ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (593,884)
  • Wiley  (159,611)
  • 2010-2014  (753,495)
Collection
Language
Years
Year
  • 1
    Publication Date: 2024-05-09
    Description: A geochemical survey of 197 fluid discharges (cold and thermal waters and bubbling pools) and 15 gas emissions from the western sector of the Sabatini Volcanic District and the Tolfa Mountains (Latium, Central Italy) was carried out in 2007–2008. The chemical and isotopic compositions of the fluid discharges indicate the occurrence of two main sources: 1) relatively shallow aquifers with Ca(Na,K)–HCO3 and Ca(Mg)–HCO3 compositions when trapped in volcanic and sedimentary formations, respectively; and 2) a deep reservoir, which is hosted in the Mesozoic carbonate sequence, rich in CO2 and having a Ca–SO4(HCO3) composition. Dissolution of a CO2-rich gas phase into the shallow aquifers produces high-TDS and high-pCO2 cold waters, while oxidation of deep-derived H2S to SO4 2− generates low-pH (b4) sulfate waters. The δ13C–CO2 values for gas emissions (from−2.8 to+2.7‰vs. VPDB) suggest that the origin of CO2 associated with the deep fluids ismainly related to thermo-metamorphic reactions within the carbonate reservoir, although significant mantle contribution may also occur. However, R/Ra values (0.37–0.62) indicate that He is mainly produced by a crustal source, with a minor component from a crust-contaminated mantle. On the basis of the δ13C–CH4 and δD–CH4 values (from −25.7 to −19.5‰ vs. VPDB and from −152 to −93.4‰ vs. VSMOW, respectively) CH4 production is associated with thermogenic processes, possibly related to abiogenic CO2 reduction within the carbonate reservoir. The δ34S–H2S values (from+9.3 to +10.4‰ vs. VCDT) are consistent with the hypothesis of a sedimentary source of sulfur from thermogenic reduction of Triassic sulfates. Geothermometric evaluations based on chemical equilibria CO2–CH4 and, separately, H2S suggest that the reservoir equilibriumtemperature is up to ~300 °C. The δDand δ18O data indicate thatwater recharging both the shallow and deep aquifers has a meteoric origin. Fluid geochemistry, coupled with gravimetric data and tectonic lineaments, supports the idea that significant contributions from a deep-seated geothermal brine are present in the Stigliano thermal fluid discharges. Exploration surveys investigated this area during 70's–90's for geothermal purposes. Nevertheless, presently the area is still under-exploited. The presence of thermal waters and anomalous heat flow together with the demographic growth of the last years,makes this site a suitable location for direct applications of the geothermal resource.
    Description: Published
    Description: 160-181
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: Geochemistry Water Gas Stable isotope Geothermometry Central Italy ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-08
    Description: For the past 50 years it has been assumed that the principal pathway for the deep limb of the Atlantic Meridional Overturning Circulation (AMOC) is the Deep Western Boundary Current (DWBC). However, recent observations of Lagrangian floats have shown that the DWBC is not necessarily a unique, dominant, or continuous pathway for these deep waters. A significant portion of the deep water export from the subpolar to the subtropical gyres follows a pathway through the interior of the Newfoundland and subtropical basins, which is constrained by the western boundary and the western flank of the Mid-Atlantic Ridge. The hypothesis that deep eddy-driven recirculation gyres are a mechanism for partitioning the deep limb of the AMOC into the DWBC and this interior pathway is investigated here. Eulerian and Lagrangian analyses of the output of ocean general circulation models at eddy-resolving, eddy-permitting, and non-eddy permitting resolutions are used to test this hypothesis. Eddy-driven recirculation gyres, simulated in the eddy-resolving and eddy-permitting models and similar to recirculations inferred from hydrographic data, are shown to shape the export pathways of deep water from the subpolar to the subtropical gyres.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-23
    Description: The isotopic composition of Phanerozoic marine sediments provides important information about changes in seawater chemistry. In particular, the radiogenic strontium isotope (87Sr/86Sr) system is a powerful tool for constraining plate tectonic processes and their influence on atmospheric CO2 concentrations. However, the 87Sr/86Sr isotope ratio of seawater is not sensitive to temporal changes in the marine strontium (Sr) output flux, which is primarily controlled by the burial of calcium carbonate (CaCO3) at the ocean floor. The Sr budget of the Phanerozoic ocean, including the associated changes in the amount of CaCO3 burial, is therefore only poorly constrained. Here, we present the first stable isotope record of Sr for Phanerozoic skeletal carbonates, and by inference for Phanerozoic seawater (δ88/86Srsw), which we find to