ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (51)
  • 2020-2024  (51)
  • AWI Reading room  (51)
Collection
  • Books  (51)
Language
Years
Year
Branch Library
  • 1
    Monograph available for loan
    Monograph available for loan
    Moskva : Tovariščestvo naučnych izdanij KMK | Novosibirsk : Nauka
    Call number: AWI Bio-22-94776
    Description / Table of Contents: Издание представляет собой новейшую таксономическую обработку флоры Якутии, подготовленную весьма квалифицированным и представительным коллективом авторов (более 50 специалистов, включая 15 докторов и 30 кандидатов наук). Даны ключи для определения 1950 видов, 133 подвидов и 34 разновидностей, а также 46 нотовидов, объединенных в 525 родов, 6 нотородов, 113 семейств сосудистых растений, распространенных или когда-либо отмеченных (в том числе очень редких, заносных или дичающих культурных) на территории региона. При: ведены диагностические признаки растений, сведения об их фитоценотическои или экологической приуроченности и распространении. Книга рассчитана на ботаников широкого профиля, студентов, учителей и преподавателей, ученых, биологов, экологов, работников сельского хозяйства, административных работников, отвечающих за эксплуатацию природных ресурсов.
    Description / Table of Contents: English translation of the Russian abstract: The publication is the latest taxonomic processing of the flora of Yakutia, prepared by a highly qualified and representative team of authors (more than 50 specialists, including 15 doctors and 30 candidates of sciences). Keys are given to identify 1950 species, 133 subspecies and 34 varieties, as well as 46 nothospecies, united in 525 genera, 6 nothorodes, 113 families of vascular plants, common or ever recorded (including very rare, adventive or wild cultivated) on the territory of the region. When: diagnostic signs of plants, information about their phytocenotic or ecological confinement and distribution are entered. The book is intended for general botanists, students, teachers and teachers, scientists, biologists, ecologists, agricultural workers, administrative workers responsible for the exploitation of natural resources.
    Type of Medium: Monograph available for loan
    Pages: 895 Seiten , Illustrationen, Karten , 1 Errata
    Edition: Izdanie vtoroe, pererabotannoe i dopolnennoe [Zweite Auflage, überarbeitet und erweitert]
    ISBN: 9785907372320 , 5-907372-32-X
    Language: Russian
    Note: Text russisch; In kyrillischer Schrift
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: AWI G5-22-94780
    Type of Medium: Dissertations
    Pages: xxi, 201 Seiten , Illustrationen, Diagramme
    Language: English
    Note: Dissertation, Universität Potsdam, 2021 , Contents List of Figures List of Tables I Preamble 1 Introduction 1.1.1 The Journey from Weather to Climate 1.1.2 The Climate Background 1.1.3 Pollen as Quantitative Indicators of Past Changes 1.2 Overview and Aims of Manuscripts 1.2.1 List of Manuscripts 1.2.2 Short Summaries of the Manuscripts 1.3 Author Contributions to the Manuscripts II Manuscripts 2 Comparing estimation of techniques for temporal Scaling 2.1 Introduction 2.2 Data and Methods 2.2.1 Scaling estimation methods 2.2.2 Evaluation of the estimators 2.2.3 Data 2.3 Results 2.3.1 Effect of Regular and Irregular Sampling 2.3.2 Effect of Time series length 2.3.3 Application to database 2.4 Discussion 2.5 Conclusions 3 Land temperature variability driven by oceans at millennial timescales 4 Variability of surface climate in simulations of past and future 4.1 Introduction 4.2 Data and Method 4.2.1 Model simulations 4.2.2 The Last Glacial Maximum experiment 4.2.3 The mid Holocene experiment (midHolocene) 4.2.4 The warming experiments 1pctCO2 and abrupt4xCO2 4.2.5 Preprocessing of model simulations 4.2.6 Comparisons across the ensemble 4.2.7 Diagnosing variability changes 4.2.8 Changes in precipitation extremes 4.2.9 Timescale-dependence of the variability changes 4.3 Results 4.3.1 Hydrological sensitivity across the ensemble 4.3.2 Changes in local interannual variability 4.3.3 Changes in modes of variability 4.3.4 Circulation patterns underlying extratropical precipitation extremes 4.3.5 Changes in. the spectrum of variability 4.4 Discussion 4.4.1 Changes in climate variability with global mean temperature 4.4.2 Temperature vs. precipitation scaling 4.4.3 Comparison to climate reconstructions and observations 4.4.4 Limitations 4.5 Conclusions 5 Holocene vegetation variability in the Northern Hemisphere 5.1 Introduction 5.2 Data and Methods 5.2.1 Pollen Database 5.2.2 Principal Component Analysis 5.2.3 Timescale-dependent Estimates of Variability 5.2.4 Biome Classification 5.3 Results 5.3.1 General Vegetation Variability Analysis 5.3.2 Comparison of Forested and Open Land Vegetations 5.3.3 Comparison of Broadleaf and Needleleaf Fore ts 5.3.4 Comparison of Temperate and Boreal Coniferous Forests 5.3.5 Comparison of Evergreen and Deciduous Boreal Forests 5.4 Discussion 5.5 Conclusion III Postamble 6 General discussion and conclusion 6.1 Overview 6.2 Timescale-Dependent Estimates of Variability 6.3 Climate and Vegetation Variabilities in the Holocene 6.4 Implications for the 21th Century 6.5 Outlook IV Appendix A Supplementary figures from "Comparing estimation techniques for temporal scaling in paleo-climate timeseries" A.1 Block Average Results A.2 First-Order Correction for the Effect of Interpolation A.3 Change in Bias and Standard Deviation B Methods and supplementary information from "Land temperature variability driven by oceans at millennial timescales" B.1 Methods B.1.1 Reconstructions B.1.2 Significance Testing B.1.3 Testing for Anthropogenic Impacts B.1.4 Instrumental Data B.1.5 Model Data B.1.6 Spectral Estimates B.1.7 Variance Ratios B.1.8 Sub-Decadal Variability Binning B.1.9 Correlation B.1.10 Moran's I B.2 Supplementary Information B.2.1 Tree Ring Data Analysis B.2.2 Energy-Balance Equations B.3 Extended Data Figures C Supplementary figures from "Variability of surface climate in simulations of past and future" D Supplementary figures from "Characterization of holocene vegetation variability in the Northern Hemisphere" Bibliography
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: AWI P1-20-94200 ; M 23.94200
    Description / Table of Contents: Die Hochgebirge haben eine große Bedeutung für das globale Klima, die Wasserversorgung und die Biosphäre. So ist die besonders starke Ausprägung des Amazonas-Regenwalds den Anden zu verdanken. Sie verhindern den Durchzug der aus dem Atlantik mit viel Luftfeuchtigkeit kommenden Wolken. Dadurch erhält das Amazonas-Gebiet im Jahresdurchschnitt über 2.000 mm Regen, was die Grundlage für die intensive Bewaldung ist. Obwohl die Gebirge global nur ca. 12% der Landfläche bedecken, beherbergen Hochgebirge rund die Hälfte aller Säugetierarten und 74% aller endemischen Vogelarten (ohne Inselarten). 21 der 34 globalen Biodiversitätshotspots befinden sich in Hochgebirgen. In den Gebirgen entstehen aufgrund von höheren Niederschlägen wichtige Wasserressourcen auch für die angrenzenden Tiefländer. Trotz der für den Menschen oft erschwerten Zugänglichkeit sind Hochgebirge und Hoch-Plateaus, besonders in tropischen Regionen, Orte dichter Besiedlung und sogar von Hochkulturen. Die Folgen des Klimawandels sind in den Hochgebirgen besonders deutlich. So war die Erwärmung in den vergangenen Jahrzehnten dort höher als in den Flachländern. Die Gletscher schrumpfen in fast allen Gebirgen, insbesondere in den letzten Jahrzehnten. Auf den jetzt eisfreien Flächen siedeln sich schon nach wenigen Jahren neue Pflanzengemeinschaften an. In den Alpen hat das Eisvolumen seit 1850 schon um mehr als zwei Drittel abgenommen. Das entspricht allein seit 1997 einem Süßwasserverlust von etwa dem 14fachen Volumen des Bodensees. Insgesamt sind die Klimaänderungen in den Gebirgsregionen gravierender als im Flachland. Mit der Zunahme der Starkregen und dem Rückgang des Permafrosts nimmt die Gefahr von Erdrutschen zu, und manche Gletscher wurden instabil. Im Mittel haben sich die Temperaturen im Gebirgspermafrost in einem Jahrzehnt von 2007 bis 2016 um etwa 0,2°C erhöht. Die Schneedeckendauer nahm in den letzten Jahrzehnten kontinuierlich ab; die Herausforderungen für den Wintertourismus werden zusehends größer.
