ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (18)
  • Berlin : Springer  (18)
  • AWI Reading room  (18)
Collection
  • Books  (18)
Language
Branch Library
  • 1
    Monograph available for loan
    Monograph available for loan
    Berlin : Springer
    Associated volumes
    Call number: AWI A11-23-95344
    In: Physics and chemistry in space : Planetology, 18
    Type of Medium: Monograph available for loan
    Pages: IX, 165 Seiten , Illustrationen , 24 cm
    ISBN: 3540506853 , 3-540-50685-3 , 0387506853 , 0-387-50685-3 , 9783642486289
    Series Statement: Physics and chemistry in space : Planetology 18
    Language: English
    Note: Contents 1 Noctilucent Clouds 1.1 Introduction 1.2 How, When and Where Noctilucent Clouds Are Seen 1.3 Amateur Observations 1.4 Cloud Types 1.5 Structure of the Upper Atmosphere 2 History 2.1 Introduction 2.2 The Discovery of the "Shining Night-Clouds" 2.3 Measurements of Noctilucent Clouds 2.4 The Middle Period of Noctilucent Cloud Research 3 Observations from Ground Level 3.1 Introduction 3.2 The Geometry of Twilight Scattering 3.3 Latitude of Observation 3.4 Absorption of Light in the Atmosphere 3.5 Height of Noctilucent Clouds 3.6 Drift Motions 3.7 Wave Structure 4 Spectrophotometry 4.1 Introduction 4.2 Spectroscopic Observations 4.3 Spectrophotometry from Ground Level 4.4 Rocket-Borne Photometers 4.5 Spectrophotometry from Satellites 4.6 Conclusions About Cloud Particle Sizes 5 Polarimetry 5.1 Introduction 5.2 Polarization by Scattering 5.3 Measurement of Polarized Light 5.4 Polarization Measured from Ground Level 5.5 Measurements of Polarization from Rockets 5.6 Conclusions About Cloud Particle Sizes 6 Rocket-Borne Sampling 6.1 Introduction 6.2 Flights over Sweden in 1962 and 1967 6.3 Flights over Sweden in 1970 and 1971 6.4 Flights over Canada in 1968 and 1970 6.5 Collectors Flown by Max-Planck-Institut Researchers, 1968 to 1971 6.6 Conclusions About Cloud Particle Sizes 7 Variation of Occurrence 7.1 Introduction 7.2 Sunspot Cycle 7.3 Seasonal Frequency of Noctilucent Clouds 7.4 Climatology of the Mesosphere 8 Other Observations 8.1 Introduction 8.2 Association with Hydroxyl Airglow Emission 8.3 Association with Aurora and Planetary Magnetic Activity 8.4 Lunar Effects 8.5 Lidar Observations 8.6 Artificial Noctilucent Clouds 8.7 Abnormal Observations 9 Environment of Noctilucent Clouds 9.1 Introduction 9.2 Atmospheric in Temperature 9.3 D-Region 9.4 Dust 9.5 Water Vapour in the Mesosphere 9.6 Radiation 9.7 Rates of Growth 9.8 Nucleation of Ice 9.9 Settling of Particles 9.10 Modelling Noctilucent Clouds by Numerical Simulation 10 The Nature of Noctilucent Clouds 10.1 Introduction 10.2 Formation in Noctilucent Clouds 10.3 Growth of Noctilucent Cloud Particle 10.4 Evaporation of Noctilucent Cloud Particles 10.5 The Relationship Between Polar Mesospheric Clouds and Noctilucent Clouds 10.6 Summary 11 Bibliography A) Before 1900 B) 1900-1950 C) Bibliography since 1950 Appendix 1: Atmospheric Refraction . Appendix 2: Atmospheric Transmission Along Grazing Pays Subject Index Name Index
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: AWI G6-22-94889
    Type of Medium: Monograph available for loan
    Pages: XII, 430 Seiten , Illustrationen , 24 cm
    ISBN: 3-540-06587-3 , 0-387-06587-3
    Series Statement: Anwendung von Isotopen in der organischen Chemie und Biochemie Band 2
    Language: German
    Note: Inhaltsverzeichnis Vorwort Adressenliste der Autoren A. Einleitung / H. SIMON und P. RAUSCHENBACH 1. Begriffe und Definitionen 1.1. Absorption, Ionisation, Anregung und Bremsstrahlung von β-Strahlung 1.2. γ- und Röntgen-Strahlung, Mechanismen der Absorption 1.3. Häufig verwendete radioaktive Isotope 1.4. Literatur und Bibliographie B. Allgemeines und Prinzipien der Radioaktivitätsmessung / H. SIMON und P. RAUSCHENBACH 1. Absolut- und Relativmessung von Radioaktivität 2. Ionisationskammern und Zählrohre 2.1. Ionisationskammern 2.2. Zählrohre 2.2.1. Zählrohre zur Messung von β-Strahlung 2.2.2. Zählrohre zur Messung von γ-Strahlung 3. Halbleiterdetektoren / R. TYKVA 4. Szintillationszähler 4.1. Allgemeines über Szintillationszähler 4.2. Messung mit flüssigen Szintillatoren 4.2.1. Lösungsmittel 4.2.2. Probengefäße 4.2.3. Szintillator-Substanzen 4.2.4. Löscheffekte, Phosphoreszenz und Chemolumineszenz 4.3. Messung durch Čerenkov-Strahlung 4.4. Messung von γ-Strahlern mit festen Szintillatoren 4.4.1. Impulshöhenverteilung, γ-Spektroskopie und Auflösungsvermögen 4.4.2. Einfluß verschiedener Parameter auf die Gestalt des Spektrums 5. Literatur C. Parameter, die auf Genauigkeit und Reproduzierbarkeit von Einfluß sind. Fehlerbetrachtung / P. RAUSCHENBACH 1. Der radioaktive Zerfall als statistischer Vorgang 2. Einfluß von Probenaktivität, Nulleffekt und Meßzeit auf den Fehler der Nettozählrate 2.1. Meßzeitoptimierung 3. Grenzempfindlichkeit und Gütezahl 4. Fehler von Ratemeter-Messungen 5. Ermittlung von Störeffekten an Meßanordnungen aufgrund nichtstatistischer Ergebnisse 6. Erkennung eines zu hohen Fehlers einer Einzelmessung 7. Literatur D. Präparation der Proben und deren Messung / P. RAUSCHENBACH und H. SIMON 1. Messung in fester oder flüssiger Form mit Zählrohren 1.1. T-, 14C-, 35S- und 45Ca-markierte Proben 2. Messung in der Gasphase nach Proben-Umwandlung 2.1. Tritium-markierte Proben 2.2. 14C- und T / 14C-doppelmarkierte Substanzen 2.3. Literatur 3. Flüssig-Szintillations-Messung 3.1. Probenpräparation 3.1.1. Direkt-Messung (ohne Probenumwandlung) 3.1.1.1. Homogene Meßsysteme 3.1.1.1.1. Messung ohne Lösungsvermittler 3.1.1.1.2. Messung mit Lösungsvermittlern 3.1.1.1.3. Messung von Wasser und wäßrigen Lösungen 3.1.1.1.4. Häufig verwendete Szintillatorsysteme 3.1.1.2. Heterogene Meßsysteme 3.1.1.2.1. Emulsionen 3.1.1.2.2. Suspensionen 3.1.1.2.3. Andere heterogene Materialien wie Papierstreifen, Dünnschicht- und Glasfaserproben 3.1.1.2.4. Häufig verwendete Szintillatorsysteme 3.1.2. Messung nach Probenumwandlung 3.1.2.1. Absorption gasförmiger Proben 3.1.2.2. Umwandlung in flüssiger Phase 3.1.2.2.1. Solubilisierung 3.1.2.2.2. Naß-Oxidation 3.1.2.3. Trockene Oxidation 3.1.2.3.1. Sauerstoff-Kolben-Verfahren 3.1.2.3.2. Sauerstoff-Strom-Verfahren 3.1.2.3.3. Oxidation im Bombenrohr oder in der Metallbombe 3.1.2.4. Spezielle Umwandlungsverfahren 3.2. Bestimmung der Zählausbeute (Löschkorrektur) 3.2.1. Interne Standardisierung 3.2.2. Löschkorrektur-Verfahren, aufgrund der Verschiebung des Proben-Impuls-Spektrums 3.2.2.1. Löschkompensation 3.2.2.2. Proben-Kanalverhältnis-Methode 3.2.2.3. Verstärkungsverhältnis-Methode 3.2.3. Externe Standardisierung 3.2.3.1. Verfahren basierend auf der Zählrate des externen Standards 3.2.3.1.1. Standard im Zählfläschchen angeordnet 3.2.3.1.2. Standard außerhalb des Zählfläschchens angeordnet 3.2.3.2. Externe Standard-Kanalverhältnis-Methode 3.2.3.2.1. Rechnerische Weiterverarbeitung der Meßwerte 3.2.4. Nachverstärkungs-Methode 3.2.5. Koinzidenz-Methoden 3.2.6. Verdünnungs-Methode 3.3. Datenverarbeitung 3.4. Literatur E. Die Bestimmung geringer Radioaktivität / R. TYKVA 1. Fragestellungen, welche die Bestimmung geringer Radioaktivität erfordern 2. Wahl der Bestimmungsmethode 3. Allgemeine Gesichtspunkte für ein Laboratorium zur Messung geringer Radioaktivität 3.1. Lokalisierung und Ausstattung 3.1.1. Konstruktionsmaterialien 3.1.2. Elektrische Entstörung der Meßeinrichtung 3.2. Erhöhung der Bestimmungsempfindlichkeit 3.2.1. Erniedrigung des Nulleffektes durch mechanische Abschirmung, Antikoinzidenz- oder Koinzidenzschaltung, Impulshöhen- und Anstiegszeitdiskrimination 3.2.2. Erhöhung der spezifischen Radioaktivität vor der Messung 4. Die einzelnen Meßverfahren 5. Literatur. F. Messung mehrfachmarkierter Proben / R. TYKVA 1. Beispiele für die Verwendung und das Vorkommen mehrerer Radionuklide in einem Versuchssystem 