ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (126)
  • RC581-607  (126)
  • Frontiers Media SA  (126)
Collection
  • Books  (126)
Publisher
Language
Years
  • 1
    Publication Date: 2024-03-31
    Description: Recognition and killing of aberrant, infected or tumor targets by Natural Killer (NK) cells is mediated by positive signals transduced by activating receptors upon engagement of ligands on target surface. These stimulatory pathways are counterbalanced by inhibitory receptors that raise NK cell activation threshold through negative antagonist signals. While regulatory effects are necessary for physiologic control of autoimmune aggression, they may restrain the ability of NK cells to activate against disease. Overcoming this barrier to immune surveillance, multiple approaches to enhance NK-mediated responses are being investigated since two decades. Propelled by considerable advances in the understanding of NK cell biology, these studies are critical for effective translation of NK-based immunotherapy principles into the clinic. In humans, dominant inhibitory signals are transduced by Killer Immunoglobulin Like Receptors (KIR) recognizing cognate HLA class I on target cells. Conversely, KIR recognition of “missing self-HLA” - due to HLA loss or HLA/ KIR mismatch - triggers NK-mediated tumor rejection. Initially observed in murine transplant models, these antitumor effects were later found to have important implications for the clinical outcome of haplotype-mismatched stemcell transplantation. Here, donor NK subsets protect against acute myeloid leukemia (AML) relapse through missing self recognition of donor HLA-C allele groups (C1 or C2) and/or Bw4 epitope. These studies were subsequently extended by trials investigating the antileukemia effects of adoptively transferred haplotype-mismatched NK cells in non-transplant settings. Other mechanisms have been found to induce clinically relevant NK cell alloreactivity in transplantation, e.g., post-reconstitution functional reversal of anergic NK cells. More recently, activating KIR came into the spotlight for their potential ability to directly activate donor NK cells through in vivo recognition of HLA or other ligands. Novel therapeutic monoclonal antibodies (mAb) may optimize NK-mediated effects. Examples include obinutuzumab (GA101), a glyco-engineered anti-CD20 mAb with increased affinity for the FcγRIIIA receptor, enhancing antibody-dependent cellular cytotoxicity; lirilumab (IPH2102), a first-in-class NK-specific checkpoint inhibitor, blocking the interaction between the major KIR and cognate HLA-C antigens; and elotuzumab (HuLuc63), a humanized monoclonal antibody specific for SLAMF7, whose anti-myeloma therapeutic effects are partly due to direct activation of SLAMF7-expressing NK cells. In addition to conventional antibodies, NK cell-targeted bispecific (BiKEs) and trispecific (TriKEs) killer engagers have also been developed. These proteins elicit potent effector functions by binding target ligands (e.g., CD19, CD22, CD30, CD133, HLA class II, EGFR) on one arm and NK receptors on the other. An additional innovative approach to direct NK cell activity is genetic reprogramming with chimeric antigen receptors (CAR). To date, primary NK cells and the NK92 cell line have been engineered with CAR specific for antigens expressed on multiple tumors. Encouraging preclinical results warrant further development of this approach. This Research Topic welcomes contributions addressing mechanisms of NK-mediated activation in response to disease as well as past and contemporary strategies to enhance NK mediated reactivity through control of the interactions between NK receptors and their ligands.
    Keywords: R5-920 ; RC581-607 ; Natural Killer cells ; Checkpoint inhibitors ; Immune Evasion ; Immunotherapy ; Transplantation ; chimeric antigen receptors ; Nk receptors ; bispecific antibodies ; Cancer ; thema EDItEUR::M Medicine and Nursing
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-03-30
    Description: In the ancient past, cocoa has been appreciated as a high-calorie food to boost energy in soldiers and for its undefined medicinal and mystical properties. During other times, chocolate has been considered as the forbidden “food of God”: a treasure of pleasure for the mind and the soul. The overall perception of the consumer for chocolate was of a “charming” and appealing food with lots of negative aspects related to high sugar content leading to consider chocolate as “junk food” for its “obesigen” calories. Recently, in association with the renewed interest of nutrition science in alternative source of health-promoting foods and ingredients, a large body of research has been conducted to unravel the pro and cons of cocoa in relation to human health. Epidemiological evidences indicate that cocoa consumption helps preventing cardiovascular disease for its high content in bioactive flavonoids. Clinical trials show that chocolate consumption might improve vascular function, decreasing platelet aggregation and display an antioxidant and anti-inflammatory effect. The putative protective action of cocoa seems to be multi-factorial and involving different aspects of vascular, antioxidant and endothelial function. However, the mechanism(s) that account for the benefits of cocoa it is still unclear. The aim of this Research Topic is therefore to provide the reader with an objective picture of the state of art on the association between cocoa and health, mainly through the evidences of human trials; overwhelmingly considered the golden standard for nutritional science. The Research Topic will cover the analysis of the manufacturing processes of the chocolate and the antioxidant effects in humans as well as the majority of the putative health effects of chocolate and cocoa, such as anti-inflammatory properties, effect on immunity, platelet aggregation, blood pressure, endothelial function and cognitive behavior. Unraveling the functional properties of cocoa will help to understand if the 'food of God' is a primordial gift for the health of mankind.
