ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ecology  (3,649)
  • 2020-2022  (3,315)
  • 2015-2019  (334)
  • 1950-1954
Collection
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    Naturalis Biodiversity Center
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi vol. 45, pp. 46-67
    Publication Date: 2024-05-09
    Description: Strains with a yeast-like appearance were frequently collected in two surveys on the biodiversity of fungi in Germany, either associated with necroses in wood of Prunus trees in orchards in Saxony, Lower Saxony and Baden-Württemberg or captured in spore traps mounted on grapevine shoots in a vineyard in Rhineland-Palatinate. The morphology of the strains was reminiscent of the genus Collophorina: all strains produced aseptate conidia on integrated conidiogenous cells directly on hyphae, on discrete phialides, adelophialides and by microcyclic conidiation, while in some strains additionally endoconidia or conidia in conidiomata were observed. Blastn searches with the ITS region placed the strains in the Leotiomycetes close to Collophorina spp. Analyses based on morphological and multi-locus sequence data (LSU, ITS, EF-1α, GAPDH) revealed that the 152 isolates from wood of Prunus spp. belong to five species including C. paarla, C. africana and three new species. A further ten isolates from spore traps belonged to seven new species, of which one was isolated from Prunus wood as well. However, a comparison with both LSU and ITS sequence data of these collophorina-like species with reference sequences from further Leotiomycetes revealed the genus Collophorina to be polyphyletic and the strains to pertain to several genera within the Phacidiales. Collophorina paarla and C. euphorbiae are transferred to the newly erected genera Pallidophorina and Ramoconidiophora, respectively. The new genera Capturomyces, Variabilispora and Vexillomyces are erected to accommodate five new species isolated from spore traps. In total nine species were recognised as new to science and described as Collophorina badensis, C. germanica, C. neorubra, Capturomyces funiculosus, Ca. luteus, Tympanis inflata, Variabilispora flava, Vexillomyces palatinus and V. verruculosus.
    Keywords: Ecology ; Evolution ; Behavior and Systematics ; Collophora ; morphology ; multi-locus phylogeny ; new taxa ; species diversity ; systematics
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-09
    Description: Ambrosia beetles farm specialised fungi in sapwood tunnels and use pocket-like organs called mycangia to carry propagules of the fungal cultivars. Ambrosia fungi selectively grow in mycangia, which is central to the symbiosis, but the history of coevolution between fungal cultivars and mycangia is poorly understood. The fungal family Ceratocystidaceae previously included three ambrosial genera (Ambrosiella, Meredithiella, and Phialophoropsis), each farmed by one of three distantly related tribes of ambrosia beetles with unique and relatively large mycangium types. Studies on the phylogenetic relationships and evolutionary histories of these three genera were expanded with the previously unstudied ambrosia fungi associated with a fourth mycangium type, that of the tribe Scolytoplatypodini. Using ITS rDNA barcoding and a concatenated dataset of six loci (28S rDNA, 18S rDNA, tef1-α, tub, mcm7, and rpl1), a comprehensive phylogeny of the family Ceratocystidaceae was developed, including Inodoromyces interjectus gen. & sp. nov., a non-ambrosial species that is closely related to the family. Three minor morphological variants of the pronotal disk mycangium of the Scolytoplatypodini were associated with ambrosia fungi in three respective clades of Ceratocystidaceae: Wolfgangiella gen. nov., Toshionella gen. nov., and Ambrosiella remansi sp. nov. Closely-related species that are not symbionts of ambrosia beetles are accommodated by Catunica adiposa gen. & comb. nov. and Solaloca norvegica gen. & comb. nov. The divergent morphology of the ambrosial genera and their phylogenetic placement among non-ambrosial genera suggest three domestication events in the Ceratocystidaceae. Estimated divergence dates for the ambrosia fungi and mycangia suggest that Scolytoplatypodini mycangia may have been the first to acquire Ceratocystidaceae symbionts and other ambrosial fungal genera emerged shortly after the evolution of new mycangium types. There is no evidence of reversion to a non-ambrosial lifestyle in the mycangial symbionts.