2. Prinzipien der Meßverfahren 2.1. Flüssig-Szintillations-Zählung 2.1.1. Messung nach vorangehender Trennung der Radionuklide 2.1.2. Gleichzeitige Messung aufgrund unterschiedlicher Impulshöhenspektren 2.1.2.1. Prinzip der Methode 2.1.2.2. Berechnung der Zerfallsraten der einzelnen Nuklide von doppelmarkierten Proben 2.1.2.3. Die Wahl optimaler Arbeitsbedingungen bei der Messung löslicher, wenig gelöschter Proben 2.1.2.4. Bestimmung unlöslicher oder stark gelöschter Proben 2.2. Ionisationsmethoden und Halbleiterdetektoren 3. Literatur G. Radiochromatographie / M. WENZEL 1. Einleitung 2. Papier- und Dünnschicht-Chromatographie 2.1. Allgemeine Aspekte 2.2. Direktmessung von Chromatogrammen und Elektropherogrammen 2.2.1. Papier-Chromatogramme und Elektropherogramme 2.2.2. Dünnschicht-Chromatogramme 2.2.3. Direktmessung von Parallel- und zweidimensionalen Chromatogrammen 2.2.4. Messung von doppelt-markierten Chromatogrammen 2.2.5. Zählausbeute und weitere Meßparameter bei der Direktmessung 2.2.6. Kombination verschiedener Parameter 2.3. Diskontinuierliche Messung von Chromatogrammen 2.3.1. Diskontinuierliche Messung von Papier- und Dünnschicht-Chromatogrammen 2.4. Autoradiographische Verfahren 2.4.1. Film-Autoradiographie 2.4.2. Autoradiographie mit der Funkenkammer 3. Auswertung von Gel-Elektropherogrammen 4. Säulen-Chromatographie mit radioaktiven Lösungen 4.1. Kontinuierliche Messung 4.1.1. Durchfluß-Zellen aus Szintillator-Schläuchen 4.1.2. Durchfluß-Zellen mit fester Szintillator-Füllung 4.1.3. Durchfluß-Zellen für homogene Systeme 4.1.4. Radioaktivitäts-Messung von Eluaten durch Čerenkov-Strahlung 4.2. Diskontinuierliche Messung 5. Radio-Gaschromatographie / H. SIMON 5.1. Einleitung 5.2. Einfluß verschiedener Parameter aufionisations-Detektoren 5.3. Apparatur und Arbeitsweise für hydrierende Crackung bzw. Oxidation 5.4. Grenzempfindlichkeiten 6. Verschiedene der Radiochromatographie verwandte Meßmethoden 6.1. Messung radioaktiver Zellsuspensionen auf Filtrierpapier 6.2. Messung radioaktiver Gewebe-Schnitte 6.3. In vivo Scanning bei Kleintieren (»Szintigraphie«) 7. Registriermöglichkeiten 7.1. Digitale und analoge Darstellung der Aktivitätsverteilung 7.2. Elektronische Peak-Integration 7.3. Darstellung der Aktivitätsverteilung und Peak-Integration mit einem Vielkanal-Analysator 8. Beispiele für Anwendung der Radiochromatographie zur Reinheitskontrolle radioaktiver Substanzen 8.1. Reinheitskontrolle von 131J-Hippuran und 131J-Thyroxin 8.2. Reinheitskontrolle bzw. Reinigung von (6, 7-T)-Östradiol 9. Literatur H. Analyse von stabil-isotop markierten Verbindungen / H.-L. SCHMIDT 1. Anwendungen stabiler Isotope und Grundlagen ihrer Analytik 2. Elementaranalytische Isotopen-Bestimmungen 2.1. Verfahren zum Aufschluß von markierten Verbindungen 2.1.1. Aufarbeitung von Proben zur Deuterium-Analyse 2.1.1.1. Verbrennung Deuterium-haltiger organischer Verbindungen und Isolierung des Wassers 2.1.1.2. Verbrennung organischer Substanzen und Reduktion von Wasser für die massenspektrometrische Deuterium-Analyse 2.1.1.3. Einstufen-Verfahren zur Gewinnung von Wasserstoff und automatisierte Wasser-Reduktion 2.1.1.4. Bestimmung von Deuterium in acidem Wasserstoff 2.1.2. Aufbereitung von Proben zur 13C-Analyse 2.1.2.1. Verbrennung von Kohlenstoff-haltigem Material nach dem Prinzip der organischen Elementaranalyse 2.1.2.2. Probenbereitung aus anorganischem Material und aus Wässern 2.1.3. Probenchemie zur 15N-Analyse 2.1.3.1. Kjeldahl-Aufschluß und Hypobromit-Oxidation 2.1.3.2. Ox
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Berlin : Springer
    Call number: AWI G3-13-0054
    Description / Table of Contents: Permafrost hydrology systematically elucidates the roles of seasonally and perennially frozen ground on the distribution, storage and flow of water. Cold regions of the world are subject to mounting development which significantly affects the physical environment. Climate change, natural or human-induced, reinforces the impacts. Knowledge of surface and ground water processes operating in permafrost terrain is fundamental to planning, management and conservation. This book is an indispensable reference for libraries and researchers, an information source for practitioners, and a valuable text for training the next generations of cold region scientists and engineers.
    Type of Medium: Monograph available for loan
    Pages: XII, 563 Seiten , Illustrationen, Diagramme, Karten (teilweise farbig)
    ISBN: 9783642234613
    Language: English
    Note: Contents: 1 Introduction. - 1.1 The world cold regions. - 1.2 Water in frozen soils. - 1.3 Permafrost. - 1.3.1 Definitions. - 1.3.2. Distribution. - 1.3.3. Factors influencing permafrost occurence. - 1.4 Permafrost and hydrology. - 1.4.1 Permafrost hydrology. - 1.4.2 Hydrologic behavior of seasonal frost and permafrost. - 1.5 Environments of permafrost regions. - 1.5.1 Hydroclimatology. - 1.5.2 Geology. - 1.5.3 Glaciation. - 1.5.4 Physiography. - 1.5.5 Vegetation. - 1.5.6 Peat cover. - 1.6 Presentation of the book. - 2 Moisture and heat. - 2.1 Precipitation. - 2.1.1 General pattern. - 2.1.2 Cyclones. - 2.1.3 Recycling. - 2.1.4 Trace precipitation. - 2.2 Surface energy balance. - 2.3 Evaporation. - 2.3.1 Eddy Fluctuation Method. - 2.3.2 Aerodynamic method. - 2.3.3 Bowen Ratio Method. - 2.3.4 Priestley and Taylor Method. - 2.4 Energy balance of the active layer. - 2.4.1 Energy Balance. - 2.4.2 Thermal conductivity and heat capacity. - 2.5 Ground temperature. - 2.5.1 Penetration of temperature waves. - 2.5.2 Frost table development. - 2.6 Heat and moisture flows in frozen soils. - 2.6.1 Stefan's Algorithm. - 2.6.2 Near-Surface ground temperature. - 2.6.3 Moisture migration and ice lens formation. - 2.7 Ground ice. - 2.7.1 Types of ground ice. - 2.7.2 Excess ice. - 3 Groundwater. - 3.1 Groundwater occurence in permafrost. - 3.1.1 Suprapermafrost groundwater. - 3.1.2 Intrapermafrost groundwater. - 3.1.3 Subpermafrost groundwater. - 3.2 Groundwater recharge and circulation. - 3.2.1 Recharge. - 3.2.2 Groundwater movement. - 3.3 Groundwater discharge. - 3.3.1 Seeps. - 3.3.2 Springs. - 3.3.3 Baseflow. - 3.3.4 Ponds and lakes. - 3.4 Icings. - 3.4.1 Ground and spring icings. - 3.4.2 River icings. - 3.4.3 Icing dimension. - 3.4.4 Icing problems. - 3.5 Domed ice features. - 3.5.1 Frost mounds and icing mounds. - 3.5.2 Pingos. - References. - 4 Snow cover. - 4.1 Snow accumulation. - 4.1.1 Winter precipitation. - 4.1.2 Blowing snow. - 4.1.3 Terrain heterogeneity. - 4.1.4 Vegetation cover. - 4.2 Characteristics of the snow cover. - 4.2.1 Snow temperature and insulation. - 4.2.2 Snow metamorphism. - 4.2.3 Snow stratigraphy. - 4.3 Snowmelt processes. - 4.3.1 Radiation melt. - 4.3.2 Turbulent fluxes melt. - 4.3.3 Other melt terms. - 4.4 Snowmelt in permafrost areas. - 4.4.1 Tundra and Barren areas. - 4.4.2 Dirty snow. - 4.4.3 Shrub fields. - 4.4.4 Forests. - 4.5 Meltwater movement in snow. - 4.5.1 Dry snow. - 4.5.2 Wet snow. - References. - 5 Active layer dynamics. - 5.1 Freeze-back and winter periods. - 5.1.1 Snow cover and ground freezing. - 5.1.2 Moisture flux and ice formation. - 5.1.3 Vapor flux from soil to snow. - 5.2 Snowmelt period. - 5.2.1 Snowmelt and basal ice. - 5.2.2 Infiltration into frozen soil. - 5.2.3 Soil warming. - 5.2.4 Surface saturation, evaporation and runoff. - 5.3 Summer. - 5.3.1 Active layer thaw. - 5.3.2 Summer precipitation. - 5.3.3 Evaporation. - 5.3.4 Rainwater infiltration. - 5.3.5 Soil moisture. - 5.3.6 Groundwater. - References. - 6 Slope processes. - 6.1 Flow paths. - 6.1.1 Flow paths in snow. - 6.1.2 Surface and subsurface flows. - 6.1.3 Flow in bedrock areas. - 6.1.4 Flow in unconsolidated materials. - 6.2 Water sources. - 6.3 Factors influencing slope runoff generation. - 6.3.1 Microclimatic control. - 6.3.2 Topographic influence. - 