    Keywords: R5-920 ; RC581-607 ; TX341-641 ; Antioxidants ; Obesity ; Flavonoids ; Humans ; Chocolate ; Blood pressure ; Inflammation ; Cognitive function ; Cocoa ; Immunity
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-30
    Description: The rapid development of new methods for immunological data collection - from multicolor flow cytometry, through single-cell imaging, to deep sequencing - presents us now, for the first time, with the ability to analyze and compare large amounts of immunological data in health, aging and disease. The exponential growth of these datasets, however, challenges the theoretical immunology community to develop methods for data organization and analysis. Furthermore, the need to test hypotheses regarding immune function, and generate predictions regarding the outcomes of medical interventions, necessitates the development of mathematical and computational models covering processes on multiple scales, from the genetic and molecular to the cellular and system scales. The last few decades have seen the development of methods for presentation and analysis of clonal repertoires (those of T and B lymphocytes) and phenotypic (surface-marker based) repertoires of all lymphocyte types, and for modeling the intricate network of molecular and cellular interactions within the immune systems. This e-Book, which has first appeared as a ‘Frontiers in Immunology’ research topic, provides a comprehensive, online, open access snapshot of the current state of the art on immune system modeling and analysis.
    Keywords: R5-920 ; RC581-607 ; Immune cell differentiation ; Immune cell population dynamics and turnover ; Immunological diseases ; activation and signaling ; mathematical modeling ; immunomics ; Immune cell receptors ; lymphocyte repertoires ; Immune cell migration and immune tissue organization ; Immune responses to pathogens ; high-throughput sequencing
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-30
    Description: 80% of the bodies’ immune cells are harbored within the intestine. They are only separated from 1014 microorganisms by a single layer of intestinal epithelial cells and a secreted superficial mucus layer. Therefore, the intestinal epithelial surface represents a main frontier in host defense. Providing an intact mucosal barrier is vital for the host to limit bacterial entry and spread to the circulation. This specialized localization requires dynamic responses of intestinal epithelial cells to both pathogen- and immune-derived signals. Moreover, emergency barriers are needed in the setting of epithelial damage, which allow provisional microbial control and a timely restitution of mucosal integrity. Epithelial cells constantly interact with subjacent immune cells and fibroblasts, actively directing the immune response and also shaping the luminal microbiota. Epithelial dysfunction has been appreciated in recent years as a driving element in the pathogenesis of Inflammatory Bowel Diseases (IBD). Additionally, primary immune deficiencies may manifest in the form of chronic intestinal inflammation mimicking features of IBD. Recent advances in the techniques of epithelial cell culture and the discovery of new immune cell types and cellular properties have tremendously advanced the understanding in this interesting field of research. In this research topic, we want to focus on the complex interaction of intestinal epithelial cells, luminal flora and adjacent immune cells and invite manuscripts which highlight the dynamic responses of both epithelium and immune cells under steady-state or inflammatory conditions, and envision how this may be translated to the benefit of patient-care.
    Keywords: R5-920 ; RC581-607 ; lymphocytes ; inflammatory bowel diseases ; immune system ; intestinal epithelium ; mucosal immunity
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-30
    Description: The term “immunobiotics” has been proposed to define microbial strains able to beneficially regulate the mucosal immune system. Research in immunobiotics has significantly evolved as researchers employed cutting-edge technologies to investigate the complex interactions of these beneficial microorganisms with the immune system. During the last decade, our understanding of immunobiotics-host interaction was profoundly transformed by the discovery of microbial molecules and host receptors involved in the modulation of gut associated immune system, as well as the systemic and distant mucosal immune systems. In recent years, there has been a substantial increase in the number of reports describing the beneficial effects of immunobiotics in diseases such as intestinal and respiratory infections, allergy, inflammatory bowel disease, obesity, immunosuppression, and several other immune-mediated conditions. Evidence is also emerging of immunobiotics related molecules with immunomodulatory functions leading to the production of pharmabiotics, which may positively influence human or animal health. Therefore, research in immunobiotics continue to contribute not only to food but also medical and pharmaceutical fields. The compilation of research articles included in this ebook should help reader to have an overview of the recent advances in immunobiotics.
