ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy
  • Elsevier Science Limited  (5)
  • Molecular Diversity Preservation International
Collection
Keywords
Years
  • 1
    Publication Date: 2021-06-25
    Description: The 11 March 2011 Tohoku earthquake was the strongest event recorded in recent historic seismicity in Japan. Several researchers reported the deformation and possible mechanism as triggered by a mega thrust fault located offshore at the interface between the Pacific and the Okhotsk Plate. The studies to estimate the deformation in detail and the dynamics involved are still in progress. In this paper, coseismic GPS displacements associated with Tohoku earthquake are used to infer the amount of slip on the fault plane. Starting from the fault displacements configuration proposed by Caltech-JPL ARIA group and Geoazur CNRS, an optimization of these displacements is performed by developing a 3D finite element method (FEM) model, including the data of GPS-acoustic stations located offshore. The optimization is performed for different scenarios which include the presence of topography and bathymetry (DEM) as well as medium heterogeneities. By mean of the optimized displacement distribution for the most complete case (heterogeneous with DEM), a broad slip distribution, not narrowly centered east of hypocenter, is inferred. The resulting displacement map suggests that the beginning of the area of subsidence is not at east of MYGW GPS-acoustic station, as some researchers have suggested, and that the area of polar reversal of the vertical displacement is rather located at west of MYGW. The new fault slip distribution fits well for all the stations at ground and offshore and provides new information on the earthquake generation process and on the kinematics of Northern Japan area.
    Description: Published
    Description: 25-39
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: 2011 Tohoku earthquake ; Fault slip distribution ; Numerical FEM optimization ; Upper plate rebound ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-25
    Description: In this paper, the relationship between the dike-forming magmatic intrusions and the faulting process at Mount Etna is investigated in terms of Coulomb stress changes. As case study, a complete time-dependent 3-D finite element model for the 2002-2003 eruption at Mount Etna is presented. In the model, which takes into account the topography, medium heterogeneities and principal fault systems in a viscoelastic/plastic rheology, we sequentially activated three dike-forming processes and looked at the induced temporal evolution of the Coulomb stress changes, during the co-intrusive and post-intrusive periods, on Pernicana and Santa Venerina faults. We investigated where and when fault slips were encouraged or not, and consequently how earthquakes may have been triggered. Results show positive Coulomb stress changes for the Pernicana Fault in accordance to the time, location and depth of the 27th October 2002 Pernicana earthquake (Md = 3.5). The amount of Coulomb stress changes in the area of Santa Venerina Fault, as induced by dike-forming intrusions only, is instead almost negligible and, probably, not sufficient to trigger the 29th October Santa Venerina earthquake (Md = 4.4), occurred two days after the start of the eruption. The necessary Coulomb stress change value to trigger this earthquake is instead reached if we consider it as induced by the 27th October Pernicana biggest earthquake, combined with the dike-induced stresses.
    Description: MED-SUV FP7 Project (Grant number 308665)
    Description: Published
    Description: 185-196
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Coulomb stress changes ; Finite Element Model ; Viscoelasticity ; Earthquakes ; Mount Etna ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-07
    Description: After the April 6th 2009 MW 6.3 (ML 5.9) L'Aquila earthquake (central Italy), we re-measured more than 100 km of high-precision levelling lines in the epicentral area. The joint inversion of the levelling measurements with InSAR and GPS measurements, allowed us to derive new coseismic and post-seismic slip distributions and to de- scribe, with high resolution details on surface displacements, the activation and the slip distribution of a second- ary fault during the aftershock sequence that struck the Campotosto area (major event MW 5.2). Coseismic slip on the Paganica fault occurred on one main asperity, while the afterslip distribution shows a more complex pattern, occurring on three main patches, including both slips on the shallow portions and on the deeper parts of the rup- ture plane. The comparison between coseismic and post-seismic slip distributions strongly suggests that afterslip was triggered at the edges of the coseismic asperity. The activation of a segment of the Campotosto fault during the aftershock sequence, with a good correlation between the estimated slipping area, moment release and distribution of aftershocks, raises the opportunity to discuss the local seismic hazard following the occurrence of the 2009 L'Aquila mainshock. The Campotosto fault appears capable of generating earthquakes as large as his- torical events in the region (M N 6.5) or as small as the ones associated with the 2009 sequence. In the case that the Campotosto fault is accumulating a significant portion of the current interseismic deformation, the 2009 MW N 5 events will have released only a small amount of the accumulated elastic strain, and then a significant hazard still remains in the area. Continuing geodetic monitoring and a densification of the GPS networks in the region are therefore needed to estimate the tectonic loading across the different recognized active fault systems in this part of the Apennines.
    Description: Published
    Description: 168-185
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: High-precision leveling; InSAR; GPS; Earthquake source; Normal faulting; Seismic hazard ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: From October 2008 to November 2009, soil CO2, radon and structural field surveys were performed on Mt. Etna, in order to acquire insights into active tectonic structures in a densely populated sector of the south-eastern flank of the volcano, which is involved in the flank dynamics, as highlighted by satellite data (InSAR). The studied area extends about 150 km2, in a sector of the volcano where InSAR results detected several lineaments that were not well-defined from previous geological surveys. In order to validate and better constrain these features with ground data evidences, soil CO2 and soil radon measurements were performed along transects roughly orthogonal to the newly detected faults, with measurement points spaced about 100 m. In each transect, the highest CO2 values were found very close to the lineaments evidenced by InSAR observations. Anomalous soil CO2 and radon values were also measured at old eruptive fractures. In some portions of the investigated area soil gas anomalies were rather broad over transects, probably suggesting a complex structural framework consisting of several parallel volcano-tectonic structures, instead of a single one. Soil gas measurements proved particularly useful in areas at higher altitude on Mt. Etna (i.e. above 900 m asl), where InSAR results are not very informative/ are fairly limited, and allowed recognizing the prolongation of some tectonic lineaments towards the summit of the volcano. At a lower altitude on the volcanic edifice, soil gas anomalies define the active structures indicated by InSAR results prominently, down to almost the coastline and through the northern periphery of the city of Catania. Coupling InSARwith soil gas prospectingmethods has thus proved to be a powerful tool in detecting hidden active structures that do not show significant field evidences.
    Description: This work was funded by the DPC-INGV project “Flank”
    Description: Published
    Description: 27-40
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 ; Radon ; InSAR ; Faults ; Etna ; Volcano-tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Using a multidisciplinary dataset based on gravimetric, seismic, geodetic and geological observations,we provide an improved picture of the shallow structure and dynamics of the southern edge of the Tyrrhenian subduction zone.With a local earthquake tomographywe clearly identify twomain crustal domains in the upper 15 kmcharacterized by different P-wave velocity values: a high-velocity domain comprising southeasternmost Tyrrhenian Sea, NE Sicily and Messina Straits, and a low-velocity domain comprising Mt. Etna and eastern Sicily. The transition between the two domains shows a good spatial correspondence with a wider set of faults including the Taormina Fault System (TFS) and the Aeolian–Tindari–Letojanni Fault System (ATLFS), two nearly SE-striking fault systems crossing northeastern Sicily and ending on the Ionian shoreline of Sicily according to many investigators. Within this set of faults, most of the deformation/seismicity occurs along the northern and central segments of ATLFS, compared to lowactivity along TFS. A lack of seismicity (both recent and historical) is observed in the southern sector of ATLFS where, however, geodetic data reveal significant deformation. Ourmultidisciplinary dataset including offshore observations suggests the southeastward continuation of the ATLFS into the Ionian Sea until joiningwith the faults cutting the Ionian accretionarywedge described in the recent literature. Our findings imply the existence of a highly segmented crustal shear zone extending from the Aeolian Islands to the Ionian Abyssal plain, that we believe plays the role of accommodating differential motion between the Southern Tyrrhenian unit and the western compressional domain of Sicily. The ATLFS, which is a main part of the inferred shear zone, behaves similarly to what often observed at the edges of retreating subduction
    Description: Published
    Description: 205-218
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: restricted
    Keywords: subduction edge ; seismic velocity structure ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.03. Gravity and isostasy ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.03. Global and regional models ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We applied the Small Baseline Subset multi-temporal InSAR technique (SBAS) to two SAR datasets acquired from 2003 up to 2013 by Envisat (ESA, European Space Agency) and COSMO-SkyMed (ASI, Italian Space Agency) satellites to investigate spatial and temporal patterns of land subsidence in the Sibari Plain (Southern Italy). Subsidence processes (up to ~20 mm/yr) were investigated comparing geological, hydrogeological, and land use information with interferometric results. We suppose a correlation between subsidence and thickness of the Plio-Quaternary succession suggesting an active role of the isostatic compensation. Furthermore, the active back thrusting in the Corigliano Gulf could trigger a flexural subsidence mechanism even if fault activity and earthquakes do not seem play a role in the present subsidence. In this context, the compaction of Holocene deposits contributes to ground deformation. Despite the rapid urbanization of the area in the last 50 years, we do not consider the intensive groundwater pumping and related water table drop as the main triggering cause of subsidence phenomena, in disagreement with some previous publications. Our interpretation for the deformation fields related to natural and anthropogenic factors would be a comprehensive and exhaustive justification to the complexity of subsidence processes in the Sibari Plain.
    Description: PON (Operational National Plan) 2007–2013 from MIUR (Italian Research Ministry of Research) Project AMICUS (Study for the environmental protection and the mitigation of Anthropogenic Pollution In the Coastal Environment of selected areas of Calabria; ID: PON01_ 02818) - COSMO-SkyMed® PRODUCTS, © ASI (Italian Space Agency)—provided under license of ASI in the framework of the S3 Project “Short term earthquake prediction and preparation” (DPC-INGV, 2013). The Envisat images are provided by ESA (European Space Agency) under the CAT.1P 5605
    Description: Published
    Description: 16004–16023
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: JCR Journal
    Description: restricted
    Keywords: SBAS-InSAR ; Sibari Plain ; subsidence ; geology ; anthropic processes ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...