ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (1,356)
  • English  (1,356)
  • AWI Reading room  (998)
  • Magazine - must be ordered  (358)
Collection
Language
Branch Library
Reading Room Location
  • 1
    Call number: AWI Bio-24-95729
    Type of Medium: Monograph available for loan
    Pages: XIV, 354 Seiten , Illustrationen
    ISBN: 0195154312 , 9780195154313 , 978-0-19-515431-3
    Series Statement: Long-Term Ecological Research Network Series
    Language: English
    Note: Contents Contributors Part I. Alaska's Past and Present Environment 1. The Conceptual Basis of LTER Studies in the Alaskan Boreal Forest / F. Stuart Chapin III, john Yarie, Keith Van Cleve, and Leslie A. Viereck 2. Regional Overview of Interior Alaska / James E. Beget, David Stone, and David L Verbyla 3. State Factor Control of Soil Formation in Interior Alaska / Chien-Lu Ping, Richard D. Boone, Marcus H. Clark, Edmond C. Packee, and David K. Swanson 4. Climate and Permafrost Dynamics of the Alaskan Boreal Forest / Larry D. Hinzman, Leslie A. Viereck, Phyllis C. Adams, Vladimir E. Romanovsky, and Kenji Yoshikawa 5. Holocene Development of the Alaskan Boreal Forest / Andrea H. Lloyd, Mary E. Edwards, Bruce P. Finney, Jason A. Lynch, Valerie Barber, and Nancy H. Bigelow Part II. Forest Dynamics 6. Floristic Diversity and Vegetation Distribution in the Alaskan Boreal Forest / F. Stuart Chapin III, Teresa Hollingsworth, David F. Murray, Leslie A. Viereck, and Marilyn D. Walker 7. Successional Processes in the Alaskan Boreal Forest / F. Stuart Chapin III, Leslie A. Viereck, Phyllis C. Adams, Keith Van Cleve, Christopher L. Fastie, Robert A. Ott, Daniel Mann, and Jill F. Johnstone 8. Mammalian Herbivore Population Dynamics in the Alaskan Boreal Forest / Eric Rexstad and Knut Kielland 9. Dynamics of Phytophagous Insects and Their Pathogens in Alaskan Boreal Forests / Richard A. Werner, Kenneth F. Raffa, and Barbara L. Illman 10. Running Waters of the Alaskan Boreal Forest / Mark W. Oswood, Nicholas F. Hughes, and Alexander M. Milner Part III. Ecosystem Dynamics 11. Controls over Forest Production in Interior Alaska / John Yarie and Keith Van Cleve 12. The Role of Fine Roots in the Functioning of Alaskan Boreal Forests / Roger W. Ruess, Ronald L. Hendrick, Jason C. Vogel, and Bjartmar Sveinbjornsson 13. Mammalian Herbivory, Ecosystem Engineering, and Ecological Cascades in Alaskan Boreal Forests / Knut Kielland, John P. Bryant, and Roger W. Ruess 14. Microbial Processes in the Alaskan Boreal Forest / Joshua P. Schimel and F. Stuart Chapin III 15. Patterns of Biogeochemistry in Alaskan Boreal Forests / David W. Valentine