ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (65)
  • Hanover, NH  (41)
  • Berlin : Springer  (18)
  • Amsterdam [u.a.] : Elsevier
  • AWI Reading room  (65)
Collection
  • Books  (65)
Language
Branch Library
  • 1
    Call number: PIK N 455-99-0342 ; AWI A13-00-0146
    Type of Medium: Monograph available for loan
    Pages: 255 Seiten , Illustrationen
    ISBN: 3540658300 , 3-540-65830-0
    Language: German
    Note: Inhaltsverzeichnis 1 Einführung 1.1 Übersicht 1.2 Modernes naturwissenschaftliches Klimaverständnis 1.3 Modelle in der Klimaforschung 2 Klimarelevante Prozesse 2.1 Energie und Strahlung 2.1.1 Strahlung 2.1.2 Wärmetrausporte 15 2.1.3 Transport von Energie im Wasserkreislauf 2.2 Dynamik der Atmosphäre 2.2.1 Erzeugung von Bewegung 2.2.2 Vertikalstruktur der Atmosphäre 2.2.3 Allgemeine Zirkulation 2.2.4 Regionale Strukturen 2.2.5 Turbulenz 2.2.6 Aerosolpartikel 2.2.7 Wolken und Niederschlag 2.3 Zirkulation des Ozeans 2.3.1 Meeresoberflächenströmungen 2.3.2 Tiefenzirkulation 2.3.3 Wellen und Wirbel 2.4 Spurenstoffkreisläufe 2.4.1 Wasserdampf 2.4.2 Kohlendioxid 2.4.3 Methan 2.4.4 Stickstoffverbindungen 2.5 Kryosphäre 3 Natürliche Klimavariabilität 3.1 Jahres- und Tagesgang 3.2 Wetter 3.3 Interannuale Klimaschwankungen 3.3..1 ENSO-Phänomen 3.3.2 Nordatlantische Oszillation 3.3.3 Temperaturentwicklung seit 1900 3.3.4 Die Frage der Sonnenflecken 3.1 Homogenitätsproblematik 3.5 Historische Klimavariationen 3.6 Paläoklimatologie 3.6.1 Vereisungen 3.6.2 Klimarekonstruktion der Kalt- und Warmzeiten 3.6.3 Milanković-Theorie 4 Konzeptionelle Modelle 4.1 Klimazonen 4.2 Ein exemplarisches Energiebilanzmodell 4.2.1 Vereinfachte Bilanzgleichung für Energie 4.2.2 Diskretisierung 4.2.3 Schließung der Gleichung 4.2.4 Berechnungen: Integration 4.3 Physikalisch orientierte Modelle 4.4 Nichtlinearität und Chaos 4.5 Fluktuationen als stochastische Vorgänge 4.6 Wechselwirkungen verschiedener Prozesse 4.6.1 Gedämpftes System mit Störungen 4.6.2 Wirkung von positiven Rückkopplungen 5 Grundlagen von Strömungsmodellen 5.1 Grundgleichungen der Strömungs- und Thermodynamik 5.1.1 Zustandsvariablen 5.1.2 Gesetz der Massenerhaltung 5.1.3 Prinzip der Energieerhaltung 5.1.4 Impulserhaltung 5.1.5 Massenbilanzen für Beimengungen 5.1.6 Zustandsgleichungen 5.1.7 Zusammenfassung 5.2 Diskretisierung 5.2.1 Räumliche Diskretisierung 5.2.2 Zeitliche Diskretisierung 5.3 Parametrisierung und subskalige Prozesse 5.3.1 Schließungsproblem 5.3.2 Beispiel 1: Turbulenz 5.3.3 Beispiel 2: Konvektion und Wolkenbildung 5.3.4 Kritische Übersicht 5.4 Numerische Integration 6 Realitätsnahe Modelle des Klimasystems 6.1 Wettervorhersagemodelle 6.2 Modelle zur Klimasimulation 6.2.1 Methodik von Simulationen 6.2.2 Wechselwirkung von Atmosphäre und Ozean 6.2.3 Klimadrift und Flußkorrektur 6.2.4 Technische Details 6.2.5 Modellierung von Stoffkreisläufen und Biosphäre 6.3 Simulationen von Klimazuständen 6.3.1 Kontrollsimulationen des derzeitigen Klimas 6.3.2 Rekonstruktion von Paläoklimaten 6.3.3 Klimate anderer Planeten 6.3.1 Regionale und lokale Strukturen 6.4 Numerische Experimente mit Modellen 6.1.1 Zielsetzung 6.4.2 Wirksamkeit von Prozessen 6.4.3 Einschwingzeit der Atmosphäre 6.4.4 Sensitivität gegenüber Randbedingungen 6.5 Anwendung zur Klimavorhersage 6.5.1 Prognosen des ENSO-Phänomens 6.5.2 Großskalige Ölbrände in Kuwait 6.6 Beurteilung der Klimamodelle 7 Anthropogene Klimänderung 7.1 Übersicht 7.2 Emissions- und Konzentrations-Szenarien 7.2.1 Szenarien zukünftiger Emissionen 7.2.2 Erwartete Konzentrationen der Treibhausgase 7.3 Klimaszenarien realitätsnaher Modelle 7.3.1 Transiente Szenarienrechnungen 7.3.2 Ergebnisse eines exemplarischen Klima-Szenarios 7.3.3 Problem Kaltstart 7.3.4 2 x CO2-Simulationen 7.3.5 Informationswert von Szenarienrechnungen 7.3.6 Kritische Bewertung der Szenarien 7.4 Nachweis anthropogener Klimabeeinflussung 7.4.1 Zielsetzung 7.4.2 Natürliche Variabilität 7.4.3 Gewichtungsmuster und Nachweisvariable 7.4.4 Nachweis 7.4.5 Beurteilung 7.5 Lokale und regionale Szenarien 7.5.1 Hochaufgelöste Zeitscheibenexperimente 7.5.2 Regionalmodelle 7.5.3 Empirische Modelle 7.5.4 Implikationen 8 Klima und Gesellschaft 8.1 Übersicht 8.2 Historischer Überblick : gesellschaftliche Vorstellungen zum Einfluß von Klima 8.3 Klimafolgenforschung 8.3.1 Grundproblematik 8.3.2 Direkt beeinflußte Systeme 8.3.3 Indirekt beeinflußte Systeme 8.4 Ökonomische Aspekte des Klimawandels 8.4.1 Klimaänderung als Kostenfaktor 8.4.2 Ein zeitabhängiges Sechs-Komponenten-Modell 8.4.3 Beurteilung 8.4.4 Übersicht Klimapolitik 8.5 Vorstellungen von Klimawandel 8.5.1 Problemstellung 8.5.2 Natürliche Variabilität versus Kausalitätsdenken 8.5.3 Die Kempton-Studie 8.5.4 Soziale Interpretationsmechanismen 9 Résumé 10 Anhang 11 Literatur Stichwortverzeichnis
    Location: A 18 - must be ordered
    Location: AWI Reading room
    Branch Library: PIK Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Amsterdam [u.a.] : Elsevier
    Associated volumes
    Call number: AWI Bio-99-0079(6) ; AWI Bio-99-0079-6 (2. Ex.)
