ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Physiology & Biochemistry  (57)
  • Biotechnology & Synthetic Biology  (41)
  • Oxford University Press  (98)
  • 1
    Publication Date: 2017-01-19
    Description: Although nitric oxide (NO) is an important signaling molecule in bacteria and higher organisms, excessive intracellular NO is highly reactive and dangerous. Therefore, living cells need strict regulation systems for cellular NO homeostasis. Recently, we discovered that Streptomyces coelicolor A3(2) retains the nitrogen oxide cycle (NO 3 – -〉NO 2 – -〉NO-〉NO 3 – ) and nitrite removal system. The nitrogen oxide cycle regulates cellular NO levels, thereby controlling secondary metabolism initiation (red-pigmented antibiotic, RED production) and morphological differentiation. Nitrite induces gene expression in neighboring cells, suggesting another role for this cycle as a producer of transmittable intercellular communication molecules. Here, we demonstrated that ammonium-producing nitrite reductase (NirBD) is involved in regulating NO homeostasis in S. coelicolor A3(2). NirBD was constitutively produced in culture independently of GlnR, a known transcriptional factor. NirBD cleared the accumulated nitrite from the medium. Nir deletion mutants showed increased NO-dependent gene expression at later culture stages, whereas the wild-type M145 showed decreased expression, suggesting that high NO concentration was maintained in the mutant. Moreover, the nir deletion mutant produced more RED than that produced by the wild-type M145. These results suggest that NO 2 – removal by NirBD is important to regulate NO homeostasis and to complete NO signaling in S. coelicolor .
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-13
    Description: Earlier, vitamin C was demonstrated to sterilize Mycobacterium tuberculosis culture via Fenton's reaction at high concentration. It alters the regulatory pathways associated with stress response and dormancy. Since (p)ppGpp is considered to be the master regulator of stress response and is responsible for bacterial survival under stress, we tested the effect of vitamin C on the formation of (p)ppGpp. In vivo estimation of (p)ppGpp showed a decrease in (p)ppGpp levels in vitamin C-treated M. smegmatis cells in comparison to the untreated cells. Furthermore, in vitro (p)ppGpp synthesis using Rel MSM enzyme was conducted in order to confirm the specificity of the inhibition in the presence of variable concentrations of vitamin C. We observed that vitamin C at high concentration can inhibit the synthesis of (p)ppGpp. We illustrated binding of vitamin C to Rel MSM by isothermal titration calorimetry. Enzyme kinetics was followed where K 0.5 was found to be increased with the concomitant reduction of V max value suggesting mixed inhibition. Both long-term survival and biofilm formation were inhibited by vitamin C. The experiments suggest that vitamin C has the potential to be developed as the inhibitor of (p)ppGpp synthesis and stress response, at least in the concentration range used here.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-12-23
    Description: The culturability of Escherichia coli , Ralstonia eutropha and Bacillus subtilis after incubation in phosphate-buffered saline at either 5°C or 30°C was determined. The culturability of B. subtilis showed little dependence on temperature. The culturability of E. coli rapidly decreased at 30°C but remained almost constant at 5°C. In contrast, the culturability of R. eutropha decreased by three orders of magnitude at 5°C within 24 h but only moderately decreased (one order of magnitude) at 30°C. Remarkably, prolonged incubation of R. eutropha at 30°C resulted in a full recovery of colony forming units in contrast to only a partial recovery at 5°C. Ralstonia eutropha cells at 30°C remained culturable for 3 weeks while culturability at 5°C constantly decreased. The effect of temperature was significantly stronger in a polyhydroxybutyrate-negative mutant. Our data show that accumulated polyhydroxybutyrate has a cold-protective function and can prevent R. eutropha entering the viable but not culturable state.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-12-23
    Description: Carocin D is a bacteriocin produced by Pectobacterium carotovorum subsp. carotovorum Pcc21. Carocin D inhibits the growth of P . carotovorum subsp. carotovorum and closely related strains. Pectobacterium carotovorum subsp. carotovorum is a causative bacterium for soft rot disease and leads to severe economic losses. Bacteriocins recognize and interact with a specific membrane protein of target bacteria as a receptor. To identify the receptor responsible for carocin D recognition, mutants that underwent a phenotypic change from carocin D sensitivity to carocin D insensitivity were screened. Based on Tn 5 insertions, carocin D sensitivity was dependent on expression of the outer membrane protein OmpF. The insensitivity of the mutant (Pcc3MR) to carocin D was complemented with ompF from carocin D-sensitive strains, not from carocin D-resistant strains. The selectivity between sensitive and resistant strains could be attributed to variation in OmpFs in the cell-surface-exposed regions. Based on sequence analysis and complementation assays, it appears that carocin D uses OmpF as a receptor and is translocated by the TonB system. According to previously reported translocation mechanisms of colicins, OmpF works along with the TolA system rather than the TonB system. Therefore, the current findings suggest that carocin D is imported by a unique colicin-like bacteriocin translocation system.