6.3.3 Importance of the Frost table. - 6.3.4 Roles of organic materials. - 6.3.5 Bedrock control. - 6.4 Basin slopes in permafrost regions. - 6.4.1 High Arctic slopes. - 6.4.2 Low Arctic slopes. - 6.4.3 Subarctic slopes. - 6.4.4 Alpine permafrost zones. - 6.4.5 Precambrian bedrock terrain. - 6.5 Concepts for basin flow generation. - 6.5.1 Variable source area and fill-and-spill concepts. - 6.5.2 Heterogenous slopes. - References. - 7 Cold lakes. - 7.1 Types of lake. - 7.2 Lake ice. - 7.2.1 Lake ice regime. - 7.2.2 Ice formation and growth. - 7.2.3 Ice decay. - 7.3 Lake circulation. - 7.4 Hydrologic inputs. - 7.5 Lake evaporation. - 7.6 Lake outflow. - 7.6.1 Outflow conditions. - 7.6.2 Fill-and-Spill concept and lake outflow. - 7.7 Lake level. - 7.8 Large lakes. - 7.9 Permafrost and lakes. - References. - 8 Northern wetlands. - 8.1 Wetlands in permafrost regions. - 8.2 Factors favoring wetland occurence. - 8.2.1 Climate. - 8.2.2 Topography. - 8.2.3 Stratigraphy. - 8.2.4 Other factors. - 8.3 Hydrogeomorphic features in wetlands. - 8.3.1 Bog-related features. - 8.3.2 Fen-related features. - 8.3.3 Marshes and swamps. - 8.3.4 Shallow water bodies. - 8.4 Hydrologic behavior of wetlands. - 8.4.1 Seasonality of hydrologic activities. - 8.4.2 Wetland storage. - 8.4.3 Flow paths. - 8.4.4 Application of Fill-and-Spill concept. - 8.5 Patchy arctic wetlands. - 8.5.1 Wetlands maintained by snowmelt. - 8.5.2 Groundwater-fed wetlands. - 8.5.3 Valley bottom fens. - 8.5.4 Wetlands due to lateral inundation. - 8.5.5 Tundra ponds. - 8.5.6 Lake-fed and lake-bed wetlands. - 8.6 Extensive wetlands. - 8.6.1 Wet terrain. - 8.6.2 Ice-wedge polygon fields. - 8.6.3 Coastal plains. - 8.6.4 Deltas. - 8.6.5 Subarctic continental wetlands. - 8.7 Wetlands, permafrost and disturbances. - References. - 9 Rivers in cold regions. - 9.1 Drainage patterns. - 9.2 In-valley conditions. - 9.2.1 Geological setting for channels. - 9.2.2 River ice. - 9.2.3 River icing. - 9.2.4 In-channel snow. - 9.2.5 Permafrost. - 9.2.6 Alluvial environment. - 9.3 In-channel hydrology. - 9.3.1 Lateral inflow. - 9.3.2 Channel inflow. - 9.3.3 Vertical water exchanges. - 9.3.4 Storage in channels. - 9.4 Flow connectivity and delivery. - 9.4.1 Flow network integration. - 9.4.2 Decoupling of flow network. - 9.4.3 Flow delivery. - References. - 10 Basin hydrology. - 10.1 Basin outflow generation. - 10.1.1 The roles of snow. - 10.1.2 Meltwater from glaciers. - 10.1.3 Rainfall contribution. - 10.1.4 Groundwater supply. - 10.1.5 Evaporation losses. - 10.1.6 Permafrost effects. - 10.1.7 Consequences of basin storage. - 10.2 Streamflow hydrograph. - 10.3 Streamflow regimes. - 10.3.1 Nival regime. - 10.3.2 Proglacial regime. - 10.3.3 Pluvial regime. - 10.3.4 Spring-fed Regime. - 10.3.5 Prolacustrine regime. - 10.3.6 Wetland regime. - 10.4 Streamflow in large basins. - 10.4.1 Scaling up to large rivers. - 10.4.2 Flow generation in a large basin: the Liard river. - 10.4.3 Regulated discharge of large rivers. - 10.4.4 Flow in a sub-continental scale basin: Mackenzie basin. - 10.5 Basin water balance. - 10.5.1 Considerations in water balance investigation. - 10.5.2 Regional tendencies. - 10.5.3 Examples from permafrost environments. - 10.6 Permafrost basin hydrology: general remarks. - References. - Appendices. - Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: AWI G2-05-0084 ; AWI G2-06-0213
    Description / Table of Contents: To understand the global oceanic carbon budget and related climate change, exact measurements of organic carbon flux in all oceans environments, especially the continental margins, are crucial. In fact, data have been available for some time on organic carbon sources, pathways, and burial for most of the world's oceans, with the notable exception of the Arctic. With this book, the editors remedy this gap in knowledge, presenting an overview of organic-carbon sources, pathways, and burial of the circum-Arctic continental margin and deep-sea areas. Data from each Arctic shelf and basin are collates, presented in common and parallel formats, and related to the global carbon cycle. The book is suitable for lecturers, graduate students as well as scientists interested in the organic-carbon-cycle and Arctic Ocean (paleo-)environment.
    Type of Medium: Monograph available for loan
    Pages: XIX, 363 Seiten , Illustrationen
    ISBN: 3-540-01153-6
    Language: English
    Note: Contents: 1 The Arctic Ocean: Boundary Conditions and Background Information. - 1.1 Physiography and Bathymetry of the Arctic Ocean. - 1.2 The Arctic Ocean: Modern Status and Recent Climate Change. - 1.3 The Tectonic Evolution of the Arctic Ocean: Overview and Perspectives. - 1.4 Geochemical Proxies Used for Organic Carbon Source Identification in Arctic Ocean Sediments. - 2 Modern Terrigenous Organic Carbon Input to the Arctic Ocean. - 2.1General Introduction. - 2.2 River Input. - 2.3 Organic Carbon Input to the Artic Seas Through Coastal Erosion. - 2.4 The Role of Arctic Sea Ice in Transporting and Cycling Terrestrial Organic Matter. - 2.5 Aeolian Input. - 2.6 Summary and Concluding Remarks. - 3 Primary and Secondary Production in the Arctic Seas. - 3.1 Introduction. - 3.2 Major Algal Groups and Their Distribution. - 3.3 Limitation and Control of Primary Production 3.4 Primary Production and Growth Rate. - 3.5 Seasonality. - 3.6 Distribution of Primary Production. - 3.7 Mesozooplankton . - 3.8 Primary Production - Impact of Climate Change. - 3.9 Summary and Concluding Remarks . - 4 The Role of Dissolved Organic Matter for the Organic Carbon Cycle in the Arctic Ocean. - 4.1 Introduction. - 4.2 Riverine DOM on Arctic Shelves and Beyond. - 4.3 Distribution, Chemical Composition, and Fluxes of Marine DOM in the Central Arctic Ocean. - 4.4 Summary and Concluding Remarks. - 5 Particulate Organic Carbon Flux to the Arctic Ocean Sea Floor. - 5.1 Introduction 5.2 What do we Know About Vertical Carbon Flux from the Arctic Ocean?. - 5.3 Case Studies. - 5.4 Regional Variability in POC Export Flux in the Arctic Ocean Determined Using 234Th as a Tracer. - 5.5 Particulate Organic Carbon Flux to the Sea floor of the Arctic Ocean: Quantity, Seasonality and Processes. - 5.6 Summary and Concluding Remarks. - 6 The Benthos of Arctic Seas and its Role for the Organic Carbon Cycle at the Seafloor. - 6.1 Introduction. - 6.2 Origin and Evolution of Arctic Habitats and Species. - 6.3 Food Supply of the Arctic Benthos: Sources and Pathways. - 6.4 Benthic Communities of the Arctic Seas. - 6.5 Organic Carbon Utilization by the Arctic Benthos. - 6.6 Summary and Concluding Remarks. - 7 Organic Carbon in Arctic Ocean Sediments: Sources, Variability, Burial, and Paleoenvironmental Significance. - 7.1 Organic Carbon in Arctic Ocean Sediments: A General Introduction. - 7.2 The Beaufort Sea: Distribution, Sources, Fluxes, and Burial Rates of Organic Carbon. - 7.3 The Continental Margin of the North Bering - Chukchi Sea: Distribution, Sources, Fluxes, and Burial Rates of Organic Carbon. - 7.4 The East Siberian Sea: Distribution, Sources, and Burial of Organic Carbon. - 7.5 The Laptev Sea: Distribution, Sources, Variability and Burial of Organic Carbon. - 7.6 The Kara Sea: Distribution, Sources, Variability and Burial of Organic Carbon. - 7.7 The Barents Sea: Distribution, Sources, Variability and Burial of Organic Carbon. - 7.8 Northern Fram Strait und Yermak Plateau: Distribution, Variability and Burial of Organic Carbon and Paleoenvironmental Implications. - 7.9 The Central Arctic Ocean: Distribution, Sources, Variability and Burial of Organic Carbon. - 8 Organic Carbon Budget: Arctic Ocean vs. Global Ocean. - 8.1 Introduction. - 8.2 Global Organic Carbon Fluxes: Sources and Sinks. - 8.3 Arctic Ocean Organic Carbon Fluxes: Sources and Sinks. - 8.4 Summary and Concluding Remarks. - 9 References.