    In: The Northwest European pollen flora, VI
    Type of Medium: Monograph available for loan
    Pages: 275 S. , überw. Ill.
    ISBN: 0444418830 , 0-444-891641
    Language: English
    Note: Contents: 44. Selaginellaceae / P. J. Stafford. - 45. Oleaceae / W. Punt, J. A. A. Bos and P. P. Hoen. - 46. Geraniaceae / P. J. Stafford and S. Blackmore. - 47. Juglandaceae / J. A. A. Bos and W. Punt. - 48. Cornaceae / P. J. Stafford and G. L. A. Heath. - 49. Globulariaceae / W. Punt and A. Marks. - 50. Buxaceae / W. Punt and A. Marks. - 51. Ranunculaceae / G. C. S. Clarke, W. Punt and P. P. Hoen. - Index.
    Location: AWI Reading room
    Location: AWI Reading room
    Branch Library: AWI Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: AWI G7-96-0523
    In: Springer series in physical environment, 16
    Description / Table of Contents: Rockglaciers are the visible expression of the creep of mountain permafrost. They are indicative of special geo-ecologic and geomorphic conditions regarding thermal situation, talus production, hydrology, and hazards in high mountain environments of all major mountain systems on earth. As relict features, they are of great paleoclimatic value. This book presents a systematic treatment of this landform in its environmental context.
    Type of Medium: Monograph available for loan
    Pages: XIV, 331 Seiten , Illustrationen , 24 cm
    ISBN: 3540607420 , 978-3-642-80095-5 , 978-3-642-80093-1
    ISSN: 0937-3047
    Series Statement: Springer series in physical environment 16
    Language: English
    Note: Introduction 1 Definitions 2 Historical Development of the Term Rockglacier 3 Rockglaciers: Description and Morphometry 3.1 General Description 3.2 Form Types 3.3 Morphometric Parameters 3.3.1 Rockglacier Sizes 3.3.2 Tongue-Shaped Rockg1aciers 3.3.3 Lobate Rockg1aciers 3.3.4 Rockglacier Thickness 3.3.5 Surface Relief 3.3.6 Rockglacier Surface and Source Area 4 Rockglacier Taxonomy 5 Rockglacier Distribution 5.1 General Information 5.2 Local Rockglacier Distribution 5.2.1 The Alps 5.2.2 The Mountains of Northern Europe 5.2.3 The Pyrenees 5.2.4 North American Mountains 5.2.5 The Andes of Central and South America 5.2.6 The Mountains of Asia 5.2.7 The Southern Alps 5.2.8 Antarctic Mountains 5.2.9 Conclusions 6 Rockglacier Material, Surficial Fabric and Internal Structure 6.1 Rock Type and Grain Size at and below the Surface 6.1.1 Rock Type 6.1.2 Grain Sizes at the Surface 6.1.3 Development of the Bouldery Mantle 6.1.4 Surface Fabric 6.1.5 Grain Sizes below the Bouldery Mantle 6.2 Internal Structure 6.2.1 Direct Information 6.2.1.1 Excavations, Outcrops, Tunnels 6.2.1.2 Smaller Boreholes 6.2.1.3 The Deep Borehole through the Rockglacier Murtel I 6.2.2 Indirect Information 6.2.2.1 Seismic Information 6.2.2.2 Geoelectric Soundings 6.2.2.3 Radio-Echo Soundings 6.2.2.4 Gravimetry 6.2.2.5 Borehole Geophysics and Related Measurements 6.2.2.6 BTS Measurements 6.2.2.7 Summary: The Inner Core of an Active Rockglacier 6.3 The Active Layer on Rockglaciers 7 Rockglacier Movement, Velocity, and Rheology 7.1 The Horizontal and Vertical Movement of Active Rockglaciers 7.1.1 Measurement Methods 7.1.2 Annual Horizontal Displacement 7.1.3 Long-Term Annual Averages 7.1.4 Long-Term Estimates 7.1.5 Longer Time Series 7.1.6 Monthly and Seasonal Measurements 7.1.7 Vertical Displacement 7.1.8 Conclusion 7.2 Geometry of Movement 7.2.1 The General Flow Patterns of Active Rockglaciers 7.2.1.1 Gruben Rockglacier 7.2.1.2 Macun Rockglacier 7.2.1.3 Arapaho Rockglacier 7.2.2 Horizontal Velocity on Longitudinal and Cross-Sectional Profiles 7.2.3 Surface and Subsurface Velocity 7.3 Rheologic Considerations 7.3.1 Shear Stress and Strain Rates in Active Rockglaciers 7.3.2 The Rheological Description of Active Rockglaciers 7.4 Rockglacier Movement and Climate 7.5 Discussion of Rockglacier Movement 8 Rockglacier Genesis and the Relation to Similar-Looking Landforms 8.1 Rockglacier Genesis 8.1.1 The Formation of Active Rockglaciers 8.1.1.1 Talus Rockglaciers 8.1.1.2 Debris Rockglaciers 8.1.1.3 Special Rockglaciers 8.1.1.4 Problematic Cases 8.1.2 Inactive Rockglaciers 8.1.3 Relict (Fossil) Rockglaciers 8.2 Published Hypotheses of Rockglacier Formation 8.2.1 Mass-Movement Hypotheses 8.2.1.1 The Bergsturz Hypothesis in General 8.2.1.2 Landslide Influences 8.2.2 The Glacial Hypothesis 8.2.2.1 Debris-Covered Glaciers and Thermokarst 8.2.2.2 Transition from True Glaciers to Rockglaciers? 8.2.2.3 The Moraine Hypothesis 8.2.3 The Periglacial (Blockstream) Hypothesis 8.3 True Rockglaciers under Wrong Labels 8.3.1 The Ostrem Ice-Cored Moraine Concept 8.3.2 The Protalus Rampart Concept 9 The Age of Rockglaciers 9.1 The Age of Active Rockglaciers 9.2 The Age of Climatic Inactive Rockglaciers 9.3 The Age of Relict (Fossil) Rockglaciers 10 Rockglaciers and the High Mountain Environment 10.1 Active Rockglaciers and Mountain Permafrost 10.2 Rockglaciers in the Coarse Debris Cycle 10.2.1 Rockglaciers and Talus Production 10.2.2 Rockglacier Size and Source Area 10.2.3 Rockglaciers as a Debris Transport System 10.3 Rockglaciers and Climate 10.3.1 Rockglaciers and Present Climate 10.3.2 Relict Rockglaciers and Paleoclimate Reconstruction 10.3.3 Reactivation of Inactive or Relict Rockglaciers 10.3.4 Rockglaciers and Climatic Change 10.4 Rockglaciers in the Alpine Hydrological Cycle 10.4.1 Rockglaciers as a Water Store 10.4.2 Discharge from Rockglacier Permafrost 10.4.3 Fluctuations in Rockglacier Permafrost Storage 10.5 Rockglaciers as Hazards in Alpine Environments 10.6 The Environment of Active Rockglaciers 11 Summary and Outstanding Problems 12 References Index of Place Names Subject Index
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: PIK M 311-01-0581 ; AWI A13-00-0040
    Description / Table of Contents: The author describes the stochastic (probabilistic) approach to the study of changes in the climate system. Climatic data and theoretical considerations suggest that a large part of climatic variation/variability has a random nature and can be analyzed using the theory of stochastic processes. This work summarizes the results of processing existing records of climatic parameters as well as appropriate theories: from the theory of random processes (based on the results of Kolmogorov and Yaglom) and Hasselmann's "stochastic climate model theory" to recently obtained results.
