ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1,080)
  • Copernicus Publications (EGU)  (1,077)
  • PANGAEA
  • 1
    Publication Date: 2024-05-23
    Description: Ocean alkalinity enhancement (OAE) seeks to increase the alkalinity of seawater for carbon dioxide removal (CDR). Following numerous propositions to trial, test, or upscale OAE for CDR, multiple social considerations have begun to be identified. To ensure that OAE research is responsible (is attentive to societal priorities) and successful (does not prematurely engender widespread social rejection), it will be critical to understand how OAE might be perceived as risky or controversial and under what conditions it might be regarded by relevant social groups as most worthy of exploration. To facilitate the answering of these questions, this chapter does the following: (1) characterizes what is known to date about public perceptions of OAE, (2) provides methodological suggestions on how to conduct social science research and public engagement to accompany OAE field research, and (3) addresses how knowledge gained from social research and public engagement on OAE can be integrated into ongoing scientific, siting, and communications work.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2024-05-22
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-22
    Description: The glacial–interglacial cycles of the Quaternary exhibit 41 kyr periodicity before the Mid-Pleistocene Transition (MPT) around 1.2–0.8 Myr ago and ∼ 100 kyr periodicity after that. From the viewpoint of dynamical systems, proposed mechanisms generating these periodicities are broadly divided into two types: (i) nonlinear forced responses of a mono- or multi-stable climate system to the astronomical forcing or (ii) synchronization of internal self-sustained oscillations to the astronomical forcing. In this study, we investigate the dynamics of glacial cycles simulated by the Earth system model of intermediate complexity CLIMBER-2 with a fully interactive carbon cycle, which reproduces the MPT under gradual changes in volcanic-CO2 degassing and regolith cover. We report that, in this model, the dominant frequency of glacial cycles is set in line with the principle of synchronization. It is found that the model exhibits self-sustained oscillations in the absence of astronomical forcing. Before the MPT, glacial cycles synchronize to the 41 kyr obliquity cycles because the self-sustained oscillations have periodicity relatively close to 41 kyr. After the MPT the timescale of internal oscillations becomes too long to follow every 41 kyr obliquity cycle, and the oscillations synchronize to the 100 kyr eccentricity cycles that modulate the amplitude of climatic precession. The latter synchronization occurs with the help of the 41 kyr obliquity forcing, which enables some terminations and glaciations to occur robustly at their right timing. We term this phenomenon vibration-enhanced synchronization because of its similarity to the noise-enhanced synchronization known in nonlinear science. While we interpret the dominant periodicities of glacial cycles as the result of synchronization of internal self-sustained oscillations to the astronomical forcing, the Quaternary glacial cycles show facets of both synchronization and forced response.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-22
    Description: Black shale sediments from the Barremian to Aptian South Atlantic document intense and widespread burial of marine organic carbon during the initial stages of seafloor spreading between Africa and South America. The enhanced sequestration of atmospheric CO2 makes these young ocean basins potential drivers of the Early Cretaceous carbon cycle and climate perturbations. The opening of marine gateways between initially restricted basins and related circulation and ventilation changes are a commonly invoked explanation for the transient formation and disappearance of these regional carbon sinks. However, large uncertainties in paleogeographic reconstructions limit the interpretation of available paleoceanographic data and prevent any robust model-based quantifications of the proposed circulation and carbon burial changes. Here, we present a new approach to assess the principal controls on the Early Cretaceous South Atlantic and Southern Ocean circulation changes under full consideration of the uncertainties in available boundary conditions. Specifically, we use a large ensemble of 36 climate model experiments to simulate the Barremian to Albian progressive opening of the Falkland Plateau and Georgia Basin gateways with different configurations of the proto-Drake Passage, the Walvis Ridge, and atmospheric CO2 concentrations. The experiments are designed to complement available geochemical data across the regions and to test circulation scenarios derived from them. All simulations show increased evaporation and intermediate water formation at subtropical latitudes that drive a meridional overturning circulation whose vertical extent is determined by the sill depth of the Falkland Plateau. Densest water masses formed in the southern Angola Basin and potentially reached the deep Cape Basin as Walvis Ridge Overflow Water. Paleogeographic uncertainties are as important as the lack of precise knowledge of atmospheric CO2 levels for the simulated temperature and salinity spread in large parts of the South Atlantic. Overall temperature uncertainties are up to 15 °C and increase significantly with water depth. The ensemble approach reveals temporal changes in the relative importance of geographic and radiative forcings for the simulated oceanographic conditions and, importantly, nonlinear interactions between them. Progressive northward opening of the highly restricted Angola Basin increased the sensitivity of local overturning and upper ocean stratification to atmospheric CO2 concentrations due to large-scale changes in the hydrological cycle, while the chosen proto-Drake Passage depth is critical for the ocean dynamics and CO2 response in the southern South Atlantic. Finally, the simulated processes are integrated into a recent carbon burial framework to document the principal control of the regional gateway evolution on the progressive shift from the prevailing saline and oxygen-depleted subtropical water masses to the dominance of ventilated high-latitude deep waters.
