ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (742,515)
  • 2000-2004  (16)
  • 1975-1979  (10)
  • 2015  (742,515)
Collection
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lehrmann, Daniel; Chaikin, Daniel H; Enos, Paul; Minzoni, Marcello; Payne, Jonathan L; Yu, Meiyi; Goers, Alexa; Wood, Tanner; Richter, Paula; Kelley, Brian M; Li, Xiaowei; Quin, Yanijao; Liu, Lingyun; Lu, Gang (2015): Patterns of basin fill in Triassic turbidites of the Nanpanjiang basin: implications for regional tectonics and impacts on carbonate-platform evolution. Basin Research, 27(5), 587-612, https://doi.org/10.1111/bre.12090
    Publication Date: 2024-06-01
    Description: Triassic turbidites of the Nanpanjiang basin of south China represent the most expansive and voluminous siliciclastic turbidite accumulation in south China. The Nanpanjiang basin occurs at a critical junction between the southern margin of the south China plate and the Indochina, Siamo and Sibumasu plates to the south and southwest. The Triassic Yangtze carbonate shelf and isolated carbonated platforms in the basin have been extensively studied, but silicilastic turbidites in the basin have received relatively little attention. Deciphering the facies, paleocurrent indicators and provenance of the Triassic turbidites is important for several reasons: it promises to help resolve the timing of plate collisions along suture zones bordering the basin to the south and southwest, it will enable evaluation of which suture zones and Precambrian massifs were source areas, and it will allow an evaluation of the impact of the siliciclastic flux on carbonate platform evolution within the basin. Turbidites in the basin include the Early Triassic Shipao Formation and the Middle-Late Triassic Baifeng, Xinyuan, Lanmu Bianyang and Laishike formations. Each ranges upward of 700 m and the thickest is nearly 3 km. The turbidites contain very-fine sand in the northern part of the basin whereas the central and southern parts of the basin also commonly contain fine and rarely medium sand size. Coarser sand sizes occur where paleocurrents are from the south, and in this area some turbidites exhibit complete bouma sequences with graded A divisions. Successions contain numerous alternations between mud-rich and sand-rich intervals with thickness trends corresponding to proximal/ distal fan components. Spectacularly preserved sedimentary structures enable robust evaluation of turbidite systems and paleocurrent analyses. Analysis of paleocurrent measurements indicates two major directions of sediment fill. The northern part of the basin was sourced primarily by the Jiangnan massif in the northeast, and the central and southern parts of the basin were sourced primarily from suture zones and the Yunkai massif to the south and southeast respectively. Sandstones of the Lower Triassic Shipao Fm. have volcaniclastic composition including embayed quartz and glass shards. Middle Triassic sandstones are moderately mature, matrix-rich, lithic wackes. The average QFL ratio from all point count samples is 54.1/18.1/27.8% and the QmFLt ratio is 37.8/ 18.1/ 44.1%. Lithic fragments are dominantly claystone and siltstone clasts and metasedimentary clasts such as quartz mica tectonite. Volcanic lithics are rare. Most samples fall in the recycled orogen field of QmFLt plots, indicating a relatively quartz and lithic rich composition consistent with derivation from Precambrian massifs such as the Jiangnan, and Yunkai. A few samples from the southwest part of the basin fall into the dissected arc field, indicating a somewhat more lithic and feldspar-rich composition consistent with derivation from a suture zone Analysis of detrial zircon populations from 17 samples collected across the basin indicate: (1) Several samples contain zircons with concordant ages greater than 3000 Ma, (2) there are widespread peaks across the basin at 1800 Ma and 2500, (3) a widespread 900 Ma population, (3) a widespread population of zircons at 440 Ma, and (5) a larger population of younger zircons about 250 Ma in the southwestern part which is replaced to the north and northwest by a somewhat older population around 260-290 Ma. The 900 Ma provenance fits derivation from the Jiangnan Massif, the 2500, 1800, and 440 Ma provenance fits the Yunkai massif, and the 250 Ma is consistent with convergence and arc development in suture zones bordering the basin on the south or southwest. Early siliciclastic turbidite flux, proximal to source areas impacted carbonate platform evolution by infilling the basin, reducing accommodation space, stabilizing carbonate platform margins and promoting margin progradation. Late arrival, in areas far from source areas caused margin aggradation over a starved basin, development of high relief aggradational escarpments and unstable scalloped margins.