    Type of Medium: Monograph available for loan
    Pages: 384 Seiten , Illustrationen, Diagramme, Karten
    ISBN: 9783982006734
    Language: German
    Note: Inhaltsverzeichnis Vorwort Liste der Autoren/Autorinnen und der Gutachter Hochgebirge: Definition, Bedeutung, Veränderungen und Gefahren / (José L. Lozán,Siegmar-W. Breckle, Heidi Escher-Vetter, Hartmut Graßl & Dieter Kasang) 1 Bedeutung der Hochgebirge 1.1 Der Einfluss von Hochgebirgen auf die Zirkulation der Atmosphäre / (Jürgen Böhner & Jörg Bendix) 1.2 Die Entstehung der Hochgebirge / (Martin Meschede) 1.3 Übersicht über die wichtigsten Gebirge der Erde / (José L.Lozán, Siegmar-W. Breckle, Dieter Kasang & Heidi Escher-Vetter) 1.4 Berge und Gebirge im Meer / (Bernd Christiansen) 1.5 Hochgebirge: Wassertürme für eine wachsende Weltbevölkerung / (Carmen de Jong) 1.6 Erdoberflächenprozesse im Hochgebirge – Der Einfluss des Klimawandels / (Lothar Schrott & Jan Blöthe) 1.7 Hochgebirge: Hotspots der Biodiversität / (Severin Irl & Andreas H. Schweiger) 1.8 Hochgebirge als Ressourcenräume für Tiefländer / (Matthias Winiger) 1.9 Bevölkerung und Siedlungsstrukturen im Hochgebirge / (Christoph Stadel & Axel Borsdorf) 1.10 Lokale Anpassungsstrategien für Landnutzung in Hochgebirgen / (Hermann Kreutzmann) 2 Paläoökologische Veränderungen in Hochgebirgen 2.1 Globale Klima- und Gletscherveränderungen im Pleistozän und Holozän / (Heinz Veit & Alexander Groos) 2.2 Welche Umweltinformationen können aus Jahrringen abgeleitet werden? / (Achim Bräuning & Jussi Grießinger) 2.3 Holozäne Klimaänderungen und Waldgrenzschwankungen in den Alpen / (Conradin A. Burga) 2.4 Anthropogene Einflüsse auf die Hochgebirgsumwelt im Holozän: Einblicke aus einer alpinen Bergbaulandschaft / (Kerstin Kowarik & Hans Reschreiter) 3 Veränderungen der Kryosphäre in Hochgebirgen 3.1 Gletscherbeobachtung und globale Trends / (Frank Paul & Martin Hoelzle) 3.2 Die Gletscher Hochasiens im Klimawandel / (Tobias Bolch, Atanu Bhattacharya & Owen King) 3.3 Die Karakorum-Anomalie / (Christoph Mayer, Astrid Lambrecht & Alexander Groos) 3.4 Wenn Gletscher abrutschen / (Andreas Kääb) 3.5 Tropische Gletscher: Ostafrika / (Rainer Prinz & Thomas Mölg) 3.6 Die Gletscher der Anden im Klimawandel / (Thorsten Seehaus) 3.7 Gletscher und Schnee in Hochgebirgen Nordamerikas / (Dieter Kasang & José L. Lozán) 3.8 Gletscherschmelze unter Schuttbedeckung: Verbreitung, Prozesse und Messmethoden / (Pascal Buri, Simone Schauwecker & Jakob Steiner) 3.9 Permafrost in den Alpen – Langzeitbeobachtung und Entwicklung über zwei Jahrzehnte (Jeannette Nötzli) 3.10 Globale Klimaänderung und die Gletscher auf Neuseeland / (Stefan Winkler) 3.11 Einfluss des Klimawandels auf die Schneebedeckung / (Kay Helfricht & Marc Olefs) 4 Hydrologische Veränderungen in Hochgebirgen 4.1 Hochgebirgsgewässer im Wandel / (Heike Zimmermann-Timm, Deep Narayan Shah & Ram Devi Tachamo Shah) 4.2 Einfluss des globalen Wandels auf die Bodenstabilität des alpinen Graslandes / (Christine Alewell, Lauren Zweifel & Katrin Meusburger 4.3 Sozio-Hydrologie des Trans-Himalaya – Schmelzwasserverfügbarkeit und Bewässerungslandwirtschaft / (Marcus Nüsser, Juliane Dame & Susanne Schmidt) 4.4 Hochgebirge und Wasserressourcen in Peru und Kalifornien / (Dieter Kasang) 4.5 Hydrologische Veränderungen in vergletscherten Einzugsgebieten / (Regine Hoch) 5 Biodiversität der Hochgebirge im Klimawandel 5.1 Klimawandel und Vegetationsdynamik im Hochgebirge / (Harald Pauli) 5.2 Phänologische Veränderungen in Hochgebirgen / (Christian Rixen) 5.3 Klimawandel und Gebirgswälder: Bedrohung der Multifunktionalität? / (Georg Gratzer) 5.4 Alpine Waldgrenzen im Klimawandel – Wie sind die heterogenen Reaktionsmuster zu erklären? / (Udo Schickhoff, Maria Bobrowski & Niels Schwab) 5.5 Vegetation und Klimawandel an der Ostkordillere von Ecuador am Beispiel des Páramo de Papallacta / (M. Daud Rafiqpoor & Siegmar-W. Breckle) 5.6 Auswirkungen des Klimawandels auf das Wachstum von Zwergsträuchern in Hochgebirgen / (Stef Weijers & Jörg Löffler) 5.7 Pflanzen besiedeln neue Lebensräume: Primärsukzession auf Gletschervorfeldern / (Brigitta Erschbamer & Conradin A. Burga) 5.8 Klimawandel und biologische Invasionen im Hochgebirge /(Anna Schertler, Franz Essl & Bernd Lenzner) 5.9 Die Tierwelt der Alpen im Klimawandel / (Peter Huemer, Hermann Sonntag, Friederike Barkmann & André Stadler) 5.10 Ökologische Folgen des Landnutzungswandels in den Alpen / (Erich Tasser & Ulrike Tappeiner) 6 Sozioökonomische Veränderungen in Hochgebirgen 6.1 Ökonomische Bewertung von Biodiversität und Ökosystemleistungen in den Alpen / (Andreas Bartel & Barbara Färber) 6.2 Der sozioökonomische Strukturwandel in den Alpen / (Oliver Bender & Andreas Haller) 6.3 Klimawandel und Wintersporttourismus: Wahrnehmung und Reaktion der Touristen / (Jürgen Schmude & Maximilian Witting) 6.4 Mensch-Umwelt-Interaktionen im Äthiopischen Hochland / (Simon Strobelt & Michèle von Kocemba) 7 Naturgefahren in Hochgebirgen 7.1 Klimawandel, Morphodynamik und gravitative Massenbewegungen / (Thomas Glade) 7.2 Einfluss der Permafrostdegradation auf Hangstabilität / (Friederike Günzel & Wilfried Haeberli) 7.3 Warnsignal Klima - Die Lawinengefahr im Klimawandel / (Benjamin Reuter, Christoph Mitterer & Sascha Bellaire) 7.4 Gefahren aus vergletscherten Vulkanen: Das Beispiel Nevado del Ruiz / (Simon Allen, Christian Huggel & Frank Paul) 7.5 Bedrohung durch Erdbeben im Himalaya / (Birger-G. Lühr) 7.6 Risiken durch Gletscherseen im Klimawandel / (Holger Frey & Wilfried Haeberli) 7.7 Bergstürze, Seeausbrüche und Muren im Pamir / (Siegmar-W. Breckle & Martin Mergili) 8 Maßnahmen zum Klimaschutz und zur Anpassung 8.1 Klimawandel und Naturschutz im Gebirge: Neue Herausforderungen / (Mario F. Broggi) 8.2 Klimawandel und Anpassungsstrategien im Alpentourismus / (Ulrike Pröbstl-Haider) 8.3 Klimawandel in den Lebenswelten und Handlungslogiken ländlicher Bevölkerung im Hochgebirge: Perspektiven aus dem Callejón de Huaylas, Peru / (Martina Neuburger) 8.4 Hochland-Tiefland Beziehungen in ihrer Bedeutung für eine nachhaltige Entwicklung in Gebirgsräumen / (Paul Messerli, Susanne Wymann von Dach & Thomas Kohler) 9 Sachregister
