the streams. Model results are compared with regard to (i) model performance for stream flow at the outlet of the catchment and (ii) aggregated as well as temporally and spatially distributed water balance components. All three model setups show a very good performance at the catchment outlet. In comparison to a previous version of the SWAT model that produced more groundwater flow, the SWAT+ model produced more tile drainage flow and surface runoff. Results from the new SWAT+ model confirm that the representation of routing processes from uplands to floodplains in the model further improved the representation of hydrological processes. Particularly, the stronger spatial heterogeneity that can be related to characteristics of the landscape, is very promising for a better understanding and model representation of hydrological fluxes in lowland areas. The outcomes of this study are expected to further prove the applicability of SWAT+ and provide useful information for future model development.
    Description: The model performance of all three model setups was very good, but the SWAT+ model setup with runoff routing between landscape units performed best. Moreover, the SWAT+ model applications predicted a greater spatial heterogeneity of the water balance components. The representation of hydrological fluxes particularly with regard to groundwater flow, surface runoff, and tile drainage flow differed considerably between the SWAT and SWAT+ model setups.
    Keywords: ddc:551.48
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-26
    Description: The two small research catchments Obere Brachtpe (2.6 km2; 50.989986, 7.752013) and Bohlmicke (1 km2, 51.079319, 7.892988) are located in the Rhenish Massif, a low mountain range in Germany. Land use in both catchments is dominated by pasture land, spruce stands and mixed forests. Mean annual temperature is 9.1°C, and mean annual total precipitation is 1250 mm, with 15%–20% of the annual precipitation falling as snow. The geology is characterized by sandy silty clay shale from the Lower and Middle Devonian. Loamy Cambisols derived from periglacial slope deposits, complemented by Leptosols and Stagnosols, are the most prominent soils in the catchments. Long‐term hydrological datasets of precipitation, throughfall, discharge, groundwater levels and soil moisture (at different soil depths) in a high temporal and spatial resolution are available for further scientific analysis. Both catchments were monitored within the time period 1999 and 2009, in order to understand how the antecedent soil moisture, stratified soils (periglacial cover beds) and topography (slope form) impacted the subsurface connectivity, and the subsurface stormflow generation ‐ a dominant runoff generation process in humid mountainous catchments. Detailed physically based investigations on runoff processes were carried out, and the obtained results helped to better understand subsurface stormflow generation and subsurface connectivity dynamics. The process knowledge gained, which was presented at several conferences, as well as publications, was the basis for the discussion of open questions within the scientific network ‘Subsurface Stormflow ‐ A well‐recognized, but still challenging process in Catchment Hydrology’ (2016–2021), and the research unit ‘Fast and invisible: conquering subsurface stormflow through an interdisciplinary multisite approach’ (2022–2025), both financed by the German Research Foundation (DFG).
    Description: Long‐term hydrological datasets of precipitation, throughfall, discharge, groundwater levels and soil moisture (at different soil depths) in a high temporal and spatial resolution are available of the two small catchments Obere Brachtpe (2.6 km²) and Bohlmicke (1 km²) (Germany). Both catchments have been monitored in order to understand how the antecedent soil moisture, stratified soils (periglacial cover beds) and topography (slope form) impacted the subsurface connectivity and the subsurface stormflow generation in humid mountainous catchments.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.48
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-04-07
    Description: Inland waters receive and process large amounts of colored organic matter from the terrestrial surroundings. These inputs dramatically affect the chemical, physical, and biological properties of water bodies, as well as their roles as global carbon sinks and sources. However, manipulative studies, especially at ecosystem scale, require large amounts of dissolved organic matter with optical and chemical properties resembling indigenous organic matter. Here, we compared the impacts of two leonardite products (HuminFeed and SuperHume) and a freshly derived reverse osmosis concentrate of organic matter in a set of comprehensive mesocosm‐ and laboratory‐scale experiments and analyses. The chemical properties of the reverse osmosis concentrate and the leonardite products were very different, with leonardite products being low and the reverse osmosis concentrate being high in carboxylic functional groups. Light had a strong impact on the properties of leonardite products, including loss of color and increased particle formation. HuminFeed presented a substantial impact on microbial communities under light conditions, where bacterial production was stimulated and community composition modified, while in dark potential inhibition of bacterial processes was detected. While none of the browning agents inhibited the growth of the tested phytoplankton Gonyostomum semen, HuminFeed had detrimental effects on zooplankton abundance and Daphnia reproduction. We conclude that the effects of browning agents extracted from leonardite, particularly HuminFeed, are in sharp contrast to those originating from terrestrially derived dissolved organic matter. Hence, they should be used with great caution in experimental studies on the consequences of terrestrial carbon for aquatic systems.