    Type of Medium: Monograph available for loan
    Pages: XIII, 282 Seiten , Illustrationen
    ISBN: 354066310X , 3-540-66310-X
    Language: English
    Note: Contents Introduction 1 Climatic System: Data, Processes, Scales, and Deterministic Models 1.1 Main Components of the Climate System 1.1.1 "Thick" Subsystems 1.1.2 "Thin" Subsystems 1.1.3 Local and Discrete Objects 1.2 Climate Processes 1.2.1 Overview of Climate Processes 1.2.2 External Climate Mechanisms 1.2.3 Internal Mechanisms of Climatie Variations 1.2.4 Transfer-Accumulation Processes 1.3 Scales of Climatic Variability 1.3.1 Spatial Scales 1.3.2 Temporal Scales 1.4 Deterministic Climate Models 1.4.1 General Circulation Models and Coupled Models 1.4.2 Other Types of Climate Models 1.5 Observational Basis for Stochastic Climate Theory 1.5.1 Data on Variability of "Thick" Climatic Subsystems 1.5.1.1 Near-Surface Air Temperature 1.5.1.2 Other Atmospheric Variables 1.5.1.3 Sea Surface Temperature 1.5.1.4 Sea Level 1.5.1.5 lce Sheets 1.5.2 Data on Variables of Thin Earth Covers 1.5.2.1 Snow Cover 1.5.2.2 Sea lce 1.5.2.3 Vegetation Cover 1.5.3 Data on Discrete and Local Climatic Objects 1.5.3.1 River Runoff 1.5.3.2 Lakes 1.5.3.3 Mountain Glaciers 1.5.4 Conclusions on Observational Data 2 Theoretical Foundations of the Stochastic Approach to Climate Variability Studies 2.1 Basic Ideas and Principles of the Stochastic Climate Theory 2.1.1 Mathematical Models and Natural Processes 2.1.2 A Climatic Variable as a Random Variable 2.1.3 Evolution of a Climatic Variable as a Random Function 2.1.4 Stationarity of Climatic Processes 2.2 Introduction to the Theory of Random Functions with Emphasis on Climate Variability 2.2.1 Moments, Mean Value, Correlation Function 2.2.2 The Ergodicity of Climate Variability 2.2.3 Examples of Stationary Random Sequences 2.2.3.1 Uncorrelated Random Variables 2.2.3.2 Moving Averages 2.2.4 Spectral Representation of the Random Process 2.2.5 Climatic Meanings of the Spectral Distribution Function 2.2.6 Spectral Representation of Stationary Sequences 2.2.7 The Markov Sequence 2.2.8 The Discrete Wiener Process 2.2.9 Other Types of Random Functions 2.2.9.1 Autoregressive Models 2.2.9.2 Seasonal Models 2.2.9.3 Threshold Models 2.3 Estimation of Model Parameters 2.3.1 Theoretical Models and the Practice of Model Identification 2.3.2 Informational Approach to the Identification of Stochastic Models 2.3.3 Maximum Entropy Method and Autoregressive Models 2.3.4 Model Identification and Estimation of Model Parameters 2.3.5 An Example ofModel Identification and Parameter Estimation 2.3.6 Frequency Truncation Method of Normalized Spectral Estimates 2.3.7 Other Methods of Time Series Processing 2.3.7.1 Conventional Methods. Moving Average and ARMA models 2.3.7.2 "Deterministic Chaos". Other Methods of Nonlinear Analysis 2.4 Physical Basis of the Stochastic Climate Theory 2.4.1 Atmospheric Forcing ofthe Climate System 2.4.1.1 Observational Evidence 2.4.1.2 Atmospheric Model Results 2.4.1.3 Simple Nonlinear Model as Analog of Atmospheric Forcing 2.4.2 Hasselmann's Stochastic Climate Models 2.4.2.1 Hypothesis on Weather-Climate Two-Scale Separation 2.4.2.2 Classification of Climate Models 2.4.2.3 Analogies with Turbulent Fluid, Brownian Motion, and Other Physical Processes. The Central Limit Theorem 2.4.2.4 Spectra and Correlation Functions of the Stochastic Climate Models. Models Without Feedback 2.4.2.5 Models with Feedback 3 Stochastic Models of Recent Climatic Changes 3.1 Changes in Thick Climatic Subsystems 3.1.1 Local Changes 3.1.1.1 Analysis of Observational Data 3.1.1.2 Local Stochastic Dynamical Models 3.1.2 Regional, Spatially Averaged, and Two-Dimensional Patterns 3.1.2.1 20 Stochastic Patterns of Observational Data 3.1.2.2 Stochastic Dynamical Regional Models 3.1.2.3 Stochastic Models of ENSO Events 3.1.3 Globally Averaged Climate Variables 3.1.3.1 Global Water Mass Exchange. Global Mean Sea Level 3.1.3.2 Global Temperatures 3.1.3.3 "Minus Two" Law of Climatic Variability 3.1.3.4 Stochastic Dynamical Models of Global Temperatures 3.1.3.5 Local-Global Polarization Phenomenon 3.2 Variabilities of Thin Climatic Subsystems 3.2.1 Analyzed Oata 3.2.1.1 37 GHz Polarization Oifference and Related Data 3.2.1.2 Snow and Sea lce Remotely Sensed Data 3.2.1.3 Related Satellite-Based and Conventional Data on Global Air and Sea Temperatures 3.2.2 Comparison of Results for Remotely Sensed and Conventional Data 3.2.2.1 Comparison of Results on Local Scales 3.2.2.2 Globally Averaged 37 GHz Polarization Difference Data. Concentration of Carbon Dioxide in the Atmosphere 3.2.3 Results of Stochastic Analysis of Local and Regional Hydrological Changes 3.2.3.1 Results of 37 GHz PD Data Analysis for Floodable Areas 3.2.3.2 Results for 37 GHz PD Data on Vegetation Cover in Different Natural Zones 3.2.4 Results of Analysis of Global Changes in Hydrological and Related Parameters 3.2.5 Modeling the Dynamics of Thin Subsystems 3.2.6 Local-Global Polarization Phenomenon and Thin Climatic Subsystems 3.2.7 Discussion on the Global Climatic Subsystems 3.3 Changes in Local and Discrete Climatic Objects 3.3.1 Rivers and River Runoff 3.3.2 Mountain Glaciers 4 Stochastic Models for Glacial Cycles 4.1 Stochastic Analysis of Reconstructed Data on Glacial Cycles 4.1.1 Existing Paleoreconstructed Time Series 4.1.2 Results of Stochastic Analysis of the Last Deglaciation Period, 0 - 18 ka B.P. 4.1.3 Analysis of 200 - 300 ka Time Series 4.1.4 Longer Time Series. Features of Cyclicity 4.1.5 High Resolution Paleorecords 4.2 Zero-Dimensional Model of Glacial Cycles 4.2.1 Hypotheses, Assumptions, and Equations 4.2.2 Results of Numerical Experiments 4.3 Two-Dimensional Stochastic Dynamical Model of Glacial Cycles 4.3.1 Mathematical Model, Parameters, and Experiments 4.3.1.1 Computational Area 4.3.1.2 Equations and Parameters of the Model 4.3.1.3 Numerical Experiments 4.3.2 Results 4.3.2.1 Experiments Without External Forcing 4.3.2.2 Experiments With External Forcing. Globally Averaged Results 4.3.2.3 Zonally Averaged Results 4.3.2.4 Regional Results Conclusion References Index
    Location: A 18 - must be ordered
    Location: AWI Reading room
    Branch Library: PIK Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Call number: AWI A13-01-0160 ; AWI A13-04-0017
    Type of Medium: Monograph available for loan
    Pages: XXXV, 565 S. : Ill., graph. Darst.