    Type: Article , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-17
    Description: Combining proxy information and climate model simulations reconciles these sources of information about past climates. This, in turn, strengthens our understanding of past climatic changes. The analogue or proxy surrogate reconstruction method is a computationally cheap data assimilation approach, which searches in a pool of simulated climate states the best fit to proxy data. We use the approach to reconstruct European summer mean temperature from the 13th century until present using the Euro 2k set of proxy records and a pool of global climate simulation output fields. Our focus is on quantifying the uncertainty of the reconstruction, because previous applications of the analogue method rarely provided uncertainty ranges. We show several ways of estimating reconstruction uncertainty for the analogue method, which take into account the non-climate part of the variability in each proxy record. In general, our reconstruction agrees well at multi-decadal timescales with the Euro 2k reconstruction, which was conducted with two different statistical methods and no information from model simulations. In both methodological approaches, the decades around the year 1600 CE were the coldest. However, the approaches disagree on the warmest pre-industrial periods. The reconstructions from the analogue method also represent the local variations of the observed proxies. The diverse uncertainty estimates obtained from our analogue approaches can be locally larger or smaller than the estimates from the Euro 2k effort. Local uncertainties of the temperature reconstructions tend to be large in areas that are poorly covered by the proxy records. Uncertainties highlight the ambiguity of field-based reconstructions constrained by a limited set of proxies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-17
    Description: In September 2021, volcanic aerosol (mainly freshly formed sulfate plumes) originating from the eruption of Cumbre Vieja on La Palma, Canary Islands, Spain, crossed Cabo Verde at altitudes below 2 km. On 24 September 2021, an extraordinary large aerosol optical depth (AOD) close to 1 (daily mean at 500 nm) was observed at Mindelo, Cabo Verde. This event provided favorable conditions to obtain lidar-derived profiles of extinction and backscatter coefficients, lidar ratio, and depolarization ratio at 355, 532 and 1064 nm in the sulfate aerosol plume. A novel feature of the lidar system operated at Mindelo is the availability of extinction, lidar ratio and depolarization measurements at 1064 nm in addition to the standard wavelengths of 355 and 532 nm. Having measurements of these parameters at all three wavelengths is a major advantage for the aerosol characterization and in aerosol typing efforts as the lidar ratio and the particle linear depolarization ratio are key parameters for this purpose. In this article, we present the key results of the lidar observations obtained on one specific day, namely on 24 September 2021 at 04:38-05:57 UTC, including the first ever measurements of the particle extinction coefficient, the lidar ratio and the depolarization ratio at 1064 nm for volcanic sulfate, and discuss the findings in terms of aerosol optical properties and mass concentrations by comparison with a reference observation (16 September 2021) representing the typical background conditions before the start of the eruptions. We found an unusual high particle extinction coefficient of 721 +/- 51, 549 +/- 38 and 178 +/- 13 Mm - 1 , as well as an enhanced lidar ratio of 66.9 +/- 10.1, 60.2 +/- 9.2 and 30.8 +/- 8.7 sr at 355, 532 and 1064 nm, respectively, in the sulfate-dominated planetary boundary layer (PBL). The particle linear depolarization ratio was 〈= 0.9 % at all respective wavelengths. It is the first time that lidar-derived intensive aerosol optical properties could be derived for volcanic sulfate at all three wavelengths, and thus it is a highly valuable data set for global aerosol characterization. The lidar analysis also revealed a sulfate-related AOD of about 0.35 +/- 0.03 at 532 nm of the total PBL-related AOD of 0.43. The rest of the AOD contribution was caused by a lofted Saharan dust layer extending from 1.4 to 5 km and leading to a total AOD of 0.79 at 532 nm. Volcanic ash contribution to the observed aerosol plumes could be mostly excluded based on trajectory analysis and the observed optical properties. Peak mass concentration was 178.5 +/- 44.6 mu g m - 3 in the volcanic-influenced and sulfate-dominated polluted PBL, showing the hazardous potential of such sulfate plumes to significantly worsen local air quality even at remote locations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-17
    Description: The climate science community aims to improve our understanding of climate change due to anthropogenic influences on atmospheric composition and the Earth's surface. Yet not all climate interactions are fully understood and diversity in climate model experiments persists as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. This article synthesizes current challenges and emphasizes opportunities for advancing our understanding of climate change and model diversity. The perspective of this article is based on expert views from three multi-model intercomparison projects (MIPs) – the Precipitation Driver Response MIP (PDRMIP), the Aerosol and Chemistry MIP (AerChemMIP), and the Radiative Forcing MIP (RFMIP). While there are many shared interests and specialisms across the MIPs, they have their own scientific foci and specific approaches. The partial overlap between the MIPs proved useful for advancing the understanding of the perturbation-response paradigm through multi-model ensembles of Earth System Models of varying complexity. It specifically facilitated