    Description: Marie Curie International Outgoing Fellowship
    Description: Swedish Research Council Formas http://dx.doi.org/10.13039/501100001862
    Description: Knut and Alice Wallenberg Foundation http://dx.doi.org/10.13039/501100004063
    Keywords: ddc:551.48 ; ddc:550.724
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-04-06
    Description: Small headwater streams are recognized for intense outgassing to the atmosphere of climate‐relevant carbon dioxide (CO2) and methane (CH4). Though these headwaters are markedly oversaturated for both CO2 and CH4, the origins and controls over the fate of these two carbon‐gases are still poorly constrained, especially for the stronger greenhouse gas CH4. Here, by measuring stream‐based production of CO2 and CH4, concurrently with their rates of outgassing to the atmosphere, we identify distinct biophysical control mechanisms for each gas. We show that while CO2 is largely imported from the catchment in proportion to discharge, CO2 outgassing can be modulated by in‐stream metabolism to offset outgassing by up to 30% in spring and summer. In contrast, CH4 shows a non‐linear response to seasonal changes in discharge and is predominantly produced in the streambed in relation to sediment type. Further, once released from the streambed, outgassing of CH4 at the surface and flow‐driven dilution occur far more rapidly than biological methane oxidation and CH4 leaves the water largely unaltered by biology. Incorporating the intense carbon cycling of headwater streams into the global carbon cycle will require distinct parameterizations for each carbon gas in Earth system models.
    Description: Plain Language Summary: There is growing interest in the global carbon cycle and how carbon is transformed in the landscape into the greenhouse gases carbon dioxide (CO2) and methane–with methane being by far the more potent than CO2. Streams and rivers are recognized hotspots of carbon cycling in the landscape, commonly harboring large amounts of CO2 and methane–yet what controls either gas in streams is not fully understood. Without that understanding, we cannot predict how carbon cycling will respond to climate change or to other human alteration of the landscape. Here we researched different components of the carbon cycle in streams to show that each gas is influenced by quite distinct “biophysical” control mechanisms. While CO2 in streams results largely from physical run‐off from the land, once in a stream it can be changed by the stream biology that ebbs and flows with the seasons. Contrastingly, methane is largely created by biology within the streambed itself but once released into the wider stream that methane is then dispersed by the physical forces of stream flow. Put more simply, CO2 is physically carried to the stream to then be altered by biology, whereas as methane is borne from biology in the stream, to then be physically carried away.
    Description: Key Points: There are different controls on the outgassing of the greenhouse gases carbon dioxide and methane in streams. Carbon dioxide results largely from physical run‐off from the land and is then altered in stream by biology depending on season. In contrast, methane is created in the streambed but once released to the stream is then dispersed by the physical forces of stream flow.
    Description: Natural Environment Research Council (NERC) http://dx.doi.org/10.13039/501100000270
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) http://dx.doi.org/10.13039/100010663
    Description: FNU
    Description: Danish National Research Foundation
    Keywords: ddc:551.48
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-04-05
    Description: Nitrate monitoring is commonly conducted with low‐spatial resolution, only at the outlet or at a small number of selected locations. As a result, the information about spatial variations in nitrate export and its drivers is scarce. In this study, we present results of high‐spatial resolution monitoring conducted between 2012 and 2017 in 65 sub‐catchments in an Alpine mesoscale river catchment characterized by a land‐use gradient. We combined stable isotope techniques with Bayesian mixing models and geostatistical methods to investigate nitrate export and its main drivers, namely, microbial N turnover processes, land use and hydrological conditions. In the investigated sub‐catchments, mean values of NO3− concentrations and its isotope signatures (δ15NNO3 and δ18ONO3) varied from 2.6 to 26.7 mg L−1, from −1.3‰ to 13.1‰, and from −0.4‰ to 10.1‰, respectively. In this study, land use was an important driver for nitrate export. Very strong and strong positive correlations were found between percentages of agricultural land cover and δ15NNO3, and NO3− concentration, respectively. Mean proportional contributions of NO3− sources varied spatially and seasonally, and followed land‐use patterns. The mean contribution of manure and sewage was much higher in the catchments characterized by a high percentage of agricultural and urban land cover comparing to forested sub‐catchments. Specific NO3− loads were strongly correlated with specific discharge and moderately correlated with NO3− concentrations. The nitrate isotope and concentration analysis results suggest that nitrate from external sources is stored and accumulated in soil storage pools. Nitrification of reduced nitrogen species in those pools plays the most important role for the N‐dynamics in the Erlauf river catchment. Consequently, nitrification of reduced N sources was the main nitrate source except for a number of sub‐catchments dominated by agricultural land use. In the Erlauf catchment, denitrification plays only a minor role in controlling NO3− export on a regional scale.