    Location: AWI Reading room
    Location: Reading room
    Branch Library: AWI Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung
    Associated volumes
    Call number: ZSP-168-748
    In: Berichte zur Polar- und Meeresforschung, 748
    Type of Medium: Series available for loan
    Pages: 203 Seiten , Illustrationen
    Edition: 2., erweiterte und überarbeitete Auflage
    ISSN: 1866-3192
    Series Statement: Berichte zur Polar- und Meeresforschung 748
    Language: German
    Note: Inhaltsverzeichnis 1. Einleitung 2. Zur Geschichte der Frühen Polarforschung 2.1 Die Entwicklung vom 16. Jahrhundert bis 1914 2.1.1 Frühe Polarreisen und ihre Wechselwirkung mit der Kartografie in der frühen Neuzeit 2.1.2 Fragen der Geophysik, Ozeanografie und Meteorologie an die Polarforschung im 18. und 19. Jahrhundert 2.1.3 Frühe deutsche Polarforschung 2.2 Die Entwicklung der deutschen Polarforschung zwischen den Weltkriegen 2.2.1 Die Internationale Gesellschaft zur Erforschung der Arktis mit Luftfahrzeugen (Aeroarctic) von 1922 bis 1931 2.2.2 Die Deutsche Atlantische Expedition („Meteor-Expedition“) von 1925 bis 1927 2.2.3 Die Deutsche Grönlandexpedition Alfred Wegener von 1930 bis 1931 2.2.4 Das zweite Internationale Polarjahr von1932 bis 1933 2.2.5 Walfang und Politik: die „Schwabenlandexpedition“ von 1938 bis 1939 als Fortsetzung der deutschen Südpolarforschung 2.3 Die Deutsche Polarforschung während des Zweiten Weltkrieges 3. Polarforschung nach dem Zweiten Weltkrieg bis zur Gründung des AWI (1945-1981) 3.1 Politisch-strategisch motivierte Polarforschung der Großmächte nach dem Zweiten Weltkrieg ab 1946/47 3.2 Nationale Polarforschungsunternehmen und internationale Kooperationen von 1948 bis 1981 3.2.1 Die Expédition Glaciologique Internationale au Groenland (EGIG) und andere Expeditionen von 1948 bis 1968 3.2.2 Die Antarktisaktivitäten anderer Länder von 1947 bis 1957 3.2.3 Das Internationale Geophysikalische Jahr von 1957 bis 1959 3.2.4 Die Gründung des Antarctic Treaty System (ATS) im Jahr 1959 3.2.5 Die Polarforschung der Deutschen Demokratischen Republik (DDR) 3.2.6 Die Polarforschung der Bundesrepublik Deutschland (BRD) 4. Die Entwicklung des AWI und der deutschen Polarforschung 4.1 Gründungskontexte 4.1.1 Polarforschung als staatliche Aufgabe 4.1.2 Vorbereitungen zur Gründung eines Polarforschungsinstituts der Bundesrepublik Deutschland im Jahr 1978 4.1.3 Entscheidung über die Standortfrage im Jahr 1979 4.2 Die Gründung des Alfred-Wegener-Instituts für Polarforschung 4.2.1 Gesetzliche und finanzielle Grundlagen, erste antarktische Expeditionen 4.2.2 Die Besetzung der Leitungspositionen 4.2.3 Umfang und Beschaffung der technischen Einrichtungen 4.2.4 Die technischen Einrichtungen der Logistik in der Gründungsphase des AWI 4.3 Die Entwicklung des AWI in Bremerhaven unter der Leitung vonGotthilf Hempel von 1981 bis 1992 4.3.1 Die Entwicklung des AWI von 1981 bis 1986 4.3.2 Eingliederung des IfMB in das AWI von 1986 bis 1991 4.3.3 Kongresse und internationale Kooperationen von 1986 bis 1987 4.3.4 Der Weg in die Klimaforschung ab 1988 4.3.5 Beteiligung an internationalen Eisbohrprogrammen auf Grönland von 1989 bis 1995 4.3.6 Die erste Überwinterung einer Frauenmannschaft in der GvN-Stationvon 1989 bis 1990 4.3.7 Besondere Expeditionen von 1986 bis 1991 4.3.8 Aktivitäten und Umfang der Logistik von 1985 bis 1991 4.3.9 Die Aktivitäten der Zentralen Einrichtungen von 1986 bis 1991 4.3.10 Das AWI als Mitglied eines Großforschungsverbundes ab Mitte der 1980er Jahre 4.3.11 Die politische Wende 1989/90 und die Polar- und Meeresforschung 4.3.12 Am Ende der Gründungsjahre im Jahr 1992 4.3.13 Wechsel des wissenschaftlichen Direktors im Jahr 1992 4.4 Die Entwicklung des AWI unter der Leitung von Max Tilzer von 1992 bis 1997 4.4.1 Wichtige Aspekte der Institutsentwicklung 4.4.2 Die Entwicklung der Logistik von 1992 bis 1997 4.4.3 Die Entwicklung der zentralen Einrichtungen von 1992 bis 1997 4.4.4 Tiefbohrprojekte auf Grönland und in der Antarktis 4.4.5 Die internationale Zusammenarbeit des AWI ab 1991 4.4.6 Nationale Kooperationen und Aufgaben von 1992 bis 1997 4.5 Die Entwicklung des AWI unter der Leitung von Jörn Thiede von 1997 bis 2007 4.5.1 Wichtige Aspekte der Institutsentwicklung 4.5.2 Forschungsziele und Umstrukturierungen der wissenschaftlichen Bereiche 4.5.3 Übernahme der BAH von 1998 bis 1999 4.5.4 Besondere wissenschaftliche Projekte von 1998 bis 2007 4.5.5 Entwicklung und Aufgaben der Logistik von 1998 bis 2008 4.5.6 Zentrale Aufgaben und Dienste 4.5.7 Außenwirkung 4.5.8 Technologietransfer 4.5.9 Internationale Zusammenarbeit von 1998 bis 2007 4.5.10 Zusammenarbeit in Deutschland von 2000 bis 2007 4.6 Die Entwicklung des AWI unter der Leitung von Karin Lochte von 2007 bis 2017 4.6.1 Wichtige Aspekte der Institutsentwicklung 4.6.2 Forschungsziele und Umstrukturierung der wissenschaftlichen Bereiche ab 2009 4.6.3 Besondere Wissenschaftliche Programme ab 2006 4.6.4 Bedeutungswandel von Transferkonzepten nach Einführung der POF 4.6.5 Entwicklung der Logistik ab 2007 4.6.6 Zentrale Aufgaben und Dienste 4.6.7 Internationale Kooperationen 4.6.8 Nationale Kooperationen 4.7 Die Entwicklung des AWI unter der Leitung von Antje Boetius von 2017 bis 2020 4.7.1 Wichtige Aspekte der Institutsentwicklung 4.7.2 Besondere wissenschaftliche Projekte 4.7.3 Die Entwicklung der Logistik 4.8 Ausblick 5. Quellen- und Literaturverzeichnis 5.1 Quellen 5.1.1 Archivalien 5.1.2 Gedruckte Quellen 5.1.3 Pressemitteilungen 5.1.4 Internetseiten 5.1.5 Auskunftspersonen 5.2 Sekundärliteratur 5.2.1 Monographien, Aufsätze und Artikel 5.2.2 Einträge in der Online-Enzyklopädie Wikipedia 5.2.3 Internetseiten 6. Abbildungsverzeichnis 7. Abkürzungsverzeichnis