contributions to the research field through sharing knowledge on best practices for the design of model diagnostics and experimental strategies across MIP boundaries, e.g., for estimating effective radiative forcing. We discuss the challenges of gaining insights from highly complex models that have specific biases and provide guidance from our lessons learned. Promising ideas to overcome some long-standing challenges in the near future are kilometer-scale experiments to better simulate circulation-dependent processes where it is possible, and machine learning approaches for faster and better sub-grid scale parameterizations where they are needed. Both would improve our ability to adopt a smart experimental design with an optimal tradeoff between resolution, complexity and simulation length. Future experiments can be evaluated and improved with sophisticated methods that leverage multiple observational datasets, and thereby, help to advance the understanding of climate change and its impacts.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-05-15
    Description: In this paper we describe the implementation of the carbon isotopes 13C and 14C (radiocarbon) into the marine biogeochemistry model REcoM3. The implementation is tested in long-term equilibrium simulations where REcoM3 is coupled with the ocean general circulation model FESOM2.1, applying a low-resolution configuration and idealized climate forcing. Focusing on the carbon-isotopic composition of dissolved inorganic carbon (δ13CDIC and Δ14CDIC), our model results are largely consistent with reconstructions for the pre-anthropogenic period. Our simulations also exhibit discrepancies, e.g. in upwelling regions and the interior of the North Pacific. Some of these differences are due to the limitations of our ocean circulation model setup, which results in a rather shallow meridional overturning circulation. We additionally study the accuracy of two simplified modelling approaches for dissolved inorganic 14C, which are faster (15 % and about a factor of five, respectively) than the complete consideration of the marine radiocarbon cycle. The accuracy of both simplified approaches is better than 5 %, which should be sufficient for most studies of Δ14CDIC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-05-06
    Description: The presented pilot for the Synthesis Product for Ocean Time Series (SPOTS) includes data from 12 fixed ship-based time-series programs. The related stations represent unique open-ocean and coastal marine environments within the Atlantic Ocean, Pacific Ocean, Mediterranean Sea, Nordic Seas, and Caribbean Sea. The focus of the pilot has been placed on biogeochemical essential ocean variables: dissolved oxygen, dissolved inorganic nutrients, inorganic carbon (pH, total alkalinity, dissolved inorganic carbon, and partial pressure of CO2), particulate matter, and dissolved organic carbon. The time series used include a variety of temporal res- olutions (monthly, seasonal, or irregular), time ranges (10–36 years), and bottom depths (80–6000 m), with the oldest samples dating back to 1983 and the most recent one corresponding to 2021. Besides having been harmo- nized into the same format (semantics, ancillary data, units), the data were subjected to a qualitative assessment in which the applied methods were evaluated and categorized. The most recently applied methods of the time- series programs usually follow the recommendations outlined by the Bermuda Time Series Workshop report (Lorenzoni and Benway, 2013), which is used as the main reference for “method recommendations by prevalent initiatives in the field”. However, measurements of dissolved oxygen and pH, in particular, still show room for improvement. Additional data quality descriptors include precision and accuracy estimates, indicators for data variability, and offsets compared to a reference and widely recognized data product for the global ocean: the GLobal Ocean Data Analysis Project (GLODAP). Generally, these descriptors indicate a high level of continuity in measurement quality within time-series programs and a good consistency with the GLODAP data product, even though robust comparisons to the latter are limited. The data are available as (i) a merged comma-separated file that is compliant with the World Ocean Circulation Experiment (WOCE) exchange format and (ii) a format dependent on user queries via the Environmental Research Division’s Data Access Program (ERDDAP) server of the Global Ocean Observing System (GOOS). The pilot increases the data utility, findability, accessibility, interoperability, and reusability following the FAIR philosophy, enhancing the readiness of biogeochemical time series. It facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations and forms the basis for a sustained time-series living data product, SPOTS, complementing relevant products for the global interior ocean carbon data (GLobal Ocean Data Analysis Project), global surface ocean carbon data (Surface Ocean CO2 Atlas; SOCAT), and global interior and surface methane and nitrous oxide data (MarinE MethanE and NiTrous Oxide product). Aside from the actual data compilation, the pilot project produced suggestions for reporting metadata, im- plementing quality control measures, and making estimations about uncertainty. These recommendations aim to encourage the community to adopt more consistent and uniform practices for analysis and reporting and to update these practices regularly. The detailed recommendations, links to the original time-series programs, the original data, their documentation, and related efforts are available on the SPOTS website. This site also pro- vides access to the data product (DOI: https://doi.org/10.26008/1912/bco-dmo.896862.2, Lange et al., 2024) and ancillary data.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...