    Location: AWI Reading room
    Location: AWI Reading room
    Branch Library: AWI Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Call number: AWI A3-20-93592
    Type of Medium: Monograph available for loan
    Pages: xxxiii, 613 Seiten , Illustrationen , 42 mm x 170 mm
    Edition: Second edition
    ISBN: 978-3-642-13918-0
    Series Statement: Springer praxis books environmental sciences
    Language: English
    Note: Contents Preface Preface to the First Edition List of figures Abbreviations 1 Historical perspective (Roland A. Madden and Paul R. Julian) 1.1 Introduction 1.2 The intraseasonal, tropospheric oscillation 1.3 The elementary 4-D structure 1.4 Other early studies of the oscillation 1.5 The oscillation in 1979 1.6 Complexity of cloud movement and structure 1.7 Seasonal variations in the oscillation 1.8 The oscillation in the zonal average 1.9 Other effects of the oscillation 1.10 Summary 1.11 References 2 South Asian monsoon (B. N. Goswami) 2.1 Introduction 2.1.1 South Asian summer monsoon and active/break cycles 2.1.2 Amplitude and temporal and spatial scales 2.1.3 Regional propagation characteristics 2.1.4 Relationship between poleward-propagating ISOs and monsoon onset 2.1.5 Relationship with the MJO 2.2 Mechanism for temporal-scale selection and propagation 2.2.1 30 to 60-day mode 2.2.2 10 to 20-day mode 2.3 Air-sea interactions 2.4 Clustering of synoptic events by ISOs 2.5 Monsoon ISOs and predictability of the seasonal mean 2.6 Aerosols and monsoon ISOs 2.7 Predictability and prediction of monsoon ISOs 2.8 Summary and discussion 2.9 Acknowledgments 2.10 Appendix 2.11 References 3 Intraseasonal variability of the atmosphere-ocean-climate system: East Asian monsoon (Huang-Hsiung Hsu) 3.1 Introduction 3.2 General characteristics of EA/WNP monsoon flow 3.3 Periodicity, seasonality, and regionality 3.4 Intraseasonal oscillation propagation tendency 3.5 Relationship with monsoon onsets and breaks 3.6 The 10 to 30-day and 30 to 60-day boreal summer ISO 3.6.1 The 30 to 60-day northward/northwestward-propagating pattern 3.6.2 The 10 to 30-day westward-propagating pattern 3.7 Relationship with tropical cyclone activity 3.8 Upscale effect of TC and synoptic systems 3.9 Final remarks 3.9.1 Close association with the EA/WNP monsoon 3.9.2 The CISO vs. interannual variability 3.9.3 Multiperiodicities and multiscale interaction 3.9.4 Others 3.10 References 4 Pan America (Kingtse C. Mo, Charles Jones, and Julia Nogues Paegle) 4.1 Introduction 4.2 Variations in the IS band 4.3 IS variability in December-March 4.3.1 EOF modes 4.3.2 The Madden Julian Oscillation 4.3.3 The submonthly oscillation 4.4 IS variability in June-September 4.4.1 EOF modes 4.4.2 Madden-Julian Oscillation 4.4.3 Submonthly oscillation 4.5 Intraseasonal modulation of hurricanes 4.6 Summary 4.7 References 5 Australasian monsoon (M. C. Wheeler and J. L. McBride) 5.1 Introduction 5.2 Seasonal cycle of background flow 5.3 Broadband intraseasonal behavior: Bursts and breaks 5.4 Broadband intraseasonal behavior: Spectral analysis 5.5 Meteorology of the bursts and breaks 5.6 Characteristics and influence of the MJO 5.7 1983/1984 and 1987/1988 case studies 5.8 MJO influence on monsoon onset 5.9 Other modes and sources of ISV 5.10 Modulation of tropical cyclones 5.11 Extratropical-tropical interaction 5.12 Prediction 5.13 Conclusions 5.14 References 6 The oceans (William S. Kessler) 6.1 Introduction 6.2 Heat fluxes 6.2.1 Salinity and the barrier layer 6.2.2 A 1-D heat balance? 6.2.3 The role of advection 6.3 Vertical structure under westerly winds 6.4 Remote signatures of wind-forced Kelvin waves 6.5 El Nino and rectification of ISV 6.6 ISV in the Indian Ocean 6.6.1 Differences between the Indian and Pacific Ocean warm pools and their consequences 6.6.2 Oscillations lasting about 60 days in the western equatorial Indian Ocean 6.6.3 Recent models of wind-forced ISV in the Indian Ocean 6.7 Other intrinsic oceanic ISV 6.7.1 Global ISV 6.7.2 Non-TISO-forced ISV in the tropical Indo-Pacific 6.7.3 ISV outside the equatorial Indo-Pacific 6.8 Conclusion 6.9 References 7 Air-sea interaction (Harry Hendori) 7.1 Introduction 7.2 Air-sea fluxes for the eastward MJO 7.3 Air-sea fluxes associated with northward propagation in the Indian summer monsoon 7.4 SST variability 7.5 Mechanisms of SST variability 7.6 SST-atmosphere feedback 7.7 Impact of slow SST variations on MJO activity 7.8 Concluding remarks 7.9 Acknowledgments 7.10 References 8 Mass, momentum, and geodynamics (Benjamin F. Chao and David A. Salstein) 8.1 Introduction 8.2 Angular momentum variations and Earth rotation 8.2.1 Length-of-day variation and axial angular momentum 8.2.2 Polar motion excitation and equatorial angular momentum 8.2.3 Angular momentum and torques 8.3 Time-variable gravity 8.4 Geocenter motion 8.5 Conclusions 8.6 Acknowledgments 8.7 References 9 El Nino Southern Oscillation connection (William K. M. Lau) 9.1 Introduction 9.2 A historical perspective 9.3 Phase 1: The embryonic stage 9.3.1 OLR time-longitude sections 9.3.2 Seasonality 9.3.3 Supercloud clusters 9.3.4 Early modeling framework 9.4 Phase 2: The exploratory stage 9.4.1 MJO and ENSO interactions 9.4.2 WWEs 9.5 Phase 3: ENSO case studies 9.5.1 El Nino of 1997/1998 9.5.2 Stochastic forcings 9.6 Phase-4: Recent development 9.6.1 A new ISO index 9.6.2 Composite events 9.6.3 The ISV-ENSO biennial rhythm 9.7 TISV and predictability 9.8 Acknowledgments 9.9 References 10 Theories (Bin Wang) 10.1 Introduction 10.2 Review of ISO theories 10.2.1 Wave CISK 10.2.2 Wind-evaporation feedback or WISHE 10.2.3 Frictional convergence instability (FCI) 10.2.4 Cloud-radiation feedback 10.2.5 Convection-water vapor feedback and the moisture mode 10.2.6 Multiscale interaction theory 10.2.7 Mechanisms of the boreal summer intraseasonal oscillation 10.2.8 Atmosphere-ocean interaction 10.3 A general theoretical framework 10.3.1 Fundamental physical processes 10.3.2 Governing equations 10.3.3 Boundary layer dynamics near the equator 10.3.4 The 1.5-layer model for the MJO 10.3.5 The 2.5-layer model including the effects of basic flows 10.4 Dynamics of the MJO 10.4.1 Low-frequency equatorial waves and the associated Ekman pumping 10.4.2 Frictional convergence instability (FCI) 10.4.3 FCI mode under nonlinear heating 10.4.4 The role of multiscale interaction (MSI) in MJO dynamics 10.5 Dynamics of boreal summer ISO 10.5.1 Effects of mean flows on the ISO 10.5.2 Mechanism of northward propagation 10.6 Role played by atmospheric-ocean interaction 10.7 Summary and discussion 10.7.1 Understanding gained from the FCI theory 10.7.2 Model limitations 10.7.3 Outstanding issues 10.8 Acknowledgments 10.9 References 11 Modeling intraseasonal variability (K. R. Sperber, J. M. Slingo, and P. M. Inness) 11.1 Introduction 11.2 Modeling the MJO in boreal winter 11.2.1 Interannual and decadal variability of the MJO 11.2.2 Sensitivity to formulation of the atmospheric model 11.2.3 Modeling the MJO as a coupled ocean-atmosphere phenomenon 11.3 Boreal summer intraseasonal variability 11.3.1 GCM simulations 11.3.2 Air-sea interaction and boreal summer intraseasonal variability 11.3.3 Modeling studies of the links between boreal summer intraseasonal and interannual variability 11.4 The impact of vertical resolution in the upper ocean 11.5 Concluding remarks 11.6 Acknowledgments 11.7 References 12 Predictability and forecasting (Duane Waliser) 12.1 Introduction 12.2 Empirical models 12.3 Dynamical forecast models 12.4 Predictability 12.5 Real time forecasts 12.6 Discussion 12.7 Appendix 12.8 Acknowledgments 12.9 References 13 Africa and West Asia (Mathew Barlow) 13.1 Overview 13.2 Summary of Africa research 13.2.1 West Africa 13.2.2 Eastern Africa 13.2.3 Southern Africa 13.3 Summary of West Asia research 13.4 Station data analysis 13.4.1 Methodology and data 13.4.2 Nairobi 13.4.3 Riyadh 13.5 Relevance of Gill-Matsuno dynamics and the role of mean wind 13.6 Summary and discussion 13.7 References 14 Tropical-extratropical interactions (Paul E. Roundy) 14.1 Introduction 14.2 A boreal winter composite of the global flow associated with the MJO 14.3 Response of the global atmosphere to heating in tropical convection 14.4 Influence of extratropical waves on tropical convection 14.5 Two-way interactions between the tropics and extratropics 14.6 MJO inf
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Monograph available for loan