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Monograph available for loan
    Monograph available for loan
    New York : Macmillan Learning
    Call number: AWI G1-21-94626
    Type of Medium: Monograph available for loan
    Pages: Getrennte Zählungen , Illustrationen, Karten
    Edition: Eighth edition
    ISBN: 9781319055325 , 9781319325398 , 1319325394
    Former Title: Understanding earth [5th edition]
    Language: English
    Note: Contents About the Authors Preface Chapter 1 The Earth System The Scientific Method Hypothesis and Theory Scientific Models Importance of Scientific Collaboration Geology as a Science Earth's Shape and Surface Peeling the Onion: Discovery of a Layered Earth Earth's Density The Mantle and Core The Crust The Inner Core Chemical Composition of Earth's Major Layers Earth as a System of Interacting Components The Climate System The Plate Tectonic System The Geodynamo Interactions Among Geosystems Support Life An Overview of Geologic Time The Origin of Earth and Its Global Geosystems The Evolution of Life Chapter 2 Plate Tectonics: The Unifying Theory The Discovery of Plate Tectonics Continental Drift Seafloor Spreading The Great Synthesis: 1963-1968 The Plates and Their Boundaries Divergent Boundaries Convergent Boundaries Transform Faults Combinations of Plate Boundaries Rates and History of Plate Movements The Seafloor as a Magnetic Tape Recorder Deep-Sea Drilling Measurements of Plate Movements by Geodesy The Grand Reconstruction Seafloor isochrons Reconstructing the History of Plate Movements The Breakup of Pangaea The Assembly of Pangaea by Continental Drift Implications of the Grand Reconstruction Mantle Convection:The Engine of Plate Tectonics Where Do the Plate-Driving Forces Originate? How Deep Does Plate Recycling Occur? What Is the Nature of Rising Convection Currents? Chapter 3 Earth Materials: Minerals and Rocks What Are Minerals? The Structure of Matter The Structure of Atoms Atomic Number and Atomic Mass Chemical Reactions Chemical Bonds The Formation of Minerals The Atomic Structure of Minerals The Crystallization of Minerals How Do Minerals Form? Classes of Rock-Forming Minerals Silicates Carbonates Oxides Sulfides Sulfates Physical Properties of Minerals Hardness Cleavage Fracture Luster Color Density Crystal Habit What Are Rocks? Properties of Rocks Igneous Rocks Sedimentary Rocks Metamorphic Rocks The Rock Cycle: Interactions Between the Plate Tectonic and Climate Systems Concentrations of Valuable Mineral Resources Hydrothermal Deposits Igneous Deposits Sedimentary Deposits Mineral Evolution Chapter 4 Igneous Rocks: Solids from Melts How Do Igneous Rocks Differ from One Another? Texture Chemical and Mineral Composition How Do Magmas Form? How Do Rocks Melt? The Formation of Magma Chambers Where Do Magmas Form? Magmatic Differentiation Fractional Crystallization: Laboratory and Field Observations Granite from Basalt: Complexities of Magmatic Differentiation Forms of Igneous Intrusions Plutons Sills and Dikes Veins Igneous Processes and Plate Tectonics Spreading Centers as Magma Factories Subduction Zones as Magma Factories Mantle Plumes as Magma Factories Chapter 5 Volcanoes Volcanoes as Geosystems Lavas and Other Volcanic Deposits Types of Lava Textures of Volcanic Rocks Pyroclastic Deposits Eruptive Styles and Landforms Central Eruptions Fissure Eruptions Interactions of Volcanoes with Other Geosystems Volcanism and the Hydrosphere Volcanism and the Atmosphere The Global Pattern of Volcanism Volcanism at Spreading Centers Volcanism in Subduction Zones Intraplate Volcanism: The Mantle Plume Hypothesis 2018 Eruption of Kilauea Volcano, Hawaii Volcanism and Human Affairs Volcanic Hazards Reducing the Risks of Volcanic Hazards Natural Resources from Volcanoes Chapter 6 Sedimentation: Rocks Formed by Surface Processes Surface Processes of the Rock Cycle Weathering and Erosion: The Source of Sediments Transportation and Deposition: The Downhill Journey to Sedimentary Basins Oceans as Chemical Mixing Vats Sedimentary Basins:The Sinks for Sediments Rift Basins and Thermal Subsidence Basins Flexural Basins Sedimentary Environments Continental Sedimentary Environments Shoreline Sedimentary Environments Marine Sedimentary Environments Siliciclastic versus Chemical and Biological Sedimentary Environments Sedimentary Structures Cross-Bedding Graded Bedding Ripples Bioturbation Structures Bedding Sequences Burial and Diagenesis: From Sediment to Rock Burial Diagenesis Classification of SiliciclasticSediments and Sedimentary Rocks Coarse-Grained Siliciclastics: Gravel and Conglomerate Medium-Grained Siliciclastics: Sand and Sandstone Fine-Grained Siliciclastics Classification of Chemical and Biological Sediments and Sedimentary Rocks Carbonate Sediments and Rocks Evaporite Sediments and Rocks: Products of Evaporation Other Biological and Chemical Sediments Chapter 7 Metamorphism: Alteration of Rocks by Temperature and Pressure Causes of Metamorphism The Role of Temperature The Role of Pressure The Role of Fluids Types of Metamorphism Regional Metamorphism Contact Metamorphism Seafloor Metamorphism Other Types of Metamorphism MetamorphicTextures Foliation and Cleavage Foliated Rocks Granoblastic