    Description: We integrated results of the BMM with informative priors and top‐kriging. Reduced N stored in soil is an important source for stream N in a mesoscale catchment. Manure and sewage is the main NO3− source in agricultural sub‐catchments. Denitrification played only a minor role in controlling regional scale NO3− export.
    Keywords: ddc:551.48
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-04-01
    Description: The analysis of concentration‐discharge (C‐Q) relationships from low‐frequency observations is commonly used to assess solute sources, mobilization, and reactive transport processes at the catchment scale. High‐frequency concentration measurements are increasingly available and offer additional insights into event‐scale export dynamics. However, only few studies have integrated inter‐annual and event‐scale C‐Q relationships. Here, we analyze high‐frequency measurements of specific conductance (EC), nitrate (NO3‐N) concentrations and spectral absorbance at 254 nm (SAC254, as a proxy for dissolved organic carbon) over a two year period for four neighboring catchments in Germany ranging from more pristine forested to agriculturally managed settings. We apply an integrated method that adds a hysteresis term to the established power law C‐Q model so that concentration intercept, C‐Q slope and hysteresis can be characterized simultaneously. We found that inter‐event variability in C‐Q hysteresis and slope were most pronounced for SAC254 in all catchments and for NO3‐N in forested catchments. SAC254 and NO3‐N event responses in the smallest forested catchment were closely coupled and explainable by antecedent conditions that hint to a common near‐stream source. In contrast, the event‐scale C‐Q patterns of EC in all catchments and of NO3‐N in the agricultural catchment without buffer zones around streams were less variable and similar to the inter‐annual C‐Q relationship indicating a homogeneity of mobilization processes over time. Event‐scale C‐Q analysis thus added key insights into catchment functioning whenever the inter‐annual C‐Q relationship contrasted with event‐scale responses. Analyzing long‐term and event‐scale behavior in one coherent framework helps to disentangle these scattered C‐Q patterns.
    Description: Key Points: We compare event‐scale and inter‐annual concentration‐discharge relationships in four adjoined catchments with contrasting land use. The variability of event‐scale C‐Q relationships was shaped by land use and antecedent conditions for biogeochemically reactive but not for geogenic solutes. For biogeochemically reactive solutes, event‐scale C‐Q patterns can contrast the inter‐annual pattern obtained from all observations.
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:551.48
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-04-01
    Description: Increased deposition of fine sediments in rivers and streams affects a range of key ecosystem processes across the sediment–water interface, and it is a critical aspect of river habitat degradation and restoration. Understanding the mechanisms leading to fine sediment accumulation along and across streambeds and their effect on ecological processes is essential for comprehending human impacts on river ecosystems and informing river restoration. Here, we introduce the HydroEcoSedimentary tool (HEST) as an integrated approach to assess hydro‐sedimentary and ecologically relevant processes together. The HEST integrates the estimation of sedimentary processes in the interstitial zone, as well as hydraulic, geochemical and ecological assessments, with a focus on brown trout early life stages. Compared to other methods, the HEST expands the possibilities to monitor and quantify fine sediment deposition in streambeds by differentiating between vertical, lateral and longitudinal infiltration pathways, and distinguishing between the depth (upper vs. lower layers) at which interstitial processes occur within the sediment column. By testing the method in two rivers with different degrees of morphological degradation, we detail the possible measurements and uses of the HEST, demonstrate its feasibility and discuss its reliability.