    Keywords: Ecology ; Evolution ; Behavior and Systematics ; 14 new taxa ; Microascales ; Scolytinae ; symbiosis ; two new typifications
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Naturalis Biodiversity Center
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi vol. 44, pp. 206-239
    Publication Date: 2024-05-08
    Description: Amauroderma s.lat. has been defined mainly by the morphological features of non-truncate and doublewalled basidiospores with a distinctly ornamented endospore wall. In this work, taxonomic and phylogenetic studies on species of Amauroderma s.lat. are carried out by morphological examination together with ultrastructural observations, and molecular phylogenetic analyses of multiple loci including the internal transcribed spacer regions (ITS), the large subunit of nuclear ribosomal RNA gene (nLSU), the largest subunit of RNA polymerase II (RPB1) and the second largest subunit of RNA polymerase II (RPB2), the translation elongation factor 1-α gene (TEF) and the β-tubulin gene (TUB). The results demonstrate that species of Ganodermataceae formed ten clades. Species previously placed in Amauroderma s.lat. are divided into four clades: Amauroderma s.str., Foraminispora, Furtadoa and a new genus Sanguinoderma. The classification of Amauroderma s.lat. is thus revised, six new species are described and illustrated, and eight new combinations are proposed. SEM micrographs of basidiospores of Foraminispora and Sanguinoderma are provided, and the importance of SEM in delimitation of taxa in this study is briefly discussed. Keys to species of Amauroderma s.str., Foraminispora, Furtadoa, and Sanguinoderma are also provided.
    Keywords: Ecology ; Evolution ; Behavior and Systematics ; Ganodermataceae ; morphology ; phylogeny ; Polyporales ; ultrastructure
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Naturalis Biodiversity Center
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi vol. 44, pp. 113-139
    Publication Date: 2024-05-08
    Description: Strobilomyces is broadly distributed geographically and serves an important ecological function. However, it has been difficult to delimit species within the genus, primarily due to developmental variations and phenotypic plasticity. To elucidate phylogenetic relationships among species within the genus and to understand its species diversity, especially in Asia, materials of the genus collected from five continents (Africa, Asia, Australia, Europe, and North/Central America) were investigated. The phylogeny of Strobilomyces was reconstructed based on nucleotide sequences of four genes coding for: the largest and the second largest subunits of the RNA polymerase II (RPB1 and RPB2); the translation elongation factor subunit 1-α (TEF1); and the mitochondrial cytochrome oxidase subunit 3 (COX3). The combined results based on molecular phylogenetics, morphological characters, host tree associations, and geographical distribution patterns support a new classification consisting of two sections, sect. Strobilomyces and sect. Echinati. Using the genealogical concordance phylogenetic species recognition (GCPSR) approach, at least 33 phylogenetic species in Asia can be delimited, all of which are supported by morphological features, and five phylogenetic species remain to be described. The mountainous region of Southwest China is especially special, containing at least 21 species and likely represents a centre of diversification. We further compared our specimens with the type specimens of 25 species of Strobilomyces. Our comparisons suggest that, there are a total of 31 distinct species, while S. sanmingensis, S. verruculosus, S. subnigricans, and S. zangii/S. areolatus, are synonyms of S. mirandus, S. giganteus, S. alpinus and S. seminudus, respectively. Eight new species, namely, S. albidus, S. anthracinus, S. calidus, S. cingulatus, S. densisquamosus, S. douformis, S. microreticulatus and S. pinophilus, are described. A dichotomous key to the Asian Strobilomyces species is provided.
    Keywords: Ecology ; Evolution ; Behavior and Systematics ; Boletes ; ectomycorrhizal fungi ; infrageneric treatment ; morphological characters ; taxonomy
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-06
    Description: Molecular phylogenetic analyses have addressed the systematic position of several major Northern Hemisphere lineages of Pezizales but the taxa of the Southern Hemisphere remain understudied. This study focuses on the molecular systematics and taxonomy of Southern Hemisphere species currently treated in the genera Underwoodia and Gymnohydnotrya. Species in these genera have been identified as the monophyletic /gymnohydnotrya lineage, but no further research has been conducted to determine the evolutionary origin of this lineage or its relationship with other Pezizales lineages. Here, we present a phylogenetic study of fungal species previously described in Underwoodia and Gymnohydnotrya, with sampling of all but one described species. We revise the taxonomy of this lineage and describe three new species from the Patagonian region of South America. Our results show that none of these Southern Hemisphere species are closely related to Underwoodia columnaris, the type species of the genus Underwoodia. Accordingly, we recognize the genus Geomorium described by Spegazzini in 1922 for G. fuegianum. We propose the new family, Geomoriaceae fam. nov., to accommodate this phylogenetically and morphologically unique Southern Hemisphere lineage. Molecular dating estimated that Geomoriaceae started to diverge from its sister clade Tuberaceae c. 112 MYA, with a crown age for the family in the late Cretaceous (c. 67 MYA). This scenario fits well with a Gondwanan origin of the family before the split of Australia and South America from Antarctica during the Paleocene-Eocene boundary (c. 50 MYA).