    ISBN: 0444503382
    Note: Contents: Organizers. - Lecturers. - Seminar Speakers. - Participants. - Préface (French). - Preface (English). - MAIN COURSES. - Course 1. The Observed Climate of the 20th Century / by E.M. Rasmusson, M. Chelliah and C.F. Ropelewski. - 1. Climatology: From statistics to science. - 1.1. The evolution of climate science. - 1.2. Characteristics and limitations of the instrumental data bases. - 1.3. Interannual to interdecadal variability. - 1.4. Modern climate diagnostics. - 2. The atmospheric general circulation. - 2.1. From Hadley to the mid-20th century: Theory underconstrained by Observations. - 2.2. Post-World War II: Resolving the controversies. - 2.3. Quantifying the balance requirements. - 2.3.1. Angular momentum balance. - 2.3.2. Atmospheric energy cycle. - 2.3.3. Planetary heat balance. - 2.3.4. Hydrologic cycle. - 3. The annual cycle. - 3.1. Basic controls. - 3.2. Focus on the tropics. - 3.3. A monsoon system perspective. - 3.4. Focus on the extratropics. - 4. Interannual variability. - 4. 1. Atmospheric teleconnections. - 4.2. The ENSO phenomenon: Early investigations. - 4.3. ENSO cycle time series. - 4.4. ENSO warm episode evolution. - 4.5. ENSO global response. - 4.5.1. Tropical anomalies. - 4.5.2. Extratropical anomalies. - 5. Decadal/interdecadal variability. - 5.1. Focus on the tropical oceans. - 5.1.1. Pacific sector. - 5.1.2. Atlantic sector. - 5.2. Focus on the extratropics. - 5.2.1. Northem Hemisphere wintertime temperatures: relattonship to the SO and the NAO. - 5.2.2. North Atlantic and North Pacific. - 5.3. Continental precipitation variability. - 5.3.1 . Sahel rainfall. - 5.3.2. North American drought. - 5.3.3. Indian rainfall. - 5.4. Concluding remarks. - References. - Course 2. Numerical Modelling of the Earth's Climate / by L. Bengtsson. - 1. A strategic approach to climate modelling. - 1.1. Introduction. - 1.2. Dynamics of climate. - 1.2.1. Phillips' experiment. - 1.2.2. The key scientific issues in 1955. - 1.3. Climate modelling for different time-scales. - 2. Climate modelling. - 2.1. lntroduction. - 2.2. The climate model as a mathematical system. - 2.3. Overall design of an atmospheric climate model. - 2.4. Numerical solution. - 2.5. Physical parameterization. - 2.6. Climate model performance. - 3. An atmospheric model for climate simulation and prediction studies. - 3.1. lntroduction. - 3.2. Horizontal diffusion. - 3.3. Surface fluxes and vertical diffusion. - 3.4. Land surface processes. - 3.5. Gravity wave drag. - 3.6. Cumulus convection. - 3.6.1. Adjustment closure. - 3. 7. Stratiform clouds. - 3.8. Radiation. - 3.8.1. Longwave radiation. - 3.8.2. Shortwave radiation. - 3.8.3. Shortwave cloud optical properties. - 3.8.4. Longwave cloud optical properties. - 3.8.5. Effective radii of cloud droplets and icc crystals. - 3.8.6. Surface albedo. - 3.8.7. Solar zenith angle. - 3.9. Model validation. - 3.9.1. Radiation and clouds. - 3.9.2. The hydrological cycle. - 3.9.3. The large scale extra-tropical circulation. - 4. Climate response to greenhouse gas forcing. - 4.1. Introduction. - 4.2. Climate feedback processes. - 4.3. The Wonderland climate model. - 4.4. Forcing experiments with the Wonderland model. - 4.4.1. Response to 2 X CO2 and 2% solar forcing. - 4.4.2. Response to the horizontal and vertical distribution of the forcing. - 4.5. Forcing experiments with more realistic climate models. - 5. Climate change prediction. - 5 .1. Introduction. - 5.2. Mechanisms behind climate change. - 5.2.1. How can climate change?. - 5.2.2. Changes in the solar radiation. - 5.2.3. Changes in the greenhouse gases. - 5.2.4. Changes in atrnospheric aerosols. - 5.2.5. Internal, natural variations. - 5.3. Coupled models. - 5.4. Coupled model experiments. - 5.4.1. Transient greenhouse gas experiment. - 5.4.2. Changes in the energy cycle. - 5.4.3. The hydrological cycle. - 5.4.4. Temperature changes. - References. - Course 3. Ocean Modelling and the Role of the Ocean in the Climate System / by P. Delecluse and G. Madec. - 1. Physical properties of the ocean. - 1.1. General structure. - 1.2. Why does the ocean move?. - 1.2.1. Radiative forcing. - 1.2.2. Momentum flux. - 1.2.3. Turbulent fluxes. - 1.2.4. Freshwater flux. - 1.3. Mean vertical structure. - 1.3.1. Seasonal cycle of the mixed layer. - 1.3.2. Midlatitude thermocline ventilation. - 1.3.3. Equatorial thermocline. - 1.3.4. Deep convection and sea ice. - 1.4. Turbulence of the ocean. - 2. Equations of motion. - 2.1. The physical equations. - 2.1.1. Basic assumptions (refer to Pedlosky, 1987). - 2.1.2. The Primitive Equations. - 2.1.3. The boundary conditions. - 2.2. Horizontal pressure gradient formulation. - 2.2.1. Pressure formulation. - 2.2.2. Diagnosing the surface pressure gradient. - 2.2.3. Boundary conditions. - 3. Modelling approach. - 3.1. System of coordinates. - 3.2. Model equations. - 3.3. Vertical system of coordinates. - 3.4. Meridian convergence at the pole. - 3.5. Discretization in space. - 3.5.1. Arrangement of variables for the C grid. - 3.5.2. Discrete operators. - 3.5.3. Conservation properties for the dynamics. - 3.5.4. Conservation properties for the thermodynamics. - 3.6. Discretization in time. - 3.7. Robust diagnostic modelling. - 3.8. Aceeleration of convergence. - 3.9. Surface boundary conditions. - 3.10. Subgrid scale parameterisations. - 3.10. 