Rocks Porphyroblasts Regional Metamorphism and Metamorphic Grade Mineral Isograds: Mapping Zones of Change Metamorphic Grade and Parent Rock Composition Metamorphic Fades PlateTectonics and Metamorphism Metamorphic Pressure-Temperature Paths Ocean-Continent Convergence Continent-Continent Collision Exhumation: A Link Between the Plate Tectonic and Climate Systems Chapter 8 Deformation: Modification of Rocks by Folding and Fracturing PlateTectonic Forces Mapping Geologic Structure Measuring Strike and Dip Geologic Maps Geologic Cross Sections How Rocks Deform Brittle and Ductile Behavior of Rocks in the Laboratory Brittle and Ductile Behavior of Rocks in Earth's Crust Basic Deformation Structures Faults Folds Circular Structures Joints Deformation Textures Styles of Continental Deformation Tensional Tectonics Compressive Tectonics Shearing Tectonics Unraveling Geologic History Chapter 9 Clocks in Rocks: liming the Geologic Record Reconstructing Geologic History From the Stratigraphic Record Principles of Stratigraphy Fossils as Recorders of Geologic Time Unconformities: Gaps in the Geologic Record Cross-Cutting Relationships The Geologic Time Scale: Relative Ages Intervals of Geologic Time Interval Boundaries Mark Mass Extinctions Ages of Petroleum Source Rocks Measuring Absolute Time with Isotopic Clocks Discovery of Radioactivity Radioactive Isotopes: The Clocks in Rocks Isotopic Dating Methods The Geologic Time Scale: Absolute Ages Eons: The Longest Intervals of Geologic Time Perspectives on Geologic Time Recent Advances in Timing the Earth System Sequence Stratigraphy ,Chemical Stratigraphy Paleomagnetic Stratigraphy Clocking the Climate System Chapter 10 Earthquakes What Is an Earthquake? The Elastic Rebound Theory Fault Rupture During Earthquakes Foreshocks and Aftershocks How Do We Study Earthquakes? Seismographs Seismic Waves Locating the Focus Measuring the Size of an Earthquake Determining Fault Mechanisms GPS Measurements and "Silent" Earthquakes Earthquakes and Patterns of Faulting The Big Picture: Earthquakes and Plate Tectonics Regional Fault Systems Earthquake Hazards and Risks How Earthquakes Cause Damage Reducing Earthquake Risk Can Earthquakes Be Predicted? Long-Term Forecasting Short-Term Prediction Medium-Term Forecasting Chapter 11 Exploring Earth's Interior Exploring Earth's Interior with Seismic Waves Basic Types of Waves Paths of Seismic Waves Through Earth Seismic Exploration of Near-Surface Layering Layering and Composition of Earth's Interior The Crust The Mantle The Core-Mantle Boundary The Core Earth's Internal Temperature Heat Flow Through Earth's Interior Temperatures Inside Earth Visualizing Earth'sThree-Dimensional Structure Seismic Tomography Earth's Gravitational Field Earth's Magnetic Field and the Geodynamo The Dipole Field Complexity of the Magnetic Field Paleomagnetism The Magnetic Field and the Biosphere Chapter 12 The Climate System What Is Climate? Components of the Climate
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Call number: AWI G2-21-94671
    In: World ocean review, 7
    Type of Medium: Series available for loan
    Pages: 336 Seiten , Illustrationen
    ISBN: 9783866486973
    Series Statement: World ocean review 7
    Language: German
    Note: Inhalt Vorwort Kapitel 1 Unsere Ozeane – Quelle des Lebens Kapitel Von der Bedeutung und der Endlichkeit der Meere Conclusio: Abschied von der Unendlichkeitsillusion Kapitel 2 Der Ozean im Klimawandel Die fatalen Folgen der Wärme Ein Angriff auf die Artenvielfalt Conclusio: Gradmesser Ozean Kapitel 3 Nahrung aus dem Meer Problemzone Fischerei Wachstumssektor Aquakultur Conclusio: Ein Nahrungslieferant am Limit Kapitel 4 Transporte über das Meer Die Schifffahrt am Scheideweg Conclusio: Eine Schlüsselbranche unter Druck Kapitel 5 Energie und Rohstoffe aus dem Meer Tiefseebergbau: Die Pläne nehmen Gestalt an Energiequelle Meer: Potenzial und Erwartungen Conclusio: Unsere Ozeane: voller Energie Kapitel 6 Die Verschmutzung der Meere Ein Problem gigantischen Ausmaßes Conclusio: Meere voller Müll und Schadstoffe Kapitel 7 Der Wettstreit um die genetische Vielfalt der Meere Wirkstoffe aus dem Meer Conclusio: Der Beginn einer goldenen Ära Kapitel 8 Anspruch und Wirklichkeit des Meeresmanagements Die Rechtsordnung der Ozeane Neue Ansätze des Meeresmanagement Der Ozean: Krisenschauplatz und Teil der Lösung Conclusio: Nachhaltiges Meeresmanagement – eine Herkulesaufgabe Gesamt-Conclusio Glossar Abkürzungen Quellenverzeichnis Mitwirkende Index Partner und Danksagung Abbildungsverzeichnis Impressum
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: AWI G8-21-94666
    Description / Table of Contents: Anthropogenic climate change constitutes one of the main global crises in the 21st century. It manifests itself distinctly in global warming and its effects. Forests play an essential role in mitigating the effects of climate change, improving our knowledge of the distribution and changes of terrestrial carbon stocks is vital to mitigate its consequences. Therefore, remote sensing is recommended as one of the tools to ensure systematic and operational forest monitoring. Forests in the Russian Federation are of particular importance as it is the most forested country in the world and at the same time, it is the country with the highest uncertainty when calculating global carbon stocks. Remote sensing is recommended as one of the tools to ensure systematic and operational forest monitoring. It can acquire data over large areas with a high repetition rate and at a relatively low cost. In particular, microwave sensors are recommended as they can provide weather and sun independent, systematic observations with high temporal