    Monograph available for loan
    Berlin : Springer
    Associated volumes
    Call number: AWI S4-19-91819
    In: Texts in computational science and engineering, 3
    Type of Medium: Monograph available for loan
    Pages: XXIV, 750 Seiten , Illustrationen
    Edition: third edition, corrected 2nd printing 2009
    ISBN: 3540739157 , 9783540739159 , 9783540739166 (electronic)
    Series Statement: Texts in computational science and engineering 3
    Language: English
    Note: Table of Contents 1 Introduction 1.1 Scripting versus Traditional Programming 1.1.1 Why Scripting is Useful in Computational Science 1.1.2 Classification of Programming Languages 1.1.3 Productive Pairs of Programming Languages 1.1.4 Gluing Existing Applications 1.1.5 Scripting Yields Shorter Code 1.1.6 Efficiency 1.1.7 Type-Specification (Declaration) of Variables 1.1.8 Flexible Function Interfaces 1.1.9 Interactive Computing 1.1.10 Creating Code at Run Time 1.1.11 Nested Heterogeneous Data Structures 1.1.12 GUI Programming 1.1.13 Mixed Language Programming 1.1.14 When to Choose a Dynamically Typed Language 1.1.15 Why Python? 1.1.16 Script or Program? 1.2 Preparations for Working with This Book 2 Getting Started with Python Scripting 2.1 A Scientific Hello World Script 2.1.1 Executing Python Scripts 2.1.2 Dissection of the Scientific Hello World Script 2.2 Working with Files and Data 2.2.1 Problem Specification 2.2.2 The Complete Code 2.2.3 Dissection 2.2.4 Working with Files in Memory 2.2.5 Array Computing 2.2.6 Interactive Computing and Debugging 2. 2.7 Efficiency Measurements 2.2.8 Exercises 2.3 Gluing Stand-Alone Applications 2.3.1 The Simulation Code 2.3.2 Using Gnuplot to Visualize Curves 2.3.3 Functionality of the Script 2.3.4 The Complete Code 2.3.5 Dissection 2.3.6 Exercises 2.4 Conducting Numerical Experiments 2.4.1 Wrapping a Loop Around Another Script 2.4.2 Generating an HTML Report 2.4.3 Making Animations 2.4.4 Varying Any Parameter 2.5 File Format Conversion 2.5.1 A Simple Read/Write Script 2.5.2 Storing Data in Dictionaries and Lists 2.5.3 Making a Module with Functions 2.5.4 Exercises 3 Basic Python 3.1 Introductory Topics 3.1.1 Recommended Python Documentation 3.1.2 Control Statements 3.1.3 Running Applications 3.1.4 File Reading and Writing 3.1.5 Output Formatting 3.2 Variables of Different Types 3.2.1 Boolean Types 3.2.2 The None Variable 3.2.3 Numbers and Numerical Expressions 3.2.4 Lists and Tuples 3.2.5 Dictionaries 3.2.6 Splitting and Joining Text 3.2.7 String Operations 3.2.8 Text Processing 3.2.9 The Basics of a Python Class 3.2.10 Copy and Assignment 3.2.11 Determining a Variable's Type 3.2.12 Exercises 3.3 Functions 3.3.1 Keyword Arguments 3.3.2 Doc Strings 3.3.3 Variable Number of Arguments 3.3.4 Call by Reference 3.3.5 Treatment of Input and Output Arguments 3.3.6 Function Objects 3.4 Working with Files and Directories 3.4.1 Listing Files in a Directory 3.4.2 Testing File Types 3.4.3 Removing Files and Directories 3.4.4 Copying and Renaming Files 3.4.5 Splitting Pathnames 3.4.6 Creating and Moving to Directories 3.4.7 Traversing Directory Trees 3.4.8 Exercises 4 Numerical Computing in Python 4.1 A Quick NumPy Primer 4.1.1 Creating Arrays 4.1.2 Array Indexing 4.1.3 Loops over Arrays 4.1.4 Array Computations 4.1.5 More Array Functionality 4.1.6 Type Testing 4.1.7 Matrix Objects 4.1.8 Exercises 4.2 Vectorized Algorithms 4.2.1 From Scalar to Array in Function Arguments 4.2.2 Slicing 4.2.3 Exercises 4.3 More Advanced Array Computing 4.3.1 Random Numbers 4.3.2 Linear Algebra 4.3.3 Plotting 4.3.4 Example: Curve Fitting 4.3.5 Arrays on Structured Grids 4.3.6 File I/O with NumPy Arrays 4.3.7 Functionality in the Numpyutils Module 4.3.8 Exercises 4.4 Other Tools for Numerical Computations 4.4.1 The ScientificPython Package 4.4.2 The SciPy Package 4.4.3 The Python- Matlab Interface 3 4.4.4 Symbolic Computing in Python 4.4.5 Some Useful Python Modules 5 Combining Python with Fortran, C, and C++ 5.1 About Mixed Language Programming 5.1.1 Applications of Mixed Language Programming 5.1.2 Calling C from Python 5.1.3 Automatic Generation of Wrapper Code 5.2 Scientific Hello World Examples 5.2.1 Combining Python and Fortran 5.2.2 Combining Python and C 5.2.3 Combining Python and C++ Functions 5.2.4 Combining Python and C++ Classes 5.2.5 Exercises 5.3 A Simple Computational Steering Example 5.3.1 Modified Time Loop for Repeated Simulations 5.3.2 Creating a P ython Interface 5.3.3 The Steering Python Script 5.3.4 Equipping the Steering Script with a GUI 5.4 Scripting Interfaces to Large Libraries 6 Introduction to GUI Programming 6.1 Scientific Hello World GUI 6.1.1 Introductory Topics 6.1.2 The First Python/Tkinter Encounter 6.1.3 Binding Events 6.1.4 Changing the Layout 6.1.5 The Final Scientific Hello World GUI 6.1.6 An Alternative to Tkinter Variables 6.1.7 About the Pack Command 6.1.8 An Introduction to the Grid Geometry Manager 6.1.9 Implementing a GUI as a Class 6.1.10 A Simple Graphical Function Evaluator 6.1.11 Exercises 6.2 Adding GUis to Scripts 6.2.1 A Simulation and Visualization Script with a GUI 6.2.2 Improving the Layout 6.2.3 Exercises 6.3 A List of Common Widget Operations 6.3.1 Frame 6.3.2 Label 6.3.3 Button 6.3.4 Text Entry 6.3.5 Balloon Help 6.3.6 Option Menu 6.3.7 Slider 6.3.8 Check Button 6.3.9 Making a Simple Megawidget 6.3.10 Menu Bar 6.3.11 List Data 6.3.12 Listbox 6.3.13 Radio Button 6.3.14 Combo Box 6.3.15 Message Box 6.3.16 User-Defined Dialogs 6.3.17 Color-Picker Dialogs 6.3.18 File Selection Dialogs 6.3.19 Toplevel 6.3.20 Some Other Types of Widgets 6.3.21 Adapting Widgets to the User's Resize Actions 6.3.22 Customizing Fonts and Colors 6.3.23 Widget Overview 6.3.24 Exercises 7 Web Interfaces and CGI Programming 7.1 Introductory CGI Scripts 7.1.1 Web Forms and CGI Scripts 7.1.2 Generating Forms in CGI Scripts 7.1.3 Debugging CGI Scripts 7.1.4 A General Shell Script Wrapper for CGI Scripts 7.1.5 Security Issues 7.2 Adding Web Interfaces to Scripts 7.2.1 A Class for Form Parameters 7.2.2 Calling Other Programs 7.2.3 Running Simulations 7.2.4 Getting a CGI Script to Work 7.2.5 Using Web Applications from Scripts 7.2.6 Exercises 8 Advanced Python 8.1 Miscellaneous Topics 8.1.1 Parsing Command-Line Arguments 8.1.2 Platform-Dependent Operations 8.1.3 Run-Time Generation of Code 8.1.4 Exercises 8.2 Regular Expressions and Text Processing 8.2.1 Motivation 8.2.2 Special Characters 8.2.3 Regular Expressions for Real Numbers 8.2.4 Using Groups to Extract Parts of a Text 8.2.5 Extracting Interval Limits 8.2.6 Extracting Multiple Matches 8.2.7 Splitting Text 8.2.8 Pattern-Matching Modifiers 8.2.9 Substitution and Backreferences 8.2.10 Example: Swapping Arguments in Function Calls 8.2.11 A General Substitution Script 8.2.12 Debugging Regular Expressions 8.2.13 Exercises 8.3 Tools for Handling Data in Files 8.3.1 Writing and Reading Python Data Structures 8.3.2 Pickling Objects 8.3.3 Shelving Objects 8.3.4 Writing and Reading Zip and Tar Archive Files 8.3.5 Downloading Internet Files 8.3.6 Binary Input/Output 8.3.7 Exercises 8.4 A Database for NumPy Arrays 8.4.1 The Structure of the Database 8.4.2 Pickling 8.4.3 Formatted ASCII Storage 8.4.4 Shelving 8.4.5 Comparing the Various Techniques 8.5 Scripts Involving Local and Remote Hosts 8.5.1 Secure Shell Commands 8.5.2 Distributed Simulation and Visualization 8.5.3 Client/Server Programming 8.5.4 Threads 8.6 Classes 8.6.1 Class Programming 8.6.2 Checking the Class Type 8.6.3 Private Data 8.6.4 Static Data 8.6.5 Special Attributes 8.6.6 Special Methods 8.6.7 Multiple Inheritance 8.6.8 Using a Class as a C-like Structure 8.6.9 Attribute Access via String Names 8.6.10 New-Style Classes 8.6.11 Implementing Get/Set Functions via Properties 8.6.12 Subclassing Built-in Types 8.6.13 Building Class Interfaces at Run Time 8.6.14 Building Flexible Class Interfaces 8.6.15 Exercises 8.7 Scope of Variables 8.7.1 Global, Local, and Class Variables 8.7.2 Nested Functions 8.7.3 Dictionaries of Variables in Namespaces 8.8 Exceptions 8.8.1 Handling Exceptions 8.8.2 Raising Exceptions 8.9 Iterators 8.9.1 Constructing an Iterator 8.9.2 A Pointwise Grid Iterator 8.9.3 A Vectorized Grid Iterator 8.9.4 Generators 8.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Monograph available for loan
    Monograph available for loan
    Berlin : Springer
    Associated volumes