    Description: Alexander von Humboldt‐Stiftung http://dx.doi.org/10.13039/100005156
    Description: Bavarian State Ministry of Science and Arts (Bayerisches Staatsministerium für Wissenschaft und Kunst)
    Keywords: ddc:551.48 ; ddc:550.724
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-04-01
    Description: In thermally stratified reservoirs, inflows form density currents according to the interplay between inflow temperature and reservoir stratification. The temperature of inflowing water is affected by catchment properties, including shading by riparian vegetation. We hypothesize that the degree of shading in the catchment can affect the inflow dynamics in downstream reservoirs by changing inflow temperature and consequently the nature of the density current. We test it for a subtropical drinking water reservoir by combining catchment‐scale hydrological and stream temperature modeling with observations of reservoir stratification. We analyze the formation of density currents, defined as under, inter and overflow, for scenarios with contrasting shading conditions in the catchment. Inflow temperatures were simulated with the distributed water‐balance model LARSIM‐WT, which integrates heat‐balance and water temperature. River temperature measurements and simulations are in good agreement with a RMSE of 0.58°C. In simulations using the present state of shading, underflows are the most frequent flow path, 63% of the annual period. During the remaining time, river intrusion form interflows. In a scenario without stream shading, average inflow temperature increased by 2.2°C. Thus, interflows were the most frequent flow path (51%), followed by underflows (34%) and overflows (15%). With this change, we would expect a degradation of reservoir water quality, as overflows promote longer periods of anoxia and nutrient loads would be delivered to the photic zone, a potential trigger for algae blooms. This study revealed a potentially important, yet unexplored aspect of catchment management for controlling reservoir water quality.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: https://doi.org/10.5281/zenodo.4746288
    Keywords: ddc:628.1 ; ddc:551.48
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-03-30
    Description: Complex networks of both natural and engineered flow paths control the hydrology of streams in major cities through spatio‐temporal variations in connection and disconnection of diverse water sources. We used spatially extensive and temporally intensive sampling of water stable isotopes to disentangle the hydrological sources of the heavily urbanized Panke catchment (~220 km2) in the north of Berlin, Germany. The isotopic data enabled us to partition stream water sources across the catchment using a Bayesian mixing analysis. The upper part of the catchment streamflow is dominated by groundwater (~75%) from gravel aquifers. In dry summer periods, streamflow becomes intermittent in the upper catchment, possibly as a result of local groundwater abstractions. Storm drainage dominates the responses to precipitation events. Although such events can dramatically change the isotopic composition of the upper stream network, storm drainage only accounts for 10%–15% of annual streamflow. Moving downstream, subtle changes in sources and isotope signatures occur as catchment characteristics vary and the stream is affected by different tributaries. However, effluents from a wastewater treatment plant (WWTP), serving 700,000 people, dominate stream flow in the lower catchment (~90% of annual runoff) where urbanization effects are more dramatic. The associated increase in sealed surfaces downstream also reduces the relative contribution of groundwater to streamflow. The volume and isotopic composition of storm runoff is again dominated by urban drainage, though in the lower catchment, still only about 10% of annual runoff comes from storm drains. The study shows the potential of stable water isotopes as inexpensive tracers in urban catchments that can provide a more integrated understanding of the complex hydrology of major cities. This offers an important evidence base for guiding the plans to develop and re‐develop urban catchments to protect, restore, and enhance their ecological and amenity value.
    Description: Intermittent urban stream. Groundwater and waste water dominance. High temporal and spatial stable isotope dataset. End member mixing analysis. Water import.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Einstein Stiftung Berlin http://dx.doi.org/10.13039/501100006188
    Description: Leverhulme Trust http://dx.doi.org/10.13039/501100000275
    Keywords: ddc:551.48
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-03-30
    Description: The widening and narrowing of river‐valley aquifers can cause valley‐scale lateral hyporheic exchange even if the river is straight and its slope is uniform. For the aforementioned system, we derive a semi‐analytical solution describing steady‐state groundwater flow for a simplified two‐dimensional geometry of the aquifer and uniform lateral influx from hillslopes. We use this solution to evaluate the geometry‐driven lateral hyporheic exchange flux between the aquifer and the river. By systematically varying the model parameters, we decipher how this flux and the area of the exchange zone depend on geometric (e.g., minimum and maximum domain width) and hydrogeological parameters (e.g., hydraulic conductivity, ambient hydraulic gradient and lateral influxes). The results suggest pronounced hyporheic flow for cases with distinct widening behavior and small cross‐sectional widths at the floodplain inlet and outlet. Furthermore, we analyze the travel‐time distribution of water flowing through the exchange zone, which approximately follows a beta distribution. We express our findings in terms of simple proxy‐equations that can be used to easily estimate the exchange flux, the area of the exchange zone, and the associated travel‐time distribution for a given geographic/landscape setting.
    Description: Key Points: We develop a semi‐analytical solution describing lateral exchange between rivers and floodplain aquifers driven by the valley geometry. We investigate how the exchange flux, the area of the hyporheic zone, and travel times depend on geometric and hydraulic properties. We derive simplified expressions allowing estimating these quantities as a preliminary step prior to detailed site investigations.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: https://osf.io/fykr9/
    Description: https://jonasallgeier.github.io/fpsimple
    Keywords: ddc:551.48
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...