frequency. The main goal of this cumulative dissertation was to develop methods using new algorithms for estimating parameters for boreal forests from remote sensing data acquired with Synthetic Aperture Radar (SAR). Using the SAR data acquired by the sensor with the longest wavelength available at the moment of writing this dissertation in space, the L-band, methods for estimating the above-ground forest biomass were developed. For this purpose, algorithms for machine learning (ML) were applied and validated. These methods were chosen because they are recommended for large data sets and an incomplete theoretical understanding of processes, e.g., the interaction between the forest and the radar signal, and are relatively new in forest monitoring studies. In addition, efforts have been made to establish improved mapping of large-scale forest cover change
    Type of Medium: Dissertations
    Pages: 234 Seiten , Illustrationen, Diagramme
    Language: English , German
    Note: Content ACKNOWLEDGEMENTS APPENDED PAPERS RELATED PUBLICATIONS FIGURES TABLES I ABBREVIATIONS AND SYMBOLS ABSTRACT ZUSAMMENFASSUNG CHAPTER 1 Introduction 1.1 Importance of forest monitoring 1.2 Remote sensing for forest monitoring 1.3 Scope and structure of this thesis CHAPTER 2 2 Theoretical background & state-of-the-art 2.1 Boreal forests 2.2 Imaging radar theory 2.2.1 Radar principles 2.2.2 Radar scattering 2.2.3 SAR data processing 2.2.4 SAR lnterferometry 2.3 Radar remote sensing of boreal forests 2.3.1 Estimation of aboveground biomass 2.3.2 Monitoring of forest change 2.4 Study area and data 2.4.1 Location of study areas 2.4.2 Processing of in situ data 2.4.3 SAR L-band data: PALSAR & PALSAR-2 2.4.4 SAR C-band data: RADARSAT-2 CHAPTER 3 3 Research rationale 3.1 Research needs 3.2 Research questions CHAPTER 4 4 Research contribution 4.1 Operational forest monitoring in Siberia 4.2 Remote sensing for aboveground biomass estimation in boreal forests 4.3 Non-parametric retrieval of aboveground biomass 4.4 Multi-frequency SAR for estimation of aboveground biomass CHAPTER 5 5 Synthesis 5.1 Discussion and conclusions 5.2 Outlook REFERENCES APPENDIX A: PROCEEDINGS PAPER APPENDIX B: STUDIES ON nI0MASS ESTIMATION IN Il0REAL FORESTS MANUSCRIPT OVERVIEW STATEMENT OF AUTH0RSHIP CURRICULUM VITAE , Zusammenfassungen in deutscher und englischer Sprache
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: AWI G3-22-94687
    Description / Table of Contents: Permafrost is warming globally, which leads to widespread permafrost thaw and impacts the surrounding landscapes, ecosystems and infrastructure. Especially ice-rich permafrost is vulnerable to rapid and abrupt thaw, resulting from the melting of excess ground ice. Local remote sensing studies have detected increasing rates of abrupt permafrost disturbances, such as thermokarst lake change and drainage, coastal erosion and RTS in the last two decades. All of which indicate an acceleration of permafrost degradation. In particular retrogressive thaw slumps (RTS) are abrupt disturbances that expand by up to several meters each year and impact local and regional topographic gradients, hydrological pathways, sediment and nutrient mobilisation into aquatic systems, and increased permafrost carbon mobilisation. The feedback between abrupt permafrost thaw and the carbon cycle is a crucial component of the Earth system and a relevant driver in global climate models. However, an assessment of RTS at high temporal resolution to determine the ...
    Type of Medium: Dissertations
    Pages: xxiv, 134 Seiten , Illustrationen, Diagramme, Karten
    Language: English
    Note: Dissertation, Universität Potsdam, 2021 , Table of Contents Abstract Zusammenfassung List of Figures List of Tables Abbreviations 1 Introduction 1.1 Scientific background and motivation 1.1.1 Permafrost and climate change 1.1.2 Permafrost thaw and disturbances 1.1.3 Abrupt permafrost disturbances 1.1.4 Remote sensing 1.1.5 Remote sensing of permafrost disturbances 1.2 Aims and objectives 1.3 Study area 1.4 General data and methods 1.4.1 Landsat and Sentinel-2 1.4.2 Google Earth Engine 1.5 Thesis structure 1.6 Overview of publications and authors’ contribution 1.6.1 Chapter 2 - Comparing Spectral Characteristics of Landsat-8 and Sentinel-2 Same-Day Data for Arctic-Boreal Regions 1.6.2 Chapter 3 - Mosaicking Landsat and Sentinel-2 Data to Enhance LandTrendr Time Series Analysis in Northern High Latitude Permafrost Regions 1.6.3 Chapter 4 - Remote Sensing Annual Dynamics of Rapid Permafrost Thaw Disturbances with LandTrendr 2 Comparing Spectral Characteristics of Landsat-8 and Sentinel-2 Same-Day Data for Arctic-Boreal Regions 2.1 Abstract 2.2 Introduction 2.3 Materials and Methods 2.3.1 Study Sites 2.3.2 Data 2.3.3 Data Processing 2.3.3.1 Filtering Image Collections 2.3.3.2 Creating L8, S2, and Site Masks 2.3.3.3 Preparing Sentinel-2 Surface Reflectance Images in SNAP 2.3.3.4 Applying Site Masks 2.3.4 Spectral Band Comparison and Adjustment 2.4 Results 2.4.1 Spectral Band Comparison 2.4.2 Spectral Band Adjustment 2.4.3 ES and HLS Spectral Band Adjustment 2.5 Discussion 2.6 Conclusions 2.7 Acknowledgements 2.8 Appendix Chapter 2 3 Mosaicking Landsat and Sentinel-2 Data to Enhance LandTrendr Time Series Analysis in Northern High Latitude Permafrost Regions 3.1 Abstract 3.2 Introduction 3.3 Materials and Methods 3.3.1 Study Sites 3.3.2 Data 3.3.3 Data Processing and Mosaicking Workflow 3.3.4 Data Availability Assessment 3.3.5 Mosaic Coverage and Quality Assessment 3.4 Results 3.4.1 Data Availability Assessment 3.4.2 Mosaic Coverage and Quality Assessment 3.5 Discussion 3.6 Conclusions 4 Remote Sensing Annual Dynamics of Rapid Permafrost Thaw Disturbances with LandTrendr 4.1 Abstract 4.2 Introduction 4.3 Study Area and Methods 4.3.1 Study area 4.3.2 General workflow and ground truth data 4.3.3 Data and LandTrendr 4.3.4 Index selection 4.3.5 Temporal Segmentation 4.3.6 Spectral Filtering 4.3.7 Spatial masking and filtering 4.3.8 Machine-learning object filter 4.4 Results 4.4.1 Focus sites 4.4.2 North Siberia 4.5 Discussion 4.5.1 Mapping of RTS 4.5.2 Spatio-temporal variability of RTS dynamics 4.5.3 LT-LS2 capabilities and limitations 4.6 Conclusion 4.7 Appendix 5 Synthesis and Discussion 5.1 Google Earth Engine 5.2 Landsat and Sentinel-2 5.3 Image mosaics and disturbance detection algorithm 5.4 Mapping RTS and their annual temporal dynamics 5.5 Limitations and technical considerations 5.6 Key findings 5.7 Outlook References Acknowledgements