    Call number: AWI S4-18-91822
    In: Texts in computational science and engineering, 6
    Type of Medium: Monograph available for loan
    Pages: XXXI, 922Seiten , Illustrationen, graphische Darstellungen
    Edition: Fifth edition
    ISBN: 9783662498873 , 9783662498866
    Series Statement: Texts in computational science and engineering 6
    Language: English
    Note: Contents: 1 Computing with Formulas. - 1.1 The First Programming Encounter: a Formula. - 1.1.1 Using a Program as a Calculator. - 1.1.2 About Programs and Programming. - 1.1.3 Tools for Writing Programs. - 1.1.4 Writing and Running Your First Python Program. - 1.1.5 Warning About Typing Program Text. - 1.1.6 Verifying the Result. - 1.1.7 Using Variables. - 1.1.8 Names of Variables. - 1.1.9 Reserved Words in Python. - 1.1.10 Comments. - 1.1.11 Formatting Text and Numbers. - 1.2 Computer Science Glossary. - 1.3 Another Formula: Celsius-Fahrenheit Conversion. - 1.3.1 Potential Error: Integer Division. - 1.3.2 Objects in Python. - 1.3.3 Avoiding Integer Division. - 1.3.4 Arithmetic Operators and Precedence. - 1.4 Evaluating Standard Mathematical Functions. - 1.4.1 Example: Using the Square Root Function. - 1.4.2 Example: Computing with sinh x. - 1.4.3 A First Glimpse of Rounding Errors. - 1.5 Interactive Computing. - 1.5.1 Using the Python Shell. - 1.5.2 Type Conversion. - 1.5.3 IPython. - 1.6 Complex Numbers. - 1.6.1 Complex Arithmetics in Python. - 1.6.2 Complex Functions in Python. - 1.6.3 Unified Treatment of Complex and Real Functions. - 1.7 Symbolic Computing. - 1.7.1 Basic Differentiation and Integration. - 1.7.2 Equation Solving. - 1.7.3 Taylor Series and More. - 1.8 Summary. - 1.8.1 Chapter Topics. - 1.8.2 Example: Trajectory of a Ball. - 1.8.3 About Typesetting Conventions in This Book. - 1.9 Exercises. - 2 Loops and Lists. - 2.1 While Loops. - 2.1.1 A Naive Solution. - 2.1.2 While Loops. - 2.1.3 Boolean Expressions. - 2.1.4 Loop Implementation of a Sum. - 2.2 Lists. - 2.2.1 Basic List Operations. - 2.2.2 For Loops. - 2.3 Alternative Implementations with Lists and Loops. - 2.3.1 While Loop Implementation of a for Loop. - 2.3.2 The Range Construction. - 2.3.3 For Loops with List Indices. - 2.3.4 Changing List Elements. - 2.3.5 List Comprehension. - 2.3.6 Traversing Multiple Lists Simultaneously. - 2.4 Nested Lists. - 2.4.1 A table as a List of Rows or Columns. - 2.4.2 Printing Objects. - 2.4.3 Extracting Sublists. - 2.4.4 Traversing Nested Lists. - 2.5 Tuples. - 2.6 Summary. - 2.6.1 Chapter Topics. - 2.6.2 Example: Analyzing List Data. - 2.6.3 How to Find More Python Information. - 2.7 Exercises. - 3 Functions and Branching. - 3.1 Functions. - 3.1.1 Mathematical Functions as Python Functions. - 3.1.2 Understanding the Program Flow. - 3.1.3 Local and Global Variables. - 3.1.4 Multiple Arguments. - 3.1.5 Function Argument or Global Variable?. - 3.1.6 Beyond Mathematical Functions. - 3.1.7 Multiple Return Values. - 3.1.8 Computing Sums. - 3.1.9 Functions with No Return Values. - 3.1.10 Keyword Arguments. - 3.1.11 Doc Strings. - 3.1.12 Functions as Arguments to Functions. - 3.1.13 The Main Program. - 3.1.14 Lambda Functions. - 3.2 Branching. - 3.2.1 If-else Blocks. - 3.2.2 Inline if Tests. - 3.3 Mixing Loops, Branching, and Functions in Bioinformatics Examples. - 3.3.1 Counting Letters in DNA Strings. - 3.3.2 Efficiency Assessment. - 3.3.3 Verifying the Implementations. - 3.4 Summary. - 3.4.1 Chapter Topics. - 3.4.2 Example: Numerical Integration. - 3.5 Exercises. - 4 User Input and Error Handling. - 4.1 Asking Questions and Reading Answers. - 4.1.1 Reading Keyboard Input. - 4.2 Reading from the Command Line. - 4.2.1 Providing Input on the Command Line. - 4.2.2 A Variable Number of Command-Line Arguments. - 4.2.3 More on Command-Line Arguments. - 4.3 Turning User Text into Live Objects. - 4.3.1 The Magic Eval Function. - 4.3.2 The Magic Exec Function. - 4.3.3 Turning String Expressions into Functions. - 4.4 Option-Value Pairs on the Command Line. - 4.4.1 Basic Usage of the Argparse Module. - 4.4.2 Mathematical Expressions as Values. - 4.5 Reading Data from File. - 4.5.1 Reading a File Line by Line. - 4.5.2 Alternative Ways of Reading a File. - 4.5.3 Reading a Mixture of Text and Numbers. - 4.6 Writing Data to File. - 4.6.1 Example: Writing a Table to File. - 4.6.2 Standard Input and Output as File Objects. - 4.6.3 What is a File, Really?. - 4.7 Handling Errors. - 4.7.1 Exception Handling. - 4.7.2 Raising Exceptions. - 4.8 A Glimpse of Graphical User Interfaces. - 4.9 Making Modules. - 4.9.1 Example: Interest on Bank Deposits. - 4.9.2 Collecting Functions in a Module File. - 4.9.3 Test Block. - 4.9.4 Verification of the Module Code. - 4.9.5 Getting Input Data. - 4.9.6 Doc Strings in Modules. - 4.9.7 Using Modules. - 4.9.8 Distributing Modules. - 4.9.9 Making Software Available on the Internet. - 4.10 Making Code for Python 2 and 3. - 4.10.1 Basic Differences Between Python 2 and 3. - 4.10.2 Turning Python 2 Code into Python 3 Code. - 4.11 Summary. - 4.11.1 Chapter Topics. - 4.11.2 Example: Bisection Root Finding. - 4.12 Exercises. - 5 Array Computing and Curve Plotting. - 5.1 Vectors. - 5.1.1 The Vector Concept. - 5.1.2 Mathematical Operations on Vectors. - 5.1.3 Vector Arithmetics and Vector Functions. - 5.2 Arrays in Python Programs. - 5.2.1 Using Lists for Collecting Function Data. - 5.2.2 Basics of Numerical Python Arrays. - 5.2.3 Computing Coordinates and Function Values. - 5.2.4 Vectorization. - 5.3 Curve Plotting. - 5.3.1 MATLAB-Style Plotting with Matplotlib. - 5.3.2 Matplotlib; Pyplot Prefix. - 5.3.3 SciTools and Easyviz. - 5.3.4 Making Animations. - 5.3.5 Making Videos. - 5.3.6 Curve Plots in Pure Text. - 5.4 Plotting Difficulties. - 5.4.1 Piecewisely Defined Functions. - 5.4.2 Rapidly Varying Functions. - 5.5 More Advanced Vectorization of Functions. - 5.5.1 Vectorization of StringFunction Objects. - 5.5.2 Vectorization of the Heaviside Function. - 5.5.3 Vectorization of a Hat Function. - 5.6 More on Numerical Python Arrays. - 5.6.1 Copying Arrays. - 5.6.2 In-Place Arithmetics. - 5.6.3 Allocating Arrays. - 5.6.4 Generalized Indexing. - 5.6.5 Testing for the Array Type. - 5.6.6 Compact Syntax for Array Generation. - 5.6.7 Shape Manipulation. - 5.7 High-Performance Computing with Arrays. - 5.7.1 Scalar Implementation. - 5.7.2 Vectorized Implementation. - 5.7.3 Memory-Saving Implementation. - 5.7.4 Analysis of Memory Usage. - 5.7.5 Analysis of the CPU Time. - 5.8 Higher-Dimensional Arrays. - 5.8.1 Matrices and Arrays. - 5.8.2 Two-Dimensional Numerical Python Arrays. - 5.8.3 Array Computing. - 5.8.4 Matrix Objects. - 5.9 Some Common Linear Algebra Operations. - 5.9.1 Inverse, Determinant, and Eigenvalues. - 5.9.2 Products. - 5.9.3 Norms. - 5.9.4 Sum and Extreme Values. - 5.9.5 Indexing. - 5.9.6 Transpose and Upper/Lower Triangular Parts. - 5.9.7 Solving Linear Systems. - 5.9.8 Matrix Row and Column Operations. - 5.9.9 Computing the Rank of a Matrix. - 5.9.10 Symbolic Linear Algebra. - 5.10 Plotting of Scalar and Vector Fields. - 5.10.1 Installation. - 5.10.2 Surface Plots. - 5.10.3 Parameterized Curve. - 5.10.4 Contour Lines. - 5.10.5 The Gradient Vector Field. - 5.11 Matplotlib. - 5.11.1 Surface Plots. - 5.11.2 Contour Plots. - 5.11.3 Vector Field Plots. - 5.12 Mayavi. - 5.12.1 Surface Plots. - 5.12.2 Contour Plots. - 5.12.3 Vector Field Plots. - 5.12.4 A 3D Scalar Field and Its Gradient Field. - 5.12.5 Animations. - 5.13 Summary. - 5.13.1 Chapter Topics. - 5.13.2 Example: Animating a Function. - 5.14 Exercises. - 6 Dictionaries and Strings. - 6.1 Dictionaries. - 6.1.1 Making Dictionaries. - 6.1.2 Dictionary Operations. - 6.1.3 Example: Polynomials as Dictionaries. - 6.1.4 Dictionaries with Default Values and Ordering. - 6.1.5 Example: Storing File Data in Dictionaries. - 6.1.6 Example: Storing File Data in Nested Dictionaries. - 6.1.7 Example: Reading and Plotting Data Recorded at Specific Dates. - 6.2 Strings. - 6.2.1 Common Operations on Strings. - 6.2.2 Example: Reading Pairs of Numbers. - 6.2.3 Example: Reading Coordinates. - 6.3 Reading Data fromWeb Pages. - 6.3.1 About Web Pages. - 6.3.2 How to Access Web Pages
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: AWI S2-07-0030
    Type of Medium: Monograph available for loan
    Pages: IX, 221 Seiten , Illustrationen
    ISBN: 9783540377054
    Series Statement: Springer-Lehrbuch
    Language: German