    Keywords: Ecology ; Evolution ; Behavior and Systematics ; Geomoriaceae ; Helvellaceae ; Patagonia ; South American fungi ; truffle systematics ; Tuberaceae
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Naturalis Biodiversity Center
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi vol. 44, pp. 140-160
    Publication Date: 2024-05-06
    Keywords: Ecology ; Evolution ; Behavior and Systematics ; Clavicipitaceae ; Cordycipitaceae ; entomopathogenic fungi ; new taxa ; Ophiocordycipitaceae ; taxonomy
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Naturalis Biodiversity Center
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi vol. 44, pp. 67-97
    Publication Date: 2024-05-02
    Description: Mucor species are common soil fungi but also known as agents of human infections (mucormycosis) and used in food production and biotechnology. Mucor circinelloides is the Mucor species that is most frequently isolated from clinical sources. The taxonomy of Mucor circinelloides and its close relatives (Mucor circinelloides complex – MCC) is still based on morphology and mating behaviour. The aim of the present study was a revised taxonomy of the MCC using a polyphasic approach. Using a set of 100 strains molecular phylogenetic analysis of five markers (ITS, rpb1, tsr1, mcm7, and cfs, introduced here) were performed, combined with phenotypic studies, mating tests and the determination of the maximum growth temperatures. The multi-locus analyses revealed 16 phylogenetic species of which 14 showed distinct phenotypical traits and were recognised as discrete species. Five of these species are introduced as novel taxa: M. amethystinus sp. nov., M. atramentarius sp. nov., M. variicolumellatus sp. nov., M. pseudocircinelloides sp. nov., and M. pseudolusitanicus sp. nov. The former formae of M. circinelloides represent one or two separate species. In the MCC, the simple presence of well-shaped zygospores only indicates a close relation of both strains, but not necessarily conspecificity. Seven species of the MCC have been implemented in human infection: M. circinelloides, M. griseocyanus, M. janssenii, M. lusitanicus, M. ramosissimus, M. variicolumellatus, and M. velutinosus
    Keywords: Ecology ; Evolution ; Behavior and Systematics ; mating tests ; maximum growth temperature ; Mucor ; mucormycosis ; new taxa ; phylogeny ; taxonomy ; zygospore formation
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-18
    Description: Since the introduction of non-native rodents to the Caribbean region, these invaders have successfully occupied many, if not most, islands where they pose tremendous threats to native biodiversity and ecosystems. The objective of our study was to conduct a preliminary assessment of the relative abundance of invasive alien rodents in different vegetation types on the small Caribbean island of St. Eustatius, which has no native rodent species. We used tracking tunnels (baited ink cards placed in tunnels to identify the prints of animals lured to the card) to determine the presence of rodent species. We collected data in 25 x 25 m (n = 13) and 5 x 5m (n = 130) plots to determine whether elevation, number of tree species, canopy cover or other microhabitat components were correlated with rodent relative abundance. Invasive rodents are present in varying relative abundances in rural areas on St. Eustatius. House mice (Mus musculus) were not recorded inside the terrestrial protected areas, whereas black rats (Rattus rattus) were detected in all elevations and all but one vegetation type sampled. We determined significant correlations between some of the habitat characteristics, especially elevation, canopy height, leaf litter cover and number of tree species, which showed significant collinearity with 27 of 45 pairwise comparisons. There was a significant correlation between rodent relative abundance and the number of tree species, but not between elevation, number of living trees, number of shrubs, rainfall, canopy cover, canopy height, leaf litter cover, leaf litter depth, or slope. There was a significant difference within vegetation types for the frequency of traps containing rat versus mouse tracks. Our study was impacted by two major hurricanes in September 2017.
    Keywords: Nature and Landscape Conservation ; Ecology ; Ecology ; Evolution ; Behavior and Systematics
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-18
    Description: Background Males of Opadometa are difficult to associate with conspecific females, and sex-matching errors may persist in the taxonomic literature. Recommended best practices for definitive sex matching in this genus suggest finding a male in the web of a female, or better yet, mating pairs. New information A male Opadometa was observed hanging on a frame line of the web of a female Opadometa sarawakensis, a species for which the male was previously undescribed. This occurred during a tropical ecology field course held at the Danau Girang Field Centre in Sabah, Malaysia. A taxonomic description was completed as a course activity.
    Keywords: Ecology ; Ecology ; Evolution ; Behavior and Systematics
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-02
    Description: Novel species of fungi described in this study include those from various countries as follows: Antarctica, Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina, Geastrum wrightii on humus in mixed forest. Australia, Golovinomyces glandulariae on Glandularia aristigera, Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbia ficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy on rotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae (incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannaccii from pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada, Sorocybe oblongispora on resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma caverna from carbonatite in Karst cave. Colombia, Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. Costa Rica, Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambigua and Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood. Guatemala, Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotracylla gen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyrium viticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiae on Phoenix sp. Pakistan, Russula quercus-floribundae on forest floor. Portugal, Trichoderma aestuarinum from saline water. Russia, Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduous wood or soil. South Africa, Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostroma encephalarti (incl. Neothyrostroma gen. nov.) on leaves of Encephalartos sp., Chalara eucalypticola on leaf spots of Eucalyptus grandis × urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficium on leaf litter of Sideroxylon inerme, Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.) on leaf litter of Eugenia capensis, Cyphellophora goniomatis on leaves of Gonioma kamassi, Nothodactylaria nephrolepidis (incl. Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.) on leaves of Nephrolepis exaltata, Falcocladium eucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp. macrocarpa, Harzia metrosideri on leaf litter of Metrosideros sp., Hippopotamyces phragmitis (incl. Hippopotamyces gen. nov.) on leaves of Phragmites australis, Lectera philenopterae on Philenoptera violacea, Leptosillia mayteni on leaves of Maytenus heterophylla, Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloe sp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata, Neodevriesia strelitziicola on leaf litter of Strelitzia nicolai, Neokirramyces syzygii (incl. Neokirramyces gen. nov.) on leaf spots of Syzygium sp., Nothoramichloridium perseae (incl. Nothoramichloridium gen. nov. and Anungitiomycetaceae fam. nov.) on leaves of Persea americana, Paramycosphaerella watsoniae on leaf spots of Watsonia sp., Penicillium cuddlyae from dog food, Podocarpomyces knysnanus (incl. Podocarpomyces gen. nov.) on leaves of Podocarpus falcatus, Pseudocercospora heteropyxidicola on leaf spots of Heteropyxis natalensis, Pseudopenidiella podocarpi, Scolecobasidium podocarpi and Ceramothyrium podocarpicola on leaves of Podocarpus latifolius, Scolecobasidium blechni on leaves of Blechnum capense, Stomiopeltis syzygii on leaves of Syzygium chordatum, Strelitziomyces knysnanus (incl. Strelitziomyces gen. nov.) on leaves of Strelitzia alba, Talaromyces clemensii from rotting wood in goldmine, Verrucocladosporium visseri on Carpobrotus edulis. Spain, Boletopsis mediterraneensis on soil, Calycina cortegadensisi on a living twig of Castanea sativa, Emmonsiellopsis tuberculata in fluvial sediments, Mollisia cortegadensis on dead attached twig of Quercus robur, Psathyrella ovispora on soil, Pseudobeltrania lauri on leaf litter of Laurus azorica, Terfezia dunensis in soil, Tuber lucentum in soil, Venturia submersa on submerged plant debris. Thailand, Cordyceps jakajanicola on cicada nymph, Cordyceps kuiburiensis on spider, Distoseptispora caricis on leaves of Carex sp., Ophiocordyceps khonkaenensis on cicada nymph. USA, Cytosporella juncicola and Davidiellomyces juncicola on culms of Juncus effusus, Monochaetia massachusettsianum from air sample, Neohelicomyces melaleucae and Periconia neobrittanica on leaves of Melaleuca styphelioides × lanceolata, Pseudocamarosporium eucalypti on leaves of Eucalyptus sp., Pseudogymnoascus lindneri from sediment in a mine, Pseudogymnoascus turneri from sediment in a railroad tunnel, Pulchroboletus sclerotiorum on soil, Zygosporium pseudomasonii on leaf of Serenoa repens. Vietnam, Boletus candidissimus and Veloporphyrellus vulpinus on soil. Morphological and culture characteristics are supported by DNA barcodes.
    Keywords: Ecology ; Evolution ; Behavior and Systematics ; ITS nrDNA barcodes ; LSU ; new taxa ; systematics
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...