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Call number: AWI P5-23-95149
    Description / Table of Contents: Weniger als 25 Jahre geben Forscher*innen ihm noch, dann wird es soweit sein: Bis 2050 wird das Eis der Arktis abschmelzen, und unser Planet, den Generationen nur mit von ewigem Eis bedeckten Polkappen kennen, wird sich für immer verändern. Welche Folgen wird das Schwinden des Eises für die Menschheit haben? Wie wirkt es sich auf das Klima, die Meere und unser Wetter aus? Wer den Klimawandel wirklich verstehen will, sollte den Blick auf die Polarregionen richten, um zu erkennen, was sie für unser Klima in Mitteleuropa bedeuten und wie sie sich und damit auch unseren Alltag verändern. Stefanie Arndt lässt ihre Leser*innen die entlegensten Regionen dieser Erde durch ihre Augen sehen. Sie erzählt von den tiefgreifenden Veränderungen, die sie auf ihren Expeditionen mit der Polarstern beobachten konnte, von ihrer Arbeit als Polarforscherin und von der zarten Schönheit eines schwindenden Lebensraums. Was so fern scheint, rückt plötzlich ganz nahe: Können wir die unumkehrbaren Auswirkungen, die ein Abschmelzen der Polkappen nach sich zöge, noch aufhalten? Und wenn ja: Wie?
    Type of Medium: Monograph available for loan
    Pages: 221 Seiten, 16 ungezählte Bildtafelseiten , Illustrationen, 2 Karten , 21 cm x 13.5 cm
    Edition: Originalausgabe
    ISBN: 9783499008665 , 978-3-499-00866-5 , 3499008661
    Language: German
    Note: Inhaltsverzeichnis Vorwort Faszination Eis Teil I - Eine dünne Hülle Heute -42 °C in der Arktis Ein Regenwald am Südpol Mit dem Wind um die Welt In der Wüste Teil II - Das Ende des Eises Expeditionen zu den Eisschilden unserer Erde Unterwegs auf dem Meereis der Arktis Das unsichtbare Eis der Erde Teil III - Ein neuer Ozean Die Weltreise der Enten The Day After Tomorrow Nur ein paar Zentimeter? Das Meer wird sauer Teil IV - Belebte Pole Unter dem Meer Unterwegs auf dünnem Eis Das große Kuscheln Der Klang des Ozeans Generation Zukunft Dank Nachtrag Quellen Bildnachweis
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Call number: AWI Bio-23-95302
    Description / Table of Contents: Climate change of anthropogenic origin is affecting Earth’s biodiversity and therefore ecosystems and their services. High latitude ecosystems are even more impacted than the rest of Northern Hemisphere because of the amplified polar warming. Still, it is challenging to predict the dynamics of high latitude ecosystems because of complex interaction between abiotic and biotic components. As the past is the key to the future, the interpretation of past ecological changes to better understand ongoing processes is possible. In the Quaternary, the Pleistocene experienced several glacial and interglacial stages that affected past ecosystems. During the last Glacial, the Pleistocene steppe-tundra was covering most of unglaciated northern hemisphere and disappeared in parallel to the megafauna’s extinction at the transition to the Holocene (~11,700 years ago). The origin of the steppe-tundra decline is not well understood and knowledge on the mechanisms, which caused shifts in past communities and ecosystems, is of high priority as they are likely comparable to those affecting modern ecosystems. Lake or permafrost core sediments can be retrieved to investigate past biodiversity at transitions between glacial and interglacial stages. Siberia and Beringia were the origin of dispersal of the steppe-tundra, which make investigation this area of high priority. Until recently, macrofossils and pollen were the most common approaches. They are designed to reconstruct past composition changes but have limit and biases. Since the end of the 20th century, sedimentary ancient DNA (sedaDNA) can also be investigated. My main objectives were, by using sedaDNA approaches to provide scientific evidence of compositional and diversity changes in the Northern Hemisphere ecosystems at the transition between Quaternary glacial and interglacial stages. In this thesis, I provide snapshots of entire ancient ecosystems and describe compositional changes between Quaternary glacial and interglacial stages, and confirm the vegetation composition and the spatial and temporal boundaries of the Pleistocene steppe-tundra. I identify a general loss of plant diversity with extinction events happening in parallel of megafauna’ extinction. I demonstrate how loss of biotic resilience led to the collapse of a previously well-established system and discuss my results in regards to the ongoing climate change. With further work to constrain biases and limits, sedaDNA can be used in parallel or even replace the more established macrofossils and pollen approaches as my results support the robustness and potential of sedaDNA to answer new palaeoecological questions such as plant diversity changes, loss and provide snapshots of entire ancient biota.