    Note: Inhalt: 1 Einleitung. - 1.1 Alltägliche Probleme. - 1.2 Uni- und multivariate Daten. - 1.3 Wege ins Statistiklabyrinth. - 2 Statistische Grundlagen. - 2.1 Einführung in die Terminologie. - 2.2 Datentypen -Skalenniveaus. - 2.3 Korrelation. - 2.4 Regression. - 2.5 Lineare Regression. - 2.6 Multiplelineare Regression. - 2.7 Unimodale Modelle - die Gauß'sche Regression. - 2.8 Logistische und Gauß'sche logistische Regression. - 2.9 Interaktionen. - 2.10 Gewichtetes Mittel. - 2.11 Partielle Analysen. - 3 Datenmanipulationen. - 3.1 Normalverteilung und Transformationen. - 3.2 Standardisierungen. - 3.3 Transponieren, Umkodieren und Maskieren. - 4 Ähnlichkeits- und Distanzmaße. - 4.1 Qualitative Ähnlichkeitsmaße. - 4.2 Quantitative Ähnlichkeitsmaße. - 4.3 Distanzmaße. - 4.4 Vergleich der geschilderten Koeffizienten. - 5 Ordinationen - das Prinzip. - 5.1 Dimensionsreduktion als Analysestrategie. - 5.2 Polare Ordination. - 6 Korrespondenzanalyse (CA). - 6.1 Das Prinzip. - 6.2 Mathematische Artefakte - Probleme der CA. - 6.3 DCA {Detrended Correspondence Analysis). - 6.4 Zusammenfassendes zu Problemen der CA und DCA. - 7 Interpretation von CA und DCA. - 7.1 Zur Skalierung und Interpretation der Ordinationsdiagramme. - 7.2 Umweltvariablen-Interaktionen von Effekten. - 7.3 Ordination und Umweltdaten. - 8 Kanonische Ordination (constrained ordination). - 8.1 Prinzip der Kanonischen Korrespondenzanalyse (CCA). - 8.2 Interpretation eines CCA-Diagramms. - 8.3 Forward selection bei kanonischen Ordinationen. - 8.4 Überprüfung einer CCA. - 9 Hauptkomponentenanalyse (PCA). - 9.1 Das Prinzip - geometrische Herleitung. - 9.2 Das Prinzip - der mathematische Ansatz. - 9.3 Optionen bei einer PCA. - 9.4 Stärken und Schwächen der PCA. - 9.5 Faktorenanalyse. - 10 Lineare Methoden und Umweltdaten: PCA und RDA. - 10.1 Indirekte Ordination. - 10.2 Kanonische Ordination - Prinzip der Redundanzanalyse. - 10.3 Interpretation einer RDA. - 11 Partielle Ordination und variance partitioning. - 11.1 Kovariablen. - 11.2 Partielle PCA, CA, DCA. - 11.3 Partielle kanonische Ordination. - 11.4 Variance partitioning. - 12 Multidimensionale Skalierung. - 12.1 Der andere Weg zum Ziel. - 12.2 Metrische Multidimensionale Skalierung - Hauptkoordinatenanalyse. - 12.3 Nichtmetrische Multidimensionale Skalierung. - 12.3.1 Das Prinzip. - 12.3.2 NMDS - Optionen und Probleme. - 12.3.3 Ablauf einer NMDS. - 13 Klassifikation - das Prinzip. - 13.1 Das Wesen von Klassifikationen. - 13.2 Die wichtigsten Klassifikationsstrategien. - 14 Agglomerative Klassifikationsverfahren. - 14.1Clusteranalyse - Grundlagen. - 14.2 Auswertung von Dendrogrammen. - 15 Divisive Klassifikationsverfahren. - 15.1 Ordination Space Partitioning. - 15.2 TWINSPAN. - 15.3 Ablauf einer TWINSPAN-Analyse. - 15.4 Kritik an der TWINSPAN-Analyse. - 16 Sonstige Verfahren zur Beschreibung von Gruppenstrukturen. - 16.1 Nichthierarchische agglomerative Verfahren. - 16.2 Nichthierarchische divisive Verfahren. - 16.3 Numerische "treue"-basierte Verfahren. - 16.4 Diskriminanzanalyse. - 16.4.1 Das Prinzip. - 16.4.2 Voraussetzungen. - 16.4.3 Gütekriterien/Prüfung der Ergebnisse. - 17 Permutationsbasierte Tests. - 17.1 Das Prinzip von Permutationstests. - 17.2 Test auf Signifikanz von Ordinationsachsen. - 17.3 Mantel-Test. - 17.4 Gruppenvergleiche - Mantel-Tests und MRPP. - 17.5 Procrustes-Analysen. - 17.6 Indicator Species Analysis. - 17.7 Ausblick Randomisierungsverfahren. - Literatur. - Sachverzeichnis.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Call number: AWI S1-07-0025
    Description / Table of Contents: Since the publication of "Spectral Methods in Fluid Dynamics", spectral methods, particularly in their multidomain version, have become firmly established as a mainstream tool for scientific and engineering computation. While retaining the tight integration between the theoretical and practical aspects of spectral methods that was the hallmark of the earlier book, Canuto et al. now incorporate the many improvements in the algorithms and the theory of spectral methods that have been made since 1988. The initial treatment Fundamentals in Single Domains discusses the fundamentals of the approximation of solutions to ordinary and partial differential equations on single domains by expansions in smooth, global basis functions. The first half of the book provides the algorithmic details of orthogonal expansions, transform methods, spectral discretization of differential equations plus their boundary conditions, and solution of the discretized equations by direct and iterative methods. The second half furnishes a comprehensive discussion of the mathematical theory of spectral methods on single domains, including approximation theory, stability and convergence, and illustrative applications of the theory to model boundary-value problems. Both the algorithmic and theoretical discussions cover spectral methods on tensor-product domains, triangles and tetrahedra. All chapters are enhanced with material on the Galerkin with numerical integration version of spectral methods. The discussion of direct and iterative solution methods is greatly expanded as are the set of numerical examples that illustrate the key properties of the various types of spectral approximations and the solution algorithms. A companion book "Evolution to Complex Geometries and Applications to Fluid Dynamics" contains an extensive survey of the essential algorithmic and theoretical aspects of spectral methods for complex geometries and provides detailed discussions of spectral algorithms for fluid dynamics in simple and complex geometries.
    Type of Medium: Monograph available for loan
    Pages: XXII, 563 Seiten , Illustrationen , 235 mm x 155 mm
    ISBN: 3540307257 , 3-540-30725-7 , 978-3-540-30725-9
    ISSN: 1434-8322
    Series Statement: Scientific computation
    Language: English
    Note: Contents 1. Introduction 1.1 Historical Background 1.2 Some Examples of Spectral Methods 1.2.1 A Fourier Galerkin Method for the Wave Equation 1.2.2 A Chebyshev Collocation Method for the Heat Equation 1.2.3 A Legendre Galerkin with Numerical Integration (G-NI) Method for the Advection-Diffusion-Reaction Equation 1.2.4 A Legendre Tau Method for the Poisson Equation 1.2.5 Basic Aspects of Galerkin, Collocation, G-NI and Tau Methods 1.3 Three-Dimensional Applications in Fluids: A Look Ahead 2. Polynomial Approximation 2.1 The Fourier System 2.1.1 The Continuous Fourier Expansion 2.1.2 The Discrete Fourier Expansion 2.1.3 Differentiation 2.1.4 The Gibbs Phenomenon 2.2 Orthogonal Polynomials in (−1, 1) 2.2.1 Sturm-Liouville Problems 2.2.2 Orthogonal Systems of Polynomials 2.2.3 Gauss-Type Quadratures and Discrete Polynomial Transforms 2.3 Legendre Polynomials 2.3.1 Basic Formulas 2.3.2 Differentiation 2.3.3 Orthogonality, Diagonalization and Localization 2.4 Chebyshev Polynomials 2.4.1 Basic Formulas 2.4.2 Differentiation 2.5 Jacobi Polynomials 2.6 Approximation in Unbounded Domains 2.6.1 Laguerre Polynomials and Laguerre Functions 2.6.2 Hermite Polynomials and Hermite Functions 2.7 Mappings for Unbounded Domains 2.7.1 Semi-Infinite Intervals 2.7.2 The Real Line 2.8 Tensor-Product Expansions 2.8.1 Multidimensional Mapping 2.9 Expansions on Triangles and Related Domains 2.9.1 Collapsed Coordinates and Warped Tensor-Product Expansions 2.9.2 Non-Tensor-Product Expansions 2.9.3 Mappings 3. Basic Approaches to Constructing Spectral Methods 3.1 Burgers Equation 3.2 Strong and Weak Formulations of Differential Equations 3.3 Spectral Approximation of the Burgers Equation 3.3.1 Fourier Galerkin 3.3.2 Fourier Collocation 3.3.3 Chebyshev Tau 3.3.4 Chebyshev Collocation 3.3.5 Legendre G-NI 3.4 Convolution Sums 3.4.1 Transform Methods and Pseudospectral Methods 3.4.2 Aliasing Removal by Padding or Truncation 3.4.3 Aliasing Removal by Phase Shifts 3.4.4 Aliasing Removal for Orthogonal Polynomials 3.5 Relation Between Collocation, G-NI and Pseudospectral Methods 3.6 Conservation Forms 3.7 Scalar Hyperbolic Problems 3.7.1 Enforcement of Boundary Conditions 3.7.2 Numerical Examples 3.8 Matrix Construction for Galerkin and G-NI Methods 3.8.1 Matrix Elements 3.8.2 An Example of Algebraic Equivalence between G-NI and Collocation Methods 3.9 Polar Coordinates 3.10 Aliasing Effects 4. Algebraic Systems and Solution Techniques 4.1 Ad-hoc Direct Methods 4.1.1 Fourier Approximations 4.1.2 Chebyshev Tau Approximations 