    Keywords: Age, error; Age, mineral; Area/locality; Correction; Feldspar; Formation; Guangxi, Guizhou, China; HAND; HR ICP-MS, Nu [Arizona Laserchron Center (ALC)]; Kalifeldspar; LATITUDE; Lead-206/Lead-204 ratio; Lead-206/Lead-207, error; Lead-206/Lead-207 ratio; Lead-206/Uranium-238, error; Lead-206/Uranium-238 ratio; Lead-207/Uranium-235, error; Lead-207/Uranium-235 ratio; Linear flow indicator; Lithic grains; LONGITUDE; Matrix; Nanpanjiang_Basin; Number of points; Plagioclase; Point counting, petrographic microscope; Protractor, corrected for strike and dip; Quartz; Quartz, monocrystalline; Quartz, polycrystalline; Sample code/label; Sampling by hand; Sedimentary fragments; Uranium; Uranium/Thorium ratio; Vector; Volcanic fragments
    Type: Dataset
    Format: text/tab-separated-values, 34067 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-05-31
    Keywords: ARK-XVII/2; Calculated; Course; CT; DATE/TIME; LATITUDE; LONGITUDE; Polarstern; PS59/2-track; PS59 AMORE; Speed; Underway cruise track measurements
    Type: Dataset
    Format: text/tab-separated-values, 19834 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Felis, Thomas; Giry, Cyril; Scholz, Denis; Lohmann, Gerrit; Pfeiffer, Madlene; Pätzold, Jürgen; Kölling, Martin; Scheffers, Sander R (2015): Tropical Atlantic temperature seasonality at the end of the last interglacial. Nature Communications, 6, 6159, https://doi.org/10.1038/ncomms7159
    Publication Date: 2024-05-31
    Description: The end of the last interglacial period, ~118 kyr ago, was characterized by substantial ocean circulation and climate perturbations resulting from instabilities of polar ice sheets. These perturbations are crucial for a better understanding of future climate change. The seasonal temperature changes of the tropical ocean, however, which play an important role in seasonal climate extremes such as hurricanes, floods and droughts at the present day, are not well known for this period that led into the last glacial. Here we present a monthly resolved snapshot of reconstructed sea surface temperature in the tropical North Atlantic Ocean for 117.7±0.8 kyr ago, using coral Sr/Ca and d18O records. We find that temperature seasonality was similar to today, which is consistent with the orbital insolation forcing. Our coral and climate model results suggest that temperature seasonality of the tropical surface ocean is controlled mainly by orbital insolation changes during interglacials.
    Keywords: BON-5-D; Calculated, see reference(s); CaribClim_Coral_2006; Center for Marine Environmental Sciences; Diploria strigosa, Strontium/Calcium ratio; Diploria strigosa, δ18O; DRILL; Drilling/drill rig; ICP-OES, Perkin-Elmer, Optima 3300R; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; Internal coral chronology; MARUM; Mass spectrometer Finnigan MAT 251; Southern Caribbean Sea, Bonaire
    Type: Dataset
    Format: text/tab-separated-values, 720 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rachmayani, Rima; Prange, Matthias; Schulz, Michael (2015): North African vegetation–precipitation feedback in early and mid-Holocene climate simulations with CCSM3-DGVM. Climate of the Past, 11(2), 175-185, https://doi.org/10.5194/cp-11-175-2015
    Publication Date: 2024-05-31
    Description: The present study analyses the sign, strength, and working mechanism of the vegetation-precipitation feedback over North Africa in middle (6 ka BP) and early Holocene (9 ka BP) simulations using the comprehensive coupled climate-vegetation model CCSM3-DGVM (Community Climate System Model version 3 and a dynamic global vegetation model). The coupled model simulates enhanced summer rainfall and a northward migration of the West African monsoon trough along with an expansion of the vegetation cover for the early and middle Holocene compared to the pre-industrial period. It is shown that dynamic vegetation enhances the orbitally triggered summer precipitation anomaly by approximately 20% in the Sahara-Sahel region (10-25° N, 20° W-30° E) in both the early and mid-Holocene experiments compared to their fixed-vegetation counterparts. The primary vegetation-rainfall feedback identified here operates through surface latent heat flux anomalies by canopy evaporation and transpiration and their effect on the mid-tropospheric African easterly jet, whereas the effects of vegetation changes on surface albedo and local water recycling play a negligible role. Even though CCSM3-DGVM simulates a positive vegetation-precipitation feedback in the North African region, this feedback is not strong enough to produce multiple equilibrium climate-ecosystem states on a regional scale.