1. Vertical mixing. - 3.10.2. Convection. - 3.10.3. Lateral mixing. - 4. The global coupled system. - 4.1. Ocean-only models. - 4.1.1. Space or time?. - 4.1.2. Oceanic observations. - 4.1.3. Atmospheric forcing. - 4.1.4. Sensitivity to parameterisation. - 4.2. Coupled models. - 4.2.1. General description of the problem. - 4.2.2. Illustration of drift. - 4.2.3. Flux correction. - 4.2.4. Sensitivity. - 5. The equatorial coupled system. - 5.1. Oceanic equatorial waves. - 5.1.1. Vertical eigenvectors. - 5.1.2. Meridional normal modes. - 5.1.3. Inertia-gravity and Rossby waves. - 5.1.4. Mixed Rossby-gravity wave. - 5.1.5. Equatorial Kelvin wave. - 5.2. Equatorial waves and EI Niiio. - 5.3. Response of forced simulations. - 5.4. Coupled models. - 5.5. Prediction. - 5.6. Some new features to study EI Nino. - 5.6.1. Meridional coupling. - 5.6.2. Barrier layer and freshwater flux. - 6. Conclusion. - References. - Course 4. Past Climatic Changes / by J.-C. Duplessy. - 1. Paleoclimatic and Paleoceanographic tools. - 1.1. Introduction. - 1.2. Transfer functions. - 1.2.1. The Imbrie and Kipp (I&K) technique. - 1.2.2. The Modem Analog Technique (MAT). - 1.2.3. Improving or validating transfer functions. - 1.3. Stable isotope ratio variations. - 1.3.1. Oxygen isotope fractionation during the water cycle. - 1.3.2. Oxygen isotope fractionation during carbonate precipitation. - 1.3.3. Isotope fractionation during the carbon cycle. - 1.4. Dating. - 1.4.1. Radiocarbon. - 1.4.2. Uranium series disequilibria. - 1.4.3. Longer time scales. - 2. The climatic record of the Plio-Pleistocene and the evidence for the Astronomical Theory of paleoclimates. - 2.1. Historical introduction. - 2.2. The Astronomical Theory of glaciations. - 2.3. Extension of the climatic record over the last 6 million years. - 2.4. The last climatic cycle. - 2.5. The last glacial maximum. - 2.6. The last climatic optimum. - 3. Rapid variations within the climate system. - 3.1. Introduction. - 3.2. Evidence of rapid climatic change during the deglaciation. - 3.3. Evidence of rapid climatic change during the glaciation. - 3.4. Mechanisms of rapid climatic change under glacial conditions. - 3.5. A case for the Younger Dryas. - 3.6. Evidence of rapid climatic change during the Eemian. - 3.7. Evidence of rapid climatic change during the Holocene. - 3.8. Modeling of abrupt climatic changes and implications for future climates. - References. - Course 5. Paleomyths I Have Known / by T. J. Crowley. - 1. lntroduction. - 2. General Features of past climate change. - 3. Some significant misconceptions about past climate change. - 4. Discussion of the "paleo-paradigms". - 4.1. "Th
    Location: AWI Reading room
    Location: AWI Reading room
    Branch Library: AWI Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Monograph available for loan
    Monograph available for loan
    Berlin : Springer
    Call number: M 98.0363 ; AWI G8-96-0626
    Type of Medium: Monograph available for loan
    Pages: XV, 433 Seiten , Illustrationen
    ISBN: 3540593489
    Classification:
    Historical Geology
    Language: English
    Note: Contents I Review of Current Concepts 1 Introduction 1.1 Sequence Stratigraphy: A New Paradigm? 1.2 From Sloss to Vail 1.3 Problems and Research Trends: The Current Status 1.4 Stratigraphic Terminology 2 Methods for Studying Sequence Stratigraphy 2.1 Introduction 2.2 Erecting a Sequence Framework 2.2.1 The Importance of Unconformities 2.2.2 Facies Cycles 2.2.3 Stratigraphic Architecture: The Seismic Method 2.3 Methods for Assessing Regional and Global Changes in Sea Level, Other Than Seismic Stratigraphy 2.3.1 Areas and Volumes of Stratigraphic Units 2.3.2 Hypsometric Curves 2.3.3 Backstripping 2.3.4 Sea-Level Estimation from Paleoshorelines and Other Fixed Points 2.3.5 Documentation of Meter-Scale Cycles 2.4 Integrated Tectonic-Stratigraphic Analysis 3 The Four Basic Types of Stratigraphic Cycle 3.1 Introduction 3.2 The Supercontinent Cycle 3.3 Cycles with Episodicities of Tens of Millions of Years 3.4 Cycles with Million-Year Episodicities 3.5 Cycles with Episodicities of Less Than One Million Years 4 The Basic Sequence Model 4.1 Introduction 4.2 Terminology 4.3 Depositional Systems and Systems Tracts 4.4 Sequence Boundaries 4.5 Other Sequence Concepts 5 The Global Cycle Chart II The Stratigraphic Framework 6 Cycles with Episodicities of Tens to Hundreds of Millions of Years 6.1 Climate, Sedimentation, and Biogenesis 6.2 The Supercontinent Cycle 6.2.1 The Tectonic-Stratigraphic Model 6.2.2 The Phanerozoic Record 6.3 Cycles with Episodicities of Tens of Millions of Years 6.3.1 Intercontinental Correlations 6.3.2 Tectonostratigraphic Sequences 6.4 Main Conclusions 7 Cycles with Million-Year Episodicities 7.1 Extensional and Rifted Clastic Continental Margins 7.2 Foreland Basin of the North American Western Interior 7.3 Other Foreland Basins 7.4 Forearc Basins 7.5 Backarc Basins 7.6 Cyclothems and Mesothems 7;7 Carbonate Cycles of Platforms and Craton Margins 7.8 Evidence of Cyclicity in the Deep Oceans 7.9 Main Conclusions 8 Cycles with Episodicities of Less Than One Million Years 8.1 Introduction 8.2 Neogene Clastic Cycles of Continental Margins 8.3 Pre-Neogene Marine Carbonate and Clastic Cycles 8.4 Late Paleozoic Cyclothems 8.5 Lacustrine elastic and Chemical Rhythms 8.6 Clastic Cycles of Foreland Basins 8.7 Main Conclusions III Mechanisms 9 Long-Term Eustasy and Epeirogeny 9.1 Mantle Processes and Dynamic Topography 9.2 Supercontinent Cycles 9.3 Cycles with Episodicities of Tens of Millions of Years 9.3.1 Eustasy 9.3.2 Dynamic Topography and Epeirogeny 9.4 Main Conclusions 10 Milankovitch Processes 10.1 Introduction 10.2 The Nature of Milankovitch Processes 10.2.1 Components of Orbital Forcing 10.2.2 Basic Climatology 10.2.3 Variations with Time in Orbital Periodicities 10.2.4 Isostasy and Geoid Changes 10.2.5 The Nature of the Cyclostratigraphic Data Base 10.2.6 The Sensitivity of the Earth to Glaciation 10.2.7 Glacioeustasy in the Mesozoic? 