be sensitive to imbalances in the Sr input and output fluxes. This δ88/86Srsw record varies from ∼0.25‰ to ∼0.60‰ (vs. SRM987) with a mean of ∼0.37‰. The fractionation factor between modern seawater and skeletal calcite Δ88/86Srcc-sw, based on the analysis of 13 modern brachiopods (mean δ88/86Sr of 0.176±0.016‰, 2 standard deviations (s.d.)), is -0.21‰ and was found to be independent of species, water temperature, and habitat location. Overall, the Phanerozoic δ88/86Srsw record is positively correlated with the Ca isotope record (δ44/40Casw), but not with the radiogenic Sr isotope record ((87Sr/86Sr)sw). A new numerical modeling approach, which considers both δ88/86Srsw and (87Sr/86Sr)sw, yields improved estimates for Phanerozoic fluxes and concentrations for seawater Sr. The oceanic net carbonate flux of Sr (F(Sr)carb) varied between an output of -4.7x1010mol/Myr and an input of +2.3x1010mol/Myr with a mean of -1.6x1010mol/Myr. On time scales in excess of 100Myrs the F(Sr)carb is proposed to have been controlled by the relative importance of calcium carbonate precipitates during the “aragonite” and “calcite” sea episodes. On time scales less than 20Myrs the F(Sr)carb seems to be controlled by variable combinations of carbonate burial rate, shelf carbonate weathering and recrystallization, ocean acidification, and ocean anoxia. In particular, the Permian/Triassic transition is marked by a prominent positive δ88/86Srsw-peak that reflects a significantly enhanced burial flux of Sr and carbonate, likely driven by bacterial sulfate reduction (BSR) and the related alkalinity production in deeper anoxic waters. We also argue that the residence time of Sr in the Phanerozoic ocean ranged from ∼1Myrs to ∼20Myrs.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-22
    Description: IODP Expedition 307 made it for the first time possible to investigate the entire body of a cold-water coral carbonate mound. Here we provide new insights into the long-term history of Challenger Mound on the European continental margin off Ireland. This study is based on age determinations (230Th/U, 87Sr/86Sr) and geochemical signals (Mg/Li and Ba/Ca) measured in the scleractinian cold-water coral Lophelia pertusa from IODP Site 1317 in the Porcupine Seabight. The paleoceanographic reconstructions reveal that coral growth in the Porcupine Seabight was restricted to specific oceanographic conditions such as enhanced export of primary production and Bottom-Water Temperatures (BWT) between ∼8–10 °C, related to the water mass stratification of the Mediterranean Outflow Water (MOW) and Eastern North Atlantic Water (ENAW). The geochemical signals from the coral skeletons can be explained by the close interaction between cold-water coral growth, sea-surface productivity and the surrounding water masses - the boundary layer between MOW and ENAW. Enhanced sea-surface productivity and the build-up of a stable water mass stratification between ENAW and MOW caused enhanced nutrient supply at intermediate water depths and facilitated a steady mound growth between∼3.0 - 2.1 Ma. With the decrease in sea-surface productivity and related reduced export productivity the food supply was insufficient for rapid coral mound growth between∼1.7 - 1 Ma. During the late Pleistocene (over the last∼0.5 Myr) mound growth was restricted to interglacial periods. During glacials the water mass boundary between ENAW/MOW probably was below the mound summit and hence food supply was not sufficient for corals to grow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-22
    Description: The aragonitic skeletons of scleractinian cold-water corals can serve as valuable archives in paleoceanographic studies. The potential of δ88/86Sr, Sr/Ca, Mg/Ca, Li/Ca and Mg/Li ratios of the cold-water coral Lophelia pertusa to record intermediate water mass properties has been investigated. Here we used samples from several locations along the European continental margin spanning a large temperature range from 6 to 14 °C. Stable strontium isotope measurements were carried out with the recently developed double spike TIMS technique and our results differ from those obtained with less precise methods. In contrast to the strong positive relationship with temperature of previous studies, our results suggest that δ88/86Sr measured in scleractinian cold-water corals is not controlled by seawater temperature, but reflects the Sr isotopic composition of seawater with an offset of Δ88/86Sr = − 0.196‰. As found in previous studies, the elemental ratios Sr/Ca, Li/Ca and Mg/Li measured in corals are significantly related to water temperature and do not correlate with salinity. Moreover, Sr/Ca ratios in L. pertusa display the expected inverse correlation with temperature. However, the variance in the Sr/Ca data severely limits the accuracy of paleotemperature estimates. The Li/Ca and Mg/Ca ratios reveal other influences besides temperature such as pH and/or growth or calcification rate. However, corresponding Mg/Li ratios in L. pertusa are more tightly related to temperature as they remove these secondary effects. In particular, the Mg/Li ratio in L. pertusa may serve as a new promising paleotemperature proxy for intermediate water masses. Our dataset represents the most extensive geochemical examination of L. pertusa to date, revealing a temperature sensitivity of 0.015 mol/mmol/°C for Mg/Li. However, using this temperature dependence and the precision of 5.3% (2SD) only temperature variations larger than ~ 1.5 °C can be resolved with 95% confidence.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-22