    Keywords: Biotechnology & Synthetic Biology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-12-16
    Description: Human health has been seriously endangered by highly prevalent salmonellosis and multidrug-resistant Salmonella strains. Current vaccines suffer from variable immune-protective effects, so more effective ones are needed to control Salmonella infection . Bacterial ghosts have been produced by the expression of lysis gene E from bacteriophage PhiX174 and can be filled with considerable exogenous substances such as DNA or drugs as a novel platform. In this study, Salmonella enteritidis (SE) ghosts were developed and loaded with Neisseria gonorrhoeae porin B (porB) to construct a novel inactive vaccine. Our new studies show that SE ghosts loaded with porB displayed increased production of pro-inflammatory cytokines (IL-1β, IL-6, IL-10 and IL-12p70) in bone marrow-derived dendritic cells (BMDCs), and elicited significantly higher specific systemic and mucosal immune responses to Salmonella than SE ghosts alone. In addition, the novel porB-loaded ghosts conferred higher protective effects on virulent Salmonella challenge. For the first time, we demonstrate that N. gonorrhoeae porB, as a novel adjuvant, can increase the immunogenicity of SE ghosts. Our studies suggested that Salmonella enteritidis ghosts loaded with Neisseria gonorrhoeae porin B might be a useful mucosal Salmonella vaccine candidate for practical use in the future.
    Keywords: Biotechnology & Synthetic Biology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-16
    Description: Pseudomonas plecoglossicida is a facultative fish pathogen. Recent studies showed that P. plecoglossicida infection in fish was associated with temperature. The aim of this study was to compare the secretomes of P. plecoglossicida cultured in vitro at representative temperatures for pathogenic (20°C) and less pathogenic (30°C) phenotypes. Thirteen proteins in the culture supernatants of P. plecoglossicida showed significant difference in abundance at 20 vs. 30°C. Four proteins were strongly increased at 20°C, including two hemolysin co-regulated proteins (Hcp) that are part of the bacterial type VI secretion system (T6SS), flagellin and an unknown protein. Immunoblot analysis verified the induced secretion of Hcps at 20°C. Furthermore, the upregulation of Hcps at 20°C was confirmed at transcriptional level by RT-qPCR analysis, which also demonstrated the induction of expression of other T6SS-related genes at 20°C. Taken together, we demonstrate the presence of two functionally active T6SS proteins in fish pathogenic P. plecoglossicida strains, as evidenced by the secretion of the T6SS substrate Hcp, the production of which were found to be controlled by temperature. Our findings also support efforts to develop vaccines targeting secreted virulence factors as prophylactic strategies for diseases in fish caused by P. plecoglossicida .
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-12-12
    Description: The food-grade bacterium Lactococcus lactis is increasingly used for heterologous protein expression in therapeutic and industrial applications. The ability of L. lactis to secrete biologically active cytokines may be used for the generation of therapeutic cytokines. Interleukin (IL)-18 enhances the immune response, especially on mucosal surfaces, emphasizing its therapeutic potential. However, it is produced as an inactive precursor and has to be enzymatically cleaved for maturation. We genetically manipulated L. lactis to secrete murine IL-18. The mature murine IL-18 gene was inserted downstream of a nisin promoter in pNZ8149 plasmid and the construct was used to transform L. lactis NZ3900 . The transformants were selected on Elliker agar and confirmed by restriction enzyme digestion and sequencing. The expression and secretion of IL-18 protein was verified by SDS-PAGE, western blotting and ELISA. The biological activity of recombinant IL-18 was determined by its ability to induce interferon (IFN)- production in L. lactis co-cultured with murine splenic T cells. The amounts of IL-18 in bacterial lysates and supernatants were 3–4 μg mL –1 and 0.6–0.7 ng mL –1 , respectively. The successfully generated L. lactis strain that expressed biologically active murine IL-18 can be used to evaluate the possible therapeutic effects of IL-18 on mucosal surfaces.