    Description / Table of Contents: Der vom Menschen verursachte Klimawandel wirkt sich auf die biologische Vielfalt der Erde und damit auf die Ökosysteme und ihre Leistungen aus. Die Ökosysteme in den hohen Breitengraden sind aufgrund der verstärkten Erwärmung an den Polen noch stärker betroffen als der Rest der nördlichen Hemisphäre. Dennoch ist es schwierig, die Dynamik von Ökosystemen in den hohen Breitengraden vorherzusagen, da die Wechselwirkungen zwischen abiotischen und biotischen Komponenten sehr komplex sind. Da die Vergangenheit der Schlüssel zur Zukunft ist, ist die Interpretation vergangener ökologischer Veränderungen möglich, um laufende Prozesse besser zu verstehen. Im Quartär durchlief das Pleistozän mehrere glaziale und interglaziale Phasen, welche die Ökosysteme der Vergangenheit beeinflussten. Während des letzten Glazials bedeckte die pleistozäne Steppentundra den größten Teil der unvergletscherten nördlichen Hemisphäre und verschwand parallel zum Aussterben der Megafauna am Übergang zum Holozän (vor etwa 11 700 Jahren). Der Ursprung des Rückgangs der Steppentundra ist nicht gut erforscht, und die Kenntnis über die Mechanismen, die zu den Veränderungen in den vergangenen Lebensgemeinschaften und Ökosystemen geführt haben, ist von hoher Priorität, da sie wahrscheinlich mit denen vergleichbar sind, die sich auf moderne Ökosysteme auswirken. Durch die Entnahme von See- oder Permafrostkernsedimenten kann die vergangene Artenvielfalt an den Übergängen zwischen Eis- und Zwischeneiszeiten untersucht werden. Sibirien und Beringia waren der Ursprung der Ausbreitung der Steppentundra, weshalb die Untersuchung dieses Gebiets hohe Priorität hat. Bis vor kurzem waren Makrofossilien und Pollen die gängigsten Methoden. Sie dienen der Rekonstruktion vergangener Veränderungen in der Zusammensetzung der Bevölkerung, haben aber ihre Grenzen und Schwächen. Seit Ende des 20. Jahrhunderts kann auch sedimentäre alte DNA (sedaDNA) untersucht werden. Mein Hauptziel war es, durch den Einsatz von sedaDNA-Ansätzen wissenschaftliche Beweise für Veränderungen in der Zusammensetzung und Vielfalt der Ökosysteme der nördlichen Hemisphäre am Übergang zwischen den quartären Eiszeiten und Zwischeneiszeiten zu liefern. In dieser Arbeit liefere ich Momentaufnahmen ganzer alter Ökosysteme und beschreibe die Veränderungen in der Zusammensetzung zwischen Quartärglazialen und Interglazialen und bestätige die Vegetationszusammensetzung sowie die räumlichen und zeitlichen Grenzen der pleistozänen Steppentundra. Ich stelle einen allgemeinen Verlust der Pflanzenvielfalt fest, wobei das Aussterben der Pflanzen parallel zum Aussterben der Megafauna verlief. Ich zeige auf, wie der Verlust der biotischen Widerstandsfähigkeit zum Zusammenbruch eines zuvor gut etablierten Systems führte, und diskutiere meine Ergebnisse im Hinblick auf den laufenden Klimawandel. Mit weiteren Arbeiten zur Eingrenzung von Verzerrungen und Grenzen kann sedaDNA parallel zu den etablierteren Makrofossilien- und Pollenansätzen verwendet werden oder diese sogar ersetzen, da meine Ergebnisse die Robustheit und das Potenzial von sedaDNA zur Beantwortung neuer paläoökologischer Fragen wie Veränderungen der Pflanzenvielfalt und -verluste belegen und Momentaufnahmen ganzer alter Biota liefern.
    Type of Medium: Dissertations
    Pages: vi, 217 Seiten , Illustrationen, Diagramme, Karten
    Language: English
    Note: Dissertation, Universität Potsdam, 2023 , TABLE OF CONTENTS Acknowledgements Summary Zusammenfassung 1 General introduction 1.1 A changing world 1.1.1 Global changes of anthropogenic origin 1.1.2 Amplified crisis in the high latitudes 1.2 The past is the key to the future 1.2.1 The Quaternary glacial and interglacial stages 1.2.2 The Beringia study case 1.3 Investigating past biodiversity 1.3.1 Traditional tools 1.3.2 Newest sedaDNA proxies 1.4 Motivation and aims of the thesis 1.5 Structure of the thesis 1.6 Author’s contributions 2 Manuscript I 2.1 Abstract 2.2 Introduction 2.3 Materials and Methods 2.3.1 Geographical settings 2.3.2 Fieldwork and subsampling 2.3.3 Core splicing and dating 2.3.4 Sediment-geochemical analyses 2.3.5 Pollen analysis 2.3.6 Molecular genetic preparation 2.3.7 Processing of sedaDNA data 2.3.8 Statistical analysis and visualization 2.4 Results 2.4.1 Age model 2.4.2 Sediment-geochemical core composition 2.4.3 Pollen stratigraphy 2.4.4 sedaDNA composition 2.4.5 Comparison between pollen and sedaDNA 2.4.6 Taxa richness investigation 2.5 Discussion 2.5.1 Proxy validation 2.5.2 Vegetation compositional changes in response to climate inferred from pollen and sedaDNA records 2.5.3 The steppe-tundra of the Late Pleistocene 2.5.4 The disrupted Pleistocene-Holocene transition 2.5.5 The boreal forest of the Holocene 2.5.6 Changes in vegetation richness through the Pleistocene/Holocene transition inferred from the sedaDNA record 2.6 Conclusion Data availability statement Funding References 3 Manuscript II 3.1 Abstract 3.2 Introduction 3.3 Material and Method 3.3.1 Site description and timeframe 3.3.2 Sampling, DNA extraction and PCR 3.3.3 Filtering and cleaning dataset 3.3.4 Identification of taxa – species signal 3.3.5 Resampling 3.3.6 Assessment of the species pool stability 3.3.7 Quantification of extinct and extirpated taxa 3.3.8 Characterisation of species and candidate species 3.4 Results 3.4.1 Changes in the composition and species pool at the Pleistocene - Holocene transition 3.4.2 Decrease in the regional plant species richness between the Pleistocene and the Holocene 3.4.3 Identification of loss taxa events 3.4.4 Characterisation of lost taxa 3.5 Discussion 3.5.1 Biotic and abiotic changes in the ecosystem - a cocktail for extinction 3.5.2 Identification and quantification of potential plant taxa loss 3.5.3 Characterisation of potential taxa loss 3.5.4 Limits of the method 3.5.5 Conclusions and perspectives Funding References 4 Manuscript III 4.1 Abstract 4.2 Introduction 4.3 Material & Methods 4.3.1 Fieldwork and subsampling 4.3.2 Chronology 4.3.3 Pollen analysis 4.3.4 Isolation of sedimentary ancient DNA 4.3.5 Metabarcoding approach 4.3.6 Shotgun approach 4.3.7 Bioinformatic processing 4.4 Results 4.4.1 General results of the three approaches: pollen, metabarcoding and shotgun sequencing 4.4.2 Plants (Viridiplantae) 4.4.3 Fungi 4.4.4 Mammals (Mammalia) 4.4.5 Birds (Aves) 4.4.6 Insects (Insecta) 4.4.7 Prokaryotes (Bacteria, Archaea) and Viruses 4.5 Discussion 4.5.1 Interglacial communities 4.5.2 Glacial communities 4.5.3 Potential and limitations of the sedaDNA shotgun approach applied to ancient permafrost sediments 4.6 Conclusions Data availability statement Funding References 5 Synthesis 5.1 Ecological changes between glacial and interglacial stages 5.1.1 Changes in the compositional structure 5.1.2 Loss of plant diversity 5.1.3 Potential drivers of change 5.2 High potential of sedaDNA for past biodiversity reconstruction 5.3 Conclusions and future perspectives Bibliography Appendices Appendix 1: Supplementary material for Manuscript I Appendix 2: Supplementary material for Manuscript II Appendix 3: Supplementary material for Manuscript III Appendix 4: Manuscript IV Eidesstattliche Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...