    Description: The understanding of the paleoenvironment during initiation and early development of deep cold-water coral carbonate mounds in the NE Atlantic is currently a focus of international research. The Integrated Ocean Drilling Program (IODP) Expedition 307 drilled the 155 m high Challenger Mound in the Porcupine Seabight (SW off Ireland) in order to investigate for the first time sediments from the base of a giant carbonate mound. In this study we focus in high resolution on 12 m of sediments from Site 1317 encompassing the mound base. The mound initiation and start-up phase coincide with the intensification of the Northern Hemisphere Glaciation (INHG) at around 2.7 Ma. Further carbonate mound development seems to be strongly dependent on rapid changes in paleoceanographic and climatic conditions at the Pliocene–Pleistocene boundary, especially characterized and caused by the interaction of intermediate water masses, the Mediterranean Outflow Water (MOW), the Eastern North Atlantic Water (ENAW) and the influence of Southern Component Water (SCW). This study is based on well-established proxies such as δ18O and δ13C of planktonic (Globigerina bulloides) and benthic foraminifera (Fontbotia wuellerstorfi, Discanomalina coronata, Lobatula lobatula, Lobatula antarctica, and Planulina ariminensis) as well as grain size parameters to identify the paleoenvironmental and paleoecological setting favourable for the initial coral colonization on the mound. Stable oxygen and carbon isotope records of benthic foraminiferal species indicate that L. lobatula provides a reliable isotopic signature for paleoenvironmental reconstructions. In particular, δ18O values of L. lobatula indicate that initial mound growth started in a glacial mode with moderate excursions in δ18O values. Carbon isotope values of D. coronata are significantly offset compared to other epibenthic species. This offset may be related to vital effects. Bottom water temperatures, calculated using standard equations based on δ18O of foraminiferal tests, range between 7 and 11 °C, consistent with the known temperature range conducive for cold-water coral growth and development. Bottom currents transporting intermediate water masses of southern origin (Mediterranean and Bay of Biscay) enhanced at 2.6 Ma supporting first coral settlements with the INHG. The benthic δ13C and the sortable silt records indicate that the early Pleistocene hydrodynamic regime was characterized by weaker current intensities associated with vertical movements of MOW or its replacement by SCW at intermediate depth. After these sluggish phases enhanced MOW flow dominated again and led to stronger current intensities and most probably sediment erosion on Challenger Mound. Erosion in combination with early diagenetic (oxidation) processes overprinted the sediment layers as indicated by dissolved coral skeletons, the increase in Ca-content and sediment density, minimum δ13Cplanktonic values, as well as the occurrence of gypsum and pyrite, implying a careful evaluation of original and overprinted geochemical signals. We conclude that the Challenger Mound development was already influenced by short-term variability of water masses from southern origin and possible erosional events comparable to the late Pleistocene setting.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-22
    Description: The Sr/Ca ratio of coral aragonite is used to reconstruct past sea surface temperature (SST). Twentyone laboratories took part in an interlaboratory study of coral Sr/Ca measurements. Results show interlaboratory bias can be significant, and in the extreme case could result in a range in SST estimates of 7°C. However, most of the data fall within a narrower range and the Porites coral reference material JCp- 1 is now characterized well enough to have a certified Sr/Ca value of 8.838 mmol/mol with an expanded uncertainty of 0.089 mmol/mol following International Association of Geoanalysts (IAG) guidelines. This uncertainty, at the 95% confidence level, equates to 1.5°C for SST estimates using Porites, so is approaching fitness for purpose. The comparable median within laboratory error is 〈0.5°C. This difference in uncertainties illustrates the interlaboratory bias component that should be reduced through the use of reference materials like the JCp-1. There are many potential sources contributing to biases in comparative methods but traces of Sr in Ca standards and uncertainties in reference solution composition can account for half of the combined uncertainty. Consensus values that fulfil the requirements to be certified values were also obtained for Mg/Ca in JCp-1 and for Sr/Ca and Mg/Ca ratios in the JCt-1 giant clam reference material. Reference values with variable fitness for purpose have also been obtained for Li/Ca, B/Ca, Ba/Ca, and U/Ca in both reference materials. In future, studies reporting coral element/Ca data should also report the average value obtained for a reference material such as the JCp-1.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-16