4.1.3 Galerkin Approximations 4.1.4 Schur Decomposition and Matrix Diagonalization 4.2 Direct Methods 4.2.1 Tensor Products of Matrices 4.2.2 Multidimensional Stiffness and Mass Matrices 4.2.3 Gaussian Elimination Techniques 4.3 Eigen-Analysis of Spectral Derivative Matrices 4.3.1 Second-Derivative Matrices 4.3.2 First-Derivative Matrices 4.3.3 Advection-Diffusion Matrices 4.4 Preconditioning 4.4.1 Fundamentals of Iterative Methods for Spectral Discretizations 4.4.2 Low-Order Preconditioning of Model Spectral Operators in One Dimension 4.4.3 Low-Order Preconditioning in Several Dimensions 4.4.4 Spectral Preconditioning 4.5 Descent and Krylov Iterative Methods for Spectral Equations 4.5.1 Multidimensional Matrix-Vector Multiplication 4.5.2 Iterative Methods 4.6 Spectral Multigrid Methods 4.6.1 One-Dimensional Fourier Multigrid Model Problem 4.6.2 General Spectral Multigrid Methods 4.7 Numerical Examples of Direct and Iterative Methods 4.7.1 Fourier Collocation Discretizations 4.7.2 Chebyshev Collocation Discretizations 4.7.3 Legendre G-NI Discretizations 4.7.4 Preconditioners for Legendre G-NI Matrices 4.8 Interlude 5. Polynomial Approximation Theory 5.1 Fourier Approximation 5.1.1 Inverse Inequalities for Trigonometric Polynomials 5.1.2 Estimates for the Truncation and Best Approximation Errors 5.1.3 Estimates for the Interpolation Error 5.2 Sturm-Liouville Expansions 5.2.1 Regular Sturm-Liouville Problems 5.2.2 Singular Sturm-Liouville Problems 5.3 Discrete Norms 5.4 Legendre Approximations 5.4.1 Inverse Inequalities for Algebraic Polynomials 5.4.2 Estimates for the Truncation and Best Approximation Errors 5.4.3 Estimates for the Interpolation Error 5.4.4 Scaled Estimates 5.5 Chebyshev Approximations 5.5.1 Inverse Inequalities for Polynomials 5.5.2 Estimates for the Truncation and Best Approximation Errors 5.5.3 Estimates for the Interpolation Error 5.6 Proofs of Some Approximation Results 5.7 Other Polynomial Approximations 5.7.1 Jacobi Polynomials 5.7.2 Laguerre and Hermite Polynomials 5.8 Approximation in Cartesian-Product Domains 5.8.1 Fourier Approximations 5.8.2 Legendre Approximations 5.8.3 Mapped Operators and Scaled Estimates 5.8.4 Chebyshev and Other Jacobi Approximations 5.8.5 Blended Trigonometric and Algebraic Approximations 5.9 Approximation in Triangles and Related Domains 6. Theory of Stability and Convergence 6.1 Three Elementary Examples Revisited 6.1.1 A Fourier Galerkin Method for the Wave Equation 6.1.2 A Chebyshev Collocation Method for the Heat Equation 6.1.3 A Legendre Tau Method for the Poisson Equation 6.2 Towards a General Theory 6.3 General Formulation of Spectral Approximations to Linear Steady Problems 6.4 Galerkin, Collocation, G-NI and Tau Methods 6.4.1 Galerkin Methods 6.4.2 Collocation Methods 6.4.3 G-NI Methods 6.4.4 Tau Methods 6.5 General Formulation of Spectral Approximations to Linear Evolution Problems 6.5.1 Conditions for Stability and Convergence: The Parabolic Case 6.5.2 Conditions for Stability and Convergence: The Hyperbolic Case 6.6 The Error Equation 7. Analysis of Model Boundary-Value Problems 7.1 The Poisson Equation 7.1.1 Legendre Methods 7.1.2 Chebyshev Methods 7.1.3 Other Boundary-Value Problems 7.2 Singularly Perturbed Elliptic Equations 7.2.1 Stabilization of Spectral Methods 7.3 The Eigenvalues of Some Spectral Operators 7.3.1 The Discrete Eigenvalues for Lu = −uxx 7.3.2 The Discrete Eigenvalues for Lu = −νuxx + βux 7.3.3 The Discrete Eigenvalues for Lu = ux 7.4 The Preconditioning of Spectral Operators 7.5 The Heat Equation 7.6 Linear Hyperbolic Equations 7.6.1 Periodic Boundary Conditions 7.6.2 Nonperiodic Boundary Conditions 7.6.3 The Resolution of the Gibbs Phenomenon 7.6.4 Spectral Accuracy for Non-Smooth Solutions 7.7 Scalar Conservation Laws 7.8 The Steady Burgers Equation Appendix A. Basic Mathematical Concepts A.1 Hilbert and Banach Spaces A.2 The Cauchy-Schwarz Inequality A.3 Linear Operators Between Banach Spaces A.4 The Fr´echet Derivative of an Operator A.5 The Lax-Milgram Theorem A.6 Dense Subspace of a Normed Space A.7 The Spaces Cm(Ω), m ≥ 0 A.8 Functions of Bounded Variation and the Riemann(-Stieltjes) Integral A.9 The Lebesgue Integral and Lp-Spaces A.10 Infinitely Differentiable Functions and Distributions A.11 Sobolev Spaces and Sobolev Norms A.12 The Sobolev Inequality A.13 The Poincar´e Inequality A.14 The Hardy Inequality A.15 The Gronwall Lemma Appendix B. Fast Fourier Transforms Appendix C. Iterative Methods for Linear Systems C.1 A Gentle Approach to Iterative Methods C.2 Descent Methods for Symmetric Problems C.3 Krylov Methods for Nonsymmetric Problems Appendix D. Time Discretizations D.1 Notation and Stability Definitions D.2 Standard ODE Methods D.2.1 Leap Frog Method D.2.2 Adams-Bashforth Methods D.2.3 Adams-Moulton Methods D.2.4 Backwards-Difference Formulas D.2.5 Runge-Kutta Methods D.3 Integrating Factors D.4 Low-Storage Schemes References Index
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Call number: M 11.0188 ; AWI G1-11-0076
    Type of Medium: Monograph available for loan
    Pages: VII, 197 Seiten , Illustrationen , 235 mm x 155 mm
    ISBN: 9783642194771 , 978-3-642-19477-1
    Series Statement: Forschungsberichte / Interdisziplinäre Arbeitsgruppen, Berlin-Brandenburgische Akademie der Wissenschaften Band 26
    Classification:
    Meteorology and Climatology
    Language: German
    Note: Inhalt Vorwort Einleitung / Sonja Germer, Matthias Naumann, Oliver Bens Zur gegenwärtigen Situation der Fokusregion Berlin-Brandenburg / Sonja Germer, Matthias Naumann, Oliver Bens I. Umweltwandel und die Folgen für den Landschaftswasserhaushalt Einleitung / Sonja Germer, Barbara Köstner, Herbert Sukopp, Jost Heintzenberg Temperaturaufzeichnungen in Berlin für die letzten 310 Jahre / Ulrich Cubasch, Christopher Kadow Simulation des gegenwärtigen und zukünftigen Regionalklimas von Brandenburg / Eberhard Schaller Simulation von Wasserhaushaltskomponenten unter dem Wandel des regionalen Klimas / Barbara Köstner, Matthias Kuhnert Reaktionen von Seeökosystemen auf Umweltveränderungen / Michael Hupfer, Brigitte Nixdorf, Klement Tockner Anthropogene Einflussfaktoren des Landschaftswasserhaushalts / Gunnar Lischeid Wasserhaushaltliche und wasserwirtschaftliche Bilanzen / Uwe Grünewald Kernaussagen / Barbara Köstner, Sonja Germer, Jost Heintzenberg II. Wandel von Landnutzungen und deren Konsequenzen für Wasserressourcen Einleitung / Inge Broer, Alfred Pühler, Mihaiela Rus Regionale Landwirtschaft im globalen Wandel / Konrad Hagedorn Den Rahmen setzen für die Entwicklung der Kulturlandschaften von morgen. Regionale Antworten auf globale Herausforderungen finden / Werner Konold Strategien zum Integrierten Land- und Wasserressourcenmanagement im märkischen Feuchtgebietsgürtel Oderbruch-Havelland / Joachim Quast Wassermanagement in der Landwirtschaft / Katrin Drastig, Annette Prochnow, Reiner Brunsch Waldbewirtschaftung unter den Bedingungen des Klimawandels in Brandenburg / Ralf Kätzel, Klaus Höppner Erzeugung und Verbrauch von landwirtschaftlichen Produkten aus Brandenburg in Berlin / Hans Kögl Neue Entwicklungen in der Pflanzenzüchtung und Systembetrachtungen der Pflanze-Umwelt-Interaktion / Inge Broer, Reiner Brunsch Kernaussagen / Inge Broer, Alfred Pühler, Mihaiela Rus III. Infrastrukturen neu denken: gesellschaftliche Funktionen und Weiterentwicklung / Eva Barlösius, Karl-Dieter Keim, Georg Meran, Timothy Moss, Claudia Neu Gegenwärtige Situation der Infrastrukturen Ausgangspunkt: LandInnovation Leistungen der Infrastrukturen in der Vergangenheit Wasser- und Bildungsinfrastrukturen: Gemeinsamkeiten und Unterschiede Kernaussagen über Infrastrukturen IV. Handeln unter Bedingungen des globalen Wandels / Sonja Germer, Karl-Dieter Keim, Matthias Naumann, Oliver Bens, Rolf Emmermann, Reinhard F. Hüttl Übergeordnete Herausforderungen des globalen Wandels Brückenprinzipien als Handlungsorientierung für den Umgang mit dem globalen Wandel Stärkung der interdisziplinären Forschung und des Transfers Abbildungsverzeichnis Tabellenverzeichnis Verzeichnis der Autorinnen und Autoren Verzeichnis der Mitglieder der interdisziplinären Arbeitsgruppe Globaler Wandel – Regionale Entwicklung Verzeichnis der Diskussionspapiere der interdisziplinären Arbeitsgruppe Globaler Wandel – Regionale Entwicklung
    Location: Upper compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...