    Keywords: R5-920 ; RC581-607 ; QR1-502 ; Q1-390 ; infection ; inflammation ; mucosal immune system ; beneficial microbes ; Immunobiotics ; lactic acid bacteria ; probiotics
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-03-30
    Description: Monoclonal antibodies and Fc-fusion proteins used clinically are Fc-based therapeutics that grow fastest in the pharmaceutical industry. Since they both contain an Fc fragment, engineering of Fc fragments could be a platform for improving Fc-based drug efficacy. Fc engineering includes various aspects: stabilization of Fc; regulation of effector functions including antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity; extension of serum half-life by modification of neonatal Fc receptor (FcRn) binding; monomerization or heterodimerization of Fc for design of new Fc formats. Currently, many new methods are being used in Fc engineering. Compared to traditional methods such as site mutagenesis on certain positions by amino acid replacement, new methods such as display-based technology can confer high throughput screening and obtain optimized variants relatively quickly, accelerating the drug development process. With the new methods, many new Fc variants were identified. On this Research Topic we are going to review the progress in current Fc engineering including the new engineering methods and the Fc variants or constructs they have produced, and the potential of these new Fcs in clinical use.
    Keywords: R5-920 ; RC581-607 ; effector function ; Fc receptor ; heterodimeric Fc ; Fc-fusion protein ; monomeric Fc ; Monoclonal antibody ; Fc engineering
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-30
    Description: Stress proteins or heat-shock proteins (HSP) are evolutionary conserved proteins present in every prokaryotic and eukaryotic cell. Their main function is to protect cells and proteins from damage under stressful circumstances. The latter circumstances do include the cell and protein damaging effects of inflammation. The discovery of mycobacterial HSP60 being a critical antigen in the model of adjuvant arthritis, has led to studies that showed the immuno-dominance of microbial HSP60 and the potential of the microbial HSP induced repertoire of antibodies and T cells to cross-recognize the self-HSP homologues of stressed cells. Since then, the research in the immunology of stress proteins started to comprise a widening spectrum of topics with potential medical relevance. Interestingly, since stress proteins have their activities in both innate and adaptive immunity, they are key elements in the cross-roads between both arms of the immune system. Stress proteins or HSP can be considered as functional 'biomarkers' of inflammation. They are up-regulated locally during inflammation and interestingly, they seem to function as targets for anti-inflammatory regulatory T cells. In experimental models of autoimmunity, mainly arthritis, administration of HSP peptides have been shown to suppress disease. First clinical trials have shown the anti-inflammatory nature of T cell responses to Hsp. In type I diabetes and in rheumatoid arthritis, parenteral and oral administration of Hsp peptides were shown to induce a bias in pro-inflammatory T cells, switching them in the direction of regulatory cytokine production (IL4, IL5 and IL10). In addition a raised level of a marker of natural T regulatory cells, the transcription factor FoxP3, was noted in the RA trial. Other inflammatory diseases or diseases with inflammatory components which feature the immune imprint of the up-regulated Hsp are atherosclerosis, inflammatory bowel diseases, multiple sclerosis and atopic diseases such atopic dermatitis and allergic asthma.
    Keywords: R5-920 ; RC581-607 ; Autoimmunity ; Heat shock proteins ; T cells ; T cell regulation ; Cancer
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-12-21
    Description: It is now well appreciated that the immune system, in addition to its traditional role in defending the organism against pathogens, communicate in a well-organized fashion with the brain to maintain homeostasis and regulate a set of neural functions. Perturbation in this brain-immune interactions due to inflammatory responses may lead to psychiatric and neurological disorders. Microglia are one of the essential cells involved in the brain-immune interactions. Microglial cells are now not simply regarded as resident tissue macrophages in the brain. These cells are derived from myeloid progenitor cells in the yolk sac in early gestation, travel to the brain parenchyma and interact actively with neurons during the critical period of neurogenesis. Microglia provide a trophic support to developing neurons and take part in the neural wiring through the activity-dependent synapse elimination via direct neuron-microglia interactions. Altered microglial functions including changes in the gene expression due to early life inflammatory events or psychological and environmental stressors can be causally related to neurodevelopmental diseases and mental health disorders. This type of alterations in the neural functions can occur in the absence of infiltration of inflammatory cells in the brain parenchyma or leptomeninges. In this sense, the pathogenetic state underlying a significant part of psychiatric and neurological diseases may be similar to “para-inflammation”, an intermediate state between homeostatic and classical inflammatory states as defined by Ruslan Medzhitov (Nature 454:428-35, 2008). Therefore, it is important to study how systemic inflammation affects brain health and how local peripheral inflammation induces changes in the brain microenvironment. Chronic pain is also induced by disturbance in otherwise well-organized multisystem interplay comprising of reciprocal neural, endocrine and immune interactions. Especially, early-life insults including exposure to immune challenges can alter the neuroanatomical components of nociception, which induces altered pain response later in life. Recently the discrete roles of microglia and blood monocyte-derived macrophages are being defined. The distinction may be further highlighted by disorders in which the brain parenchymal tissue is damaged. Therefore, studies investigating the dynamics of immune cells in traumatic brain injury and neurotropic viral infections including human immunodeficiency virus, etc. as well as neurodegenerative diseases such as amyotrophic lateral sclerosis are promising to clarify the interplay between the central nervous and immune systems. The understanding of the histological architecture providing the infrastructure of such neuro-immune interplay is also essential. This Frontiers research topic brings together fourteen articles and aims to create a platform for researchers in the field of psychoneuroimmunology to share the recent theories, hypotheses and future perspectives regarding open questions on the mechanisms of cell-cell interactions with chemical mediators among the nervous, immune and endocrine systems. We hope that this platform would reveal the relevance of the studies on multisystem interactions to enhance the understanding of the mechanisms underlying a wide variety of neurological and psychiatric disorders.