10.2.8 Nonglacial Milankovitch Cyclicity 10.3 The Cenozoic Record 10.4 Late Paleozoic Cyclothems 10.5 The End-Ordovician Glaciation 10.6 Main Conclusions 11 Tectonic Mechanisms 11.1 Introduction 11.2 Rifting and Thermal Evolution of Divergent Plate Margins 11.2.1 Basic Geophysical Models and Their Implications for Sea-Level Change 11.2.2 Some Results from the Analysis of Modern Data Sets 11.3 Tectonism on Convergent Plate Margins and in Collision Zones 11.3.1 Magmatic Arcs and Subduction 11.3.2 Tectonism Versus Eustasy in Foreland Basins 11.3.2.1 The North American Western Interior Basin 11.3.2.2 The Appalachian Foreland Basin 11.3.2.3 Pyrenean and Himalayan Basins 11.3.3 Rates of Uplift and Subsidence 11.3.4 Discussion 11.4 Intraplate Stress 11.4.1 The Pattern of Global Stress 11.4.2 In-Plane Stress as a Control of Sequence Architecture 11.4.3 In-Plane Stress and Regional Histories of Sea-Level Change 11.5 Basement Control 11.6 Other Speculative Tectonic Hypotheses 11.7 Sediment Supply and the Importance of Big Rivers 11.8 Environmental Change 11.9 Main Conclusions IV Chronostratigraphy and Correlation: Why the Global Cycle Chart Should Be Abandoned 12 Time in Sequence Stratigraphy 12.1 Introduction 12.2 Hierarchies of Time and the Completeness of the Stratigraphic Record 12.3 Main Conclusions 13 Correlation, and the Potential for Error 13.1 Introduction 13.2 The New Paradigm of Geological Time? 13.3 The Dating and Correlation of Stratigraphic Events: Potential Sources of Uncertainty 13.3.1 Identification of Sequence Boundaries 13.3.2 Chronostratigraphic Meaning of Unconformities 13.3.3 Determination of the Biostratigraphic Framework 13.3.3.1 The Problem of Incomplete Biostratigraphic Recovery 13.3.3.2 Diachroneity of the Biostratigraphic Record 13.3.4 The Value of Quantitative Biostratigraphic Methods 13.3.5 Assessment of Relative Biostratigraphic Precision 13.3.6 Correlation of Biozones with the Global Stage Framework 13.3.7 Assignment of Absolute Ages 13.3.8 Implications for the Exxon Global Cycle Chart 13.4 Correlating Regional Sequence Frameworks with the Global Cycle Chart 13.4.1 Circular Reasoning from Regional Data 13.4.2 A Rigorous Test of the Global Cycle Chart 13.4.3 A Correlation Experiment 13.4.4 Discussion 13.5 Main Conclusions 14 Sea-Level Curves Compared 14.1 Introduction 14.2 The Exxon Curves: Revisions, Errors, and Uncertainties 14.3 Other Sea-Level Curves 14.3.1 Cretaceous Sea-Level Curves 14.3.2 Jurassic Sea-Level Curves 14.3.3 Why Does the Exxon Global Cycle Chart Contain So Many More Events Than Other Sea-Level Curves? 14.4 Main Conclusions V Approaches to a Modern Sequence-Stratigraphic Framework 15 Elaboration of the Basic Sequence Model 15.1 Introduction 15.2 Definitions 15.2.1 The Hierarchy of Units and Bounding Surfaces 15.2.2 Systems Tracts and Sequence Boundaries 15.3 The Sequence Stratigraphy of Clastic Depositional Systems 15.3.1 Pluvial Deposits and Their Relationship to Sea-Level Change 15.3.2 The Concept of the Bayline 15.3.3 Deltas, Beach-Barrier Systems, and Estuaries 15.3.4 Shelf Systems: Sand Shoals and Condensed Sections 15.3.5 Slope and Rise Systems 15.4 The Sequence Stratigraphy of Carbonate Depositional Systems 15.4.1 Platform Carbonates: Catch-Up Versus Keep-Up 15.4.2 Carbonate Slopes 15.4.3 Pelagic Carbonate Environments 15.5 Main Conclusions 16 Numerical and Graphical Modeling of Sequences 16.1 Introduction 16.2 Model Design 16.3 Selected Examples of Model Results 16.4 Main Conclusions VI Discussion and Conclusions 17 Implications for Petroleum Geology 17.1 Introduction 17.2 Integrated Tectonic-Stratigraphic Analysis 17.2.1 The Basis of the Methodology 17.2.2 The Development of an Allostratigraphic Framework 17.2.3 Choice of Sequence-Stratigraphic Models 17.2.4 The Search for Mechanisms 17.2.5 Reservoir Characterization 17.3 Controversies in Practical Sequence Analysis 17.3.1 The Case of the Tocito Sandstone, New Mexico 17.3.2 The Case of Gippsland Basin, Australia 17.3.3 Conclusions: A Modified Approach to Sequence Analysis for Practicing Petroleum Geologists and Geophysicists 17.4 Main Conclusions 18 Conclusions and Recommendations 18.1 Sequences in the Stratigraphic Record 18.1.1 Long-Term Stratigraphic Cycles 18.1.2 Cycles with Million-Year Episodicities 18.1.3 Cycles with Episodicities of Less Than One Million Years 18.2 Mechanisms 18.2.1 Long-Term Eustasy and Epeirogeny 18.2.2 Milankovitch Processes 18.2.3 Tectonic Mechanisms 18.3 Chronostratigraphy and Correlation 18.3.1 Concepts of Time 18.3.2 Correlation Problems, and the Basis of the Global Cycle Chart 18.3.3 Comparison of Sea-Level Curves 18.4 Modern Sequence Analysis 18.4.1 Elaboration of the Basic Sequence Model 18.4.2 Numerical and Graphical Modeling of Stratigraphic Sequences 18.5 Implications for Petroleum Geology 18.6 The Global-Eustasy Paradigm: Working Backwards from the Answer? 18.6.1 The Exxon Factor 18.6.2 Conclusions . 18.7 Recommendations References Author Index Subject Index
    Location: Upper compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: M 11.0188 ; AWI G1-11-0076
    Type of Medium: Monograph available for loan
    Pages: VII, 197 Seiten , Illustrationen , 235 mm x 155 mm
    ISBN: 9783642194771 , 978-3-642-19477-1
    Series Statement: Forschungsberichte / Interdisziplinäre Arbeitsgruppen, Berlin-Brandenburgische Akademie der Wissenschaften Band 26