    Keywords: Center for Marine Environmental Sciences; Description; File format; File name; File size; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; MARUM; Model; Sahara-Sahel_region; Uniform resource locator/link to model result file
    Type: Dataset
    Format: text/tab-separated-values, 30 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-31
    Keywords: ANT-Land_2012; Atka_Bay_2013; Atka Bay; AWI_SeaIce; DATE/TIME; Distance to sea ice surface; MULT; Multiple investigations; NEUMAYER III; Sea Ice Physics @ AWI; Temperature, difference; Thermistor number
    Type: Dataset
    Format: text/tab-separated-values, 970560 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-31
    Keywords: ANT-Land_2012; Atka_Bay_2013; Atka Bay; AWI_SeaIce; DATE/TIME; Distance to sea ice surface; MULT; Multiple investigations; NEUMAYER III; Sea Ice Physics @ AWI; Temperature, difference; Temperature, technical; THERMC; Thermistor chain; Thermistor number
    Type: Dataset
    Format: text/tab-separated-values, 532800 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-31
    Keywords: Amino acid, total hydrolysable; Amino acid analyser, Biochrom 30; Amino acids/hexosamines ratio; Calcium carbonate; Carbon, inorganic, total; Carbon, organic, total; Carbon, total; Degradation index of amino acids (Dauwe et al., 1999); DEPTH, sediment/rock; Element analyser CNS, Carlo Erba NA1500; GeoTü SL71; Gravity corer (Kiel type); Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; M40/4; M40/4_SL71; Mass spectrometer Finnigan MAT 252; Meteor (1986); Nitrogen, total; Opal, biogenic silica; Reactivity index of amino acids (Jennerjahn & Ittekkot, 1997); SL; δ15N
    Type: Dataset
    Format: text/tab-separated-values, 398 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Aerological Observatory, Japan Meteorological Agency
    Publication Date: 2024-05-31
    Keywords: Air temperature at 2 m height; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Japan; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Long-wave upward radiation; Long-wave upward radiation, maximum; Long-wave upward radiation, minimum; Long-wave upward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090229, WRMC No. 16035; Pyranometer, Kipp & Zonen, CMP21, SN 100363, WRMC No. 16036; Pyranometer, Kipp & Zonen, CMP22, SN 090099, WRMC No. 16037; Pyrgeometer, Kipp & Zonen, CGR4, SN 090133, WRMC No. 16038; Pyrgeometer, Kipp & Zonen, CGR4, SN 090166, WRMC No. 16039; Pyrheliometer, Kipp & Zonen, CHP 1, SN 090140, WRMC No. 16034; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; Short-wave upward (REFLEX) radiation; Short-wave upward (REFLEX) radiation, maximum; Short-wave upward (REFLEX) radiation, minimum; Short-wave upward (REFLEX) radiation, standard deviation; Station pressure; TAT; Tateno; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 1073556 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Aerological Observatory, Japan Meteorological Agency
    Publication Date: 2024-05-31
    Keywords: Air temperature at 2 m height; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Japan; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Long-wave upward radiation; Long-wave upward radiation, maximum; Long-wave upward radiation, minimum; Long-wave upward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090229, WRMC No. 16035; Pyranometer, Kipp & Zonen, CMP21, SN 100363, WRMC No. 16036; Pyranometer, Kipp & Zonen, CMP22, SN 090099, WRMC No. 16037; Pyrgeometer, Kipp & Zonen, CGR4, SN 090133, WRMC No. 16038; Pyrgeometer, Kipp & Zonen, CGR4, SN 090166, WRMC No. 16039; Pyrheliometer, Kipp & Zonen, CHP 1, SN 090140, WRMC No. 16034; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; Short-wave upward (REFLEX) radiation; Short-wave upward (REFLEX) radiation, maximum; Short-wave upward (REFLEX) radiation, minimum; Short-wave upward (REFLEX) radiation, standard deviation; Station pressure; TAT; Tateno; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 1073592 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Aerological Observatory, Japan Meteorological Agency
    Publication Date: 2024-05-31
    Keywords: Air temperature at 2 m height; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Japan; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Long-wave upward radiation; Long-wave upward radiation, maximum; Long-wave upward radiation, minimum; Long-wave upward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090229, WRMC No. 16035; Pyranometer, Kipp & Zonen, CMP22, SN 090099, WRMC No. 16037; Pyranometer, Kipp & Zonen, CMP22, SN 090101, WRMC No. 4007; Pyrgeometer, Kipp & Zonen, CGR4, SN 090133, WRMC No. 16038; Pyrgeometer, Kipp & Zonen, CGR4, SN 090166, WRMC No. 16039; Pyrheliometer, Kipp & Zonen, CHP 1, SN 090140, WRMC No. 16034; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; Short-wave upward (REFLEX) radiation; Short-wave upward (REFLEX) radiation, maximum; Short-wave upward (REFLEX) radiation, minimum; Short-wave upward (REFLEX) radiation, standard deviation; Station pressure; TAT; Tateno; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 1038884 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...