    Keywords: R5-920 ; RC346-429 ; RC581-607 ; brain-immune interaction ; fatigue ; pain ; HIV ; neuroinflammation ; traumatic brain injury ; depression ; microglia ; amyotrophic lateral sclerosis ; autism ; bic Book Industry Communication::M Medicine
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-12-21
    Description: Microglia are essential for the development and function of the adult brain. Their ontogeny, together with the absence of turnover from the periphery and the singular environment of the central nervous system (CNS), make microglia a unique cell population compared to other tissue-macrophages. The unique properties and functions of microglial cells, such as their role in synaptic pruning or the exceptional capacity to scan the brain parenchyma and rapidly react to its perturbations, have emerged in recent years. In the coming years, understanding how microglia acquire and maintain their unique profiles in order to fulfil distinct tasks in the healthy CNS and how these are altered in disease, will be essential to develop strategies to diagnose or treat CNS disorders with an immunological component. This Research Topic covers several aspects of microglial biology, ranging from their origin and the functional role of microglia during development and lifespan, their molecular properties compared with other brain and peripheral immune cells to microglial phenotypes and functional states in neurodegenerative diseases and brain tumours. In conclusion, the present Research Topic provides a comprehensive overview of our current understanding of several cellular and molecular mechanisms that make microglia a unique immune cell population within the healthy CNS as well as under inflammatory, neurodegenerative and tumorigenic processes.
    Keywords: R5-920 ; RC346-429 ; RC581-607 ; inflammation ; brain tumour ; neurodegeneration ; microglia ; ontogeny ; bic Book Industry Communication::M Medicine
    Language: English
    Format: image/png
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-12-21
    Description: The non-classical HLA class I molecule HLA-G is different from classical HLA class I molecules because of the low polymorphism in the coding region, the fact that HLA-G primary transcript is alternatively spliced in seven isoforms, and the inhibitory action on immune cells. Although HLA-G is low polymorphic, variants in both promoter and 3’ un-translated region (UTR) of HLA-G locus regulate its expression. In healthy conditions, a basal level of HLA-G gene transcription is observed in most cells and tissues; however, translation into HLA-G protein is restricted to trophoblasts in the placenta, where it participates in promoting tolerance at the fetal-maternal interface. HLA-G is also expressed by thymic epitelial, cornea, mesenchymal stem cells, nail matrix, pancreatic beta cells, erythroid, and endothelial precursors. HLA-G can be neo-expressed in adult tissues in pathological conditions, and its expression has been documented autoimmune disorders, viral infections, and cancer. In the latter setting de novo HLA-G expression is associated with the capability of tumor cells to evade the immune control. In the last decade it has become evident that HLA-G expression on T cells and antigenpresenting cells confers to these cells tolerogenic properties. This Research Topic focused on i) summarizing updated clinical and immunological evidences that HLA-G expression is associate with beneficial or detrimental tolerance, ii) gathering new insights into the mechanisms governing the expression of HLA-G in healthy and pathological conditions, such as pre-eclampsia, and iii) examining the mechanisms underlying HLA-G mediated tolerance.
    Keywords: R5-920 ; RC581-607 ; Pregnancy ; Autoimmunity ; Immuno-modulation ; Pre-Eclampsia ; Infections ; Exosomes ; HLA-G ; polymorphisms ; tolerance ; Cancer ; bic Book Industry Communication::M Medicine
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...