    Classification:
    Meteorology and Climatology
    Language: German
    Note: Inhalt Vorwort Einleitung / Sonja Germer, Matthias Naumann, Oliver Bens Zur gegenwärtigen Situation der Fokusregion Berlin-Brandenburg / Sonja Germer, Matthias Naumann, Oliver Bens I. Umweltwandel und die Folgen für den Landschaftswasserhaushalt Einleitung / Sonja Germer, Barbara Köstner, Herbert Sukopp, Jost Heintzenberg Temperaturaufzeichnungen in Berlin für die letzten 310 Jahre / Ulrich Cubasch, Christopher Kadow Simulation des gegenwärtigen und zukünftigen Regionalklimas von Brandenburg / Eberhard Schaller Simulation von Wasserhaushaltskomponenten unter dem Wandel des regionalen Klimas / Barbara Köstner, Matthias Kuhnert Reaktionen von Seeökosystemen auf Umweltveränderungen / Michael Hupfer, Brigitte Nixdorf, Klement Tockner Anthropogene Einflussfaktoren des Landschaftswasserhaushalts / Gunnar Lischeid Wasserhaushaltliche und wasserwirtschaftliche Bilanzen / Uwe Grünewald Kernaussagen / Barbara Köstner, Sonja Germer, Jost Heintzenberg II. Wandel von Landnutzungen und deren Konsequenzen für Wasserressourcen Einleitung / Inge Broer, Alfred Pühler, Mihaiela Rus Regionale Landwirtschaft im globalen Wandel / Konrad Hagedorn Den Rahmen setzen für die Entwicklung der Kulturlandschaften von morgen. Regionale Antworten auf globale Herausforderungen finden / Werner Konold Strategien zum Integrierten Land- und Wasserressourcenmanagement im märkischen Feuchtgebietsgürtel Oderbruch-Havelland / Joachim Quast Wassermanagement in der Landwirtschaft / Katrin Drastig, Annette Prochnow, Reiner Brunsch Waldbewirtschaftung unter den Bedingungen des Klimawandels in Brandenburg / Ralf Kätzel, Klaus Höppner Erzeugung und Verbrauch von landwirtschaftlichen Produkten aus Brandenburg in Berlin / Hans Kögl Neue Entwicklungen in der Pflanzenzüchtung und Systembetrachtungen der Pflanze-Umwelt-Interaktion / Inge Broer, Reiner Brunsch Kernaussagen / Inge Broer, Alfred Pühler, Mihaiela Rus III. Infrastrukturen neu denken: gesellschaftliche Funktionen und Weiterentwicklung / Eva Barlösius, Karl-Dieter Keim, Georg Meran, Timothy Moss, Claudia Neu Gegenwärtige Situation der Infrastrukturen Ausgangspunkt: LandInnovation Leistungen der Infrastrukturen in der Vergangenheit Wasser- und Bildungsinfrastrukturen: Gemeinsamkeiten und Unterschiede Kernaussagen über Infrastrukturen IV. Handeln unter Bedingungen des globalen Wandels / Sonja Germer, Karl-Dieter Keim, Matthias Naumann, Oliver Bens, Rolf Emmermann, Reinhard F. Hüttl Übergeordnete Herausforderungen des globalen Wandels Brückenprinzipien als Handlungsorientierung für den Umgang mit dem globalen Wandel Stärkung der interdisziplinären Forschung und des Transfers Abbildungsverzeichnis Tabellenverzeichnis Verzeichnis der Autorinnen und Autoren Verzeichnis der Mitglieder der interdisziplinären Arbeitsgruppe Globaler Wandel – Regionale Entwicklung Verzeichnis der Diskussionspapiere der interdisziplinären Arbeitsgruppe Globaler Wandel – Regionale Entwicklung
    Location: Upper compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Monograph available for loan
    Monograph available for loan
    Berlin : Springer
    Call number: AWI G3-13-0054
    Description / Table of Contents: Permafrost hydrology systematically elucidates the roles of seasonally and perennially frozen ground on the distribution, storage and flow of water. Cold regions of the world are subject to mounting development which significantly affects the physical environment. Climate change, natural or human-induced, reinforces the impacts. Knowledge of surface and ground water processes operating in permafrost terrain is fundamental to planning, management and conservation. This book is an indispensable reference for libraries and researchers, an information source for practitioners, and a valuable text for training the next generations of cold region scientists and engineers.
    Type of Medium: Monograph available for loan
    Pages: XII, 563 Seiten , Illustrationen, Diagramme, Karten (teilweise farbig)
    ISBN: 9783642234613
    Language: English
    Note: Contents: 1 Introduction. - 1.1 The world cold regions. - 1.2 Water in frozen soils. - 1.3 Permafrost. - 1.3.1 Definitions. - 1.3.2. Distribution. - 1.3.3. Factors influencing permafrost occurence. - 1.4 Permafrost and hydrology. - 1.4.1 Permafrost hydrology. - 1.4.2 Hydrologic behavior of seasonal frost and permafrost. - 1.5 Environments of permafrost regions. - 1.5.1 Hydroclimatology. - 1.5.2 Geology. - 1.5.3 Glaciation. - 1.5.4 Physiography. - 1.5.5 Vegetation. - 1.5.6 Peat cover. - 1.6 Presentation of the book. - 2 Moisture and heat. - 2.1 Precipitation. - 2.1.1 General pattern. - 2.1.2 Cyclones. - 2.1.3 Recycling. - 2.1.4 Trace precipitation. - 2.2 Surface energy balance. - 2.3 Evaporation. - 2.3.1 Eddy Fluctuation Method. - 2.3.2 Aerodynamic method. - 2.3.3 Bowen Ratio Method. - 2.3.4 Priestley and Taylor Method. - 2.4 Energy balance of the active layer. - 2.4.1 Energy Balance. - 2.4.2 Thermal conductivity and heat capacity. - 2.5 Ground temperature. - 2.5.1 Penetration of temperature waves. - 2.5.2 Frost table development. - 2.6 Heat and moisture flows in frozen soils. - 2.6.1 Stefan's Algorithm. - 2.6.2 Near-Surface ground temperature. - 2.6.3 Moisture migration and ice lens formation. - 2.7 Ground ice. - 2.7.1 Types of ground ice. - 2.7.2 Excess ice. - 3 Groundwater. - 3.1 Groundwater occurence in permafrost. - 3.1.1 Suprapermafrost groundwater. - 3.1.2 Intrapermafrost