    Description: Earth system climate models generally underestimate dissolved oxygen concentrations in the deep eastern equatorial Pacific. This problem is associated with the "nutrient trapping" problem, described by Najjar et al. [1992], and is, at least partially, caused by a deficient representation of the Equatorial Intermediate Current System (EICS). Here we emulate the unresolved EICS in the UVic earth system climate model by locally increasing the zonal isopycnal diffusivity. An anisotropic diffusivity of ∼50,000 m 2 s-1 yields an improved global representation of temperature, salinity and oxygen. In addition, it (1) resolves most of the local "nutrient trapping" and associated oxygen deficit in the eastern equatorial Pacific and (2) reduces spurious zonal temperature gradients on isopycnals without affecting other physical metrics such as meridional overturning or air-sea heat fluxes. Finally, climate projections of low-oxygenated waters and associated denitrification change sign and apparently become more plausible
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-01-07
    Description: A numerical ocean sea-ice model is used to demonstrate that Arctic sea ice retreat affects momentum transfer into the ocean. A thinner and thus weaker ice cover is more easily forced by the wind, which increases the momentum flux. In contrast, increasing open water reduces momentum transfer because the ice surface provides greater drag than the open water surface. We introduce the concept of optimal ice concentration: momentum transfer increases with increasing ice concentration up to a point, beyond which frictional losses by floe interaction damp the transfer. For a common ice internal stress formulation, a concentration of 80–90% yields optimal amplification of momentum flux into the ocean. We study the seasonality and long-term evolution of Arctic Ocean surface stress over the years 1979–2012. Spring and fall feature optimal ice conditions for momentum transfer, but only in fall is the wind forcing at its maximum, yielding a peak basin-mean ocean surface stress of ∼0.08 N/m2. Since 1979, the basin-wide annual mean ocean surface stress has been increasing by 0.004 N/m2/decade, and since 2000 by 0.006 N/m2/decade. In contrast, summertime ocean surface stress has been decreasing at −0.002 N/m2/decade. These trends are linked to the weakening of the ice cover in fall, winter and spring, and to an increase in open water fraction in summer, i.e., changes in momentum transfer rather than changes in wind forcing. In most areas, the number of days per year with optimal ice concentration is decreasing. Key Points Weaker Arctic sea ice causes increased annual mean ocean surface stress (+20%) Increasing open water area in summer yields momentum flux reduction (−7%) An optimal ice concentration of 80–90% amplifies momentum transfer threefold
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-01-01
    Description: Tidal processes play an important role in the dynamics of shelf circulation in the Laptev Sea. The Unstructured Grid Finite Volume Coastal Ocean Model (FVCOM) is used to simulate the tidal dynamics in the Lena Delta region of the Laptev Sea in ice-free barotropic case. The grid element size ranges from 400 m to 5 km. The major semidiurnal tidal waves M2M2 and S2S2 are investigated with the M2M2 being the most important in generating large sea level amplitudes and currents over shallow areas. A correction to the tidal elevation at the open boundary is proposed, which minimizes the discrepancy between the model prediction and observations. The observations include both recent mooring data and the standard set of tide gauge measurements used in previous studies. The comparison of results to known tidal solutions is carried out. The paper also discusses the residual circulation and energy fluxes and assesses the impact of additional bathymetric information. Highlights • Our simulations reproduce the semidiurnal tidal waves M2M2 and S2S2 in the Laptev Sea region. • We develop special procedure for the construction of optimal open boundary conditions for tidal elevation for M2M2 and S2S2 constituents. • The simulated tidal maps show an improved agreement with observations. • We analyze barotropic currents, residual circulation and evolution of energy fluxes in the region. • We consider the energy balance for the M2M2 and S2S2 waves and the sensitivity to the bathymetry.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...