ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-12-31
    Description: Author(s): Zhuo Xu, Qing-Rong Zheng, and Gang Su [Phys. Rev. B 84, 245451] Published Fri Dec 30, 2011
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-12-31
    Description: Author(s): E. V. Gorbar, V. P. Gusynin, Junji Jia, and V. A. Miransky [Phys. Rev. B 84, 235449] Published Fri Dec 30, 2011
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Physical Society (APS)
    Publication Date: 2011-12-31
    Description: Author(s): K. Kunal and N. R. Aluru [Phys. Rev. B 84, 245450] Published Fri Dec 30, 2011
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-12-30
    Description: Author(s): Jing Wang, Wei Li, Peng Cheng, Canli Song, Tong Zhang, Peng Deng, Xi Chen, Xucun Ma, Ke He, Jin-Feng Jia, Qi-Kun Xue, and Bang-Fen Zhu [Phys. Rev. B 84, 235447] Published Thu Dec 29, 2011
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-12-30
    Description: Author(s): Kosuke Matsuzaki, Hironori Takagi, Hideo Hosono, and Tomofumi Susaki [Phys. Rev. B 84, 235448] Published Thu Dec 29, 2011
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-12-30
    Description: Author(s): Ting Zhang, Ming Yuan Sun, Zhe Wang, Wu Shi, and Ping Sheng [Phys. Rev. B 84, 245449] Published Thu Dec 29, 2011
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-12-30
    Description: Author(s): B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez [Phys. Rev. B 84, 241410] Published Thu Dec 29, 2011
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-12-29
    Description: Author(s): A. Righi, S. D. Costa, H. Chacham, C. Fantini, P. Venezuela, C. Magnuson, L. Colombo, W. S. Bacsa, R. S. Ruoff, and M. A. Pimenta [Phys. Rev. B 84, 241409] Published Wed Dec 28, 2011
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-12-27
    Description: Fundamental questions remain unanswered about the transcriptional networks that control the identity and self-renewal of neural stem cells (NSCs), a specialized subset of astroglial cells that are endowed with stem properties and neurogenic capacity. Here we report that the zinc finger protein Ars2 (arsenite-resistance protein 2; also known as Srrt) is expressed by adult NSCs from the subventricular zone (SVZ) of mice, and that selective knockdown of Ars2 in cells expressing glial fibrillary acidic protein within the adult SVZ depletes the number of NSCs and their neurogenic capacity. These phenotypes are recapitulated in the postnatal SVZ of hGFAP-cre::Ars2(fl/fl) conditional knockout mice, but are more severe. Ex vivo assays show that Ars2 is necessary and sufficient to promote NSC self-renewal, and that it does so by positively regulating the expression of Sox2. Although plant and animal orthologues of Ars2 are known for their conserved roles in microRNA biogenesis, we unexpectedly observed that Ars2 retains its capacity to promote self-renewal in Drosha and Dicer1 knockout NSCs. Instead, chromatin immunoprecipitation revealed that Ars2 binds a specific region within the 6-kilobase NSC enhancer of Sox2. This association is RNA-independent, and the region that is bound is required for Ars2-mediated activation of Sox2. We used gel-shift analysis to refine the Sox2 region bound by Ars2 to a specific conserved DNA sequence. The importance of Sox2 as a critical downstream effector is shown by its ability to restore the self-renewal and multipotency defects of Ars2 knockout NSCs. Our findings reveal Ars2 as a new transcription factor that controls the multipotent progenitor state of NSCs through direct activation of the pluripotency factor Sox2.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3261657/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3261657/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andreu-Agullo, Celia -- Maurin, Thomas -- Thompson, Craig B -- Lai, Eric C -- R01 GM083300/GM/NIGMS NIH HHS/ -- R01 GM083300-05/GM/NIGMS NIH HHS/ -- R01-GM083300/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Dec 25;481(7380):195-8. doi: 10.1038/nature10712.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Avenue, Box 252, New York, New York 10065, USA. andreuac@mskcc.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22198669" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*cytology ; Cell Proliferation ; Cells, Cultured ; Chromatin Immunoprecipitation ; Conserved Sequence/genetics ; DEAD-box RNA Helicases/deficiency ; Electrophoretic Mobility Shift Assay ; Enhancer Elements, Genetic/genetics ; Glial Fibrillary Acidic Protein/metabolism ; Mice ; Mice, Knockout ; Neural Stem Cells/*cytology/*metabolism ; Neurogenesis/genetics ; Nuclear Proteins/chemistry/deficiency/genetics/*metabolism ; Olfactory Bulb/cytology ; Ribonuclease III/deficiency ; SOXB1 Transcription Factors/*genetics ; Transcription Factors/chemistry/deficiency/genetics/*metabolism ; *Transcriptional Activation ; Zinc Fingers
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-12-27
    Description: An unusual feature of the cerebellar cortex is that its output neurons, Purkinje cells, release GABA (gamma-aminobutyric acid). Their high intrinsic firing rates (50 Hz) and extensive convergence predict that their target neurons in the cerebellar nuclei would be largely inhibited unless Purkinje cells pause their spiking, yet Purkinje and nuclear neuron firing rates do not always vary inversely. One indication of how these synapses transmit information is that populations of Purkinje neurons synchronize their spikes during cerebellar behaviours. If nuclear neurons respond to Purkinje synchrony, they may encode signals from subsets of inhibitory inputs. Here we show in weanling and adult mice that nuclear neurons transmit the timing of synchronous Purkinje afferent spikes, owing to modest Purkinje-to-nuclear convergence ratios ( approximately 40:1), fast inhibitory postsynaptic current kinetics (tau(decay) = 2.5 ms) and high intrinsic firing rates ( approximately 90 Hz). In vitro, dynamically clamped asynchronous inhibitory postsynaptic potentials mimicking Purkinje afferents suppress nuclear cell spiking, whereas synchronous inhibitory postsynaptic potentials entrain nuclear cell spiking. With partial synchrony, nuclear neurons time-lock their spikes to the synchronous subpopulation of inputs, even when only 2 out of 40 afferents synchronize. In vivo, nuclear neurons reliably phase-lock to regular trains of molecular layer stimulation. Thus, cerebellar nuclear neurons can preferentially relay the spike timing of synchronized Purkinje cells to downstream premotor areas.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3268051/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3268051/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Person, Abigail L -- Raman, Indira M -- F32 NS067831/NS/NINDS NIH HHS/ -- F32 NS067831-02/NS/NINDS NIH HHS/ -- F32-NS067831/NS/NINDS NIH HHS/ -- R01 NS039395/NS/NINDS NIH HHS/ -- R01 NS039395-13/NS/NINDS NIH HHS/ -- R01-NS39395/NS/NINDS NIH HHS/ -- England -- Nature. 2011 Dec 25;481(7382):502-5. doi: 10.1038/nature10732.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA. a-person@northwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22198670" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/physiology ; Animals ; Cerebellar Cortex/cytology ; Cerebellar Nuclei/*physiology ; Inhibitory Postsynaptic Potentials/*physiology ; Kinetics ; Mice ; Mice, Inbred C57BL ; Purkinje Cells/*physiology ; Time Factors ; Weaning
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...