groundwater. - 3.1.3 Subpermafrost groundwater. - 3.2 Groundwater recharge and circulation. - 3.2.1 Recharge. - 3.2.2 Groundwater movement. - 3.3 Groundwater discharge. - 3.3.1 Seeps. - 3.3.2 Springs. - 3.3.3 Baseflow. - 3.3.4 Ponds and lakes. - 3.4 Icings. - 3.4.1 Ground and spring icings. - 3.4.2 River icings. - 3.4.3 Icing dimension. - 3.4.4 Icing problems. - 3.5 Domed ice features. - 3.5.1 Frost mounds and icing mounds. - 3.5.2 Pingos. - References. - 4 Snow cover. - 4.1 Snow accumulation. - 4.1.1 Winter precipitation. - 4.1.2 Blowing snow. - 4.1.3 Terrain heterogeneity. - 4.1.4 Vegetation cover. - 4.2 Characteristics of the snow cover. - 4.2.1 Snow temperature and insulation. - 4.2.2 Snow metamorphism. - 4.2.3 Snow stratigraphy. - 4.3 Snowmelt processes. - 4.3.1 Radiation melt. - 4.3.2 Turbulent fluxes melt. - 4.3.3 Other melt terms. - 4.4 Snowmelt in permafrost areas. - 4.4.1 Tundra and Barren areas. - 4.4.2 Dirty snow. - 4.4.3 Shrub fields. - 4.4.4 Forests. - 4.5 Meltwater movement in snow. - 4.5.1 Dry snow. - 4.5.2 Wet snow. - References. - 5 Active layer dynamics. - 5.1 Freeze-back and winter periods. - 5.1.1 Snow cover and ground freezing. - 5.1.2 Moisture flux and ice formation. - 5.1.3 Vapor flux from soil to snow. - 5.2 Snowmelt period. - 5.2.1 Snowmelt and basal ice. - 5.2.2 Infiltration into frozen soil. - 5.2.3 Soil warming. - 5.2.4 Surface saturation, evaporation and runoff. - 5.3 Summer. - 5.3.1 Active layer thaw. - 5.3.2 Summer precipitation. - 5.3.3 Evaporation. - 5.3.4 Rainwater infiltration. - 5.3.5 Soil moisture. - 5.3.6 Groundwater. - References. - 6 Slope processes. - 6.1 Flow paths. - 6.1.1 Flow paths in snow. - 6.1.2 Surface and subsurface flows. - 6.1.3 Flow in bedrock areas. - 6.1.4 Flow in unconsolidated materials. - 6.2 Water sources. - 6.3 Factors influencing slope runoff generation. - 6.3.1 Microclimatic control. - 6.3.2 Topographic influence. - 6.3.3 Importance of the Frost table. - 6.3.4 Roles of organic materials. - 6.3.5 Bedrock control. - 6.4 Basin slopes in permafrost regions. - 6.4.1 High Arctic slopes. - 6.4.2 Low Arctic slopes. - 6.4.3 Subarctic slopes. - 6.4.4 Alpine permafrost zones. - 6.4.5 Precambrian bedrock terrain. - 6.5 Concepts for basin flow generation. - 6.5.1 Variable source area and fill-and-spill concepts. - 6.5.2 Heterogenous slopes. - References. - 7 Cold lakes. - 7.1 Types of lake. - 7.2 Lake ice. - 7.2.1 Lake ice regime. - 7.2.2 Ice formation and growth. - 7.2.3 Ice decay. - 7.3 Lake circulation. - 7.4 Hydrologic inputs. - 7.5 Lake evaporation. - 7.6 Lake outflow. - 7.6.1 Outflow conditions. - 7.6.2 Fill-and-Spill concept and lake outflow. - 7.7 Lake level. - 7.8 Large lakes. - 7.9 Permafrost and lakes. - References. - 8 Northern wetlands. - 8.1 Wetlands in permafrost regions. - 8.2 Factors favoring wetland occurence. - 8.2.1 Climate. - 8.2.2 Topography. - 8.2.3 Stratigraphy. - 8.2.4 Other factors. - 8.3 Hydrogeomorphic features in wetlands. - 8.3.1 Bog-related features. - 8.3.2 Fen-related features. - 8.3.3 Marshes and swamps. - 8.3.4 Shallow water bodies. - 8.4 Hydrologic behavior of wetlands. - 8.4.1 Seasonality of hydrologic activities. - 8.4.2 Wetland storage. - 8.4.3 Flow paths. - 8.4.4 Application of Fill-and-Spill concept. - 8.5 Patchy arctic wetlands. - 8.5.1 Wetlands maintained by snowmelt. - 8.5.2 Groundwater-fed wetlands. - 8.5.3 Valley bottom fens. - 8.5.4 Wetlands due to lateral inundation. - 8.5.5 Tundra ponds. - 8.5.6 Lake-fed and lake-bed wetlands. - 8.6 Extensive wetlands. - 8.6.1 Wet terrain. - 8.6.2 Ice-wedge polygon fields. - 8.6.3 Coastal plains. - 8.6.4 Deltas. - 8.6.5 Subarctic continental wetlands. - 8.7 Wetlands, permafrost and disturbances. - References. - 9 Rivers in cold regions. - 9.1 Drainage patterns. - 9.2 In-valley conditions. - 9.2.1 Geological setting for channels. - 9.2.2 River ice. - 9.2.3 River icing. - 9.2.4 In-channel snow. - 9.2.5 Permafrost. - 9.2.6 Alluvial environment. - 9.3 In-channel hydrology. - 9.3.1 Lateral inflow. - 9.3.2 Channel inflow. - 9.3.3 Vertical water exchanges. - 9.3.4 Storage in channels. - 9.4 Flow connectivity and delivery. - 9.4.1 Flow network integration. - 9.4.2 Decoupling of flow network. - 9.4.3 Flow delivery. - References. - 10 Basin hydrology. - 10.1 Basin outflow generation. - 10.1.1 The roles of snow. - 10.1.2 Meltwater from glaciers. - 10.1.3 Rainfall contribution. - 10.1.4 Groundwater supply. - 10.1.5 Evaporation losses. - 10.1.6 Permafrost effects. - 10.1.7 Consequences of basin storage. - 10.2 Streamflow hydrograph. - 10.3 Streamflow regimes. - 10.3.1 Nival regime. - 10.3.2 Proglacial regime. - 10.3.3 Pluvial regime. - 10.3.4 Spring-fed Regime. - 10.3.5 Prolacustrine regime. - 10.3.6 Wetland regime. - 10.4 Streamflow in large basins. - 10.4.1 Scaling up to large rivers. - 10.4.2 Flow generation in a large basin: the Liard river. - 10.4.3 Regulated discharge of large rivers. - 10.4.4 Flow in a sub-continental scale basin: Mackenzie basin. - 10.5 Basin water balance. - 10.5.1 Considerations in water balance investigation. - 10.5.2 Regional tendencies. - 10.5.3 Examples from permafrost environments. - 10.6 Permafrost basin hydrology: general remarks. - References. - Appendices. - Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Call number: ZSP-204
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Call number: ZSP-204-78
    In: CRREL Technical Report
    Type of Medium: Series available for loan
    Pages: iv, 12 S. : graph. Darst.
    Series Statement: CRREL Technical Report 78
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...