    Keywords: Biotechnology & Synthetic Biology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-11-17
    Description: Enterotoxigenic Escherichia coli (ETEC) bacteria producing heat-stable toxin (STa) and/or heat-labile toxin (LT) are among top causes of children's diarrhea and travelers’ diarrhea. Currently no vaccines are available for ETEC associated diarrhea. A major challenge in developing ETEC vaccines is the inability to stimulate protective antibodies against the key STa toxin that is potently toxic and also poorly immunogenic. A recent study suggested toxoid fusion 3xSTa N12S -dmLT, which consists of a monomer LT toxoid (LT R192G/L211A ) and three copies of STa toxoid STa N12S , may represent an optimal immunogen inducing neutralizing antibodies against STa toxin [IAI 2014, 82(5):1823-32]. In this study, we immunized mice with this fusion protein following a different parenteral route and using different adjuvants to further characterize immunogenicity of this toxoid fusion. Data from this study showed that 3xSTa N12S -dmLT toxoid fusion induced neutralizing anti-STa antibodies in the mice following subcutaneous immunization, as effectively as in the mice under intraperitoneal route. Data also indicated that double mutant LT (dmLT) can be an effective adjuvant for this toxoid fusion in mice subcutaneous immunization. Results from this study affirmed that toxoid fusion 3xSTa N12S -dmLT induces neutralizing antibodies against STa toxin, suggesting this toxoid fusion is potentially a promising immunogen for ETEC vaccine development.
    Keywords: Biotechnology & Synthetic Biology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-11-17
    Description: Pseudomonas putida KT2440 is a saprophytic and generally recognized as safe microorganism that plays important roles in the biodegradation and production of value-added chemicals. Chromosomal gene deletion of P. putida KT2440 usually involves time-consuming gene cloning, conjugal transfer and counterselection. Recently, we developed a P. putida KT2440 markerless gene deletion method based on recombineering and Cre/ loxP site-specific recombination. PCR-based Red recombineering circumvents the tedious cloning steps and is more amenable to high-throughput manipulation. Here we report an improved scarless gene deletion strategy based on recombineering and intron-encoded homing endonuclease I-SceI-mediated double-strand break repair. Sixteen drug exporter gene(s) were deleted and the minimal inhibition concentrations of the mutants to a variety of antibiotics were determined. The robustness of the procedure was also demonstrated by sequential deletion of five large genomic regions. Up to 59% recombination efficiency was achieved for a 54.8 kb deletion, and the efficiency of RecA-mediated double-strand break repair, which was boosted by Red recombinase, was nearly 100%. The strain with a 3.76% genome reduction showed an improved growth rate and transformation efficiency. The straightforward, time-saving and highly efficient scarless deletion approach has the potential to facilitate the genetic study, and biotechnological and environmental applications of P. putida KT2440.
    Keywords: Biotechnology & Synthetic Biology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-11-09
    Description: Hepatitis E virus (HEV) is the pathogen causing hepatitis E (HE). It arouses global public health concern since it is a zoonotic disease. The objective of this letter is to report a cost-effective internal control prepared for monitoring procedures of HEV reverse transcriptase (RT)-PCR detection. A selected conserved HEV RNA fragment was integrated into the downstream of the truncated MS2 bacteriophage genome based on Armored RNA technology. The resulting MS2-HEV gene harbored by the pET-28b-MS2-HEV plasmid was transformed into E. coli BL21(DE3) for expression analysis by SDS-PAGE. The expression products were purified and concentrated by ultrasonication and ultrafiltration separation. The morphology and stability properties of the virus-like particles (VLPs) were evaluated by electron microscopy scanning and nuclease challenges, respectively. SDS-PAGE results showed that the constructed MS2-HEV gene expressed efficiently and the purity of the VLPs was highly consistent with the result in electron microscopy. Stability evaluation results demonstrated that the prepared VLPs exhibited strong resistance to DNase I and RNase A attacks and also performed long-lasting protection of coated HEV RNA for at least 4 months at –20°C. These data revealed that the prepared VLPs meet the basic requirements of use as internal control material in the HEV RNA amplification assay.
    Keywords: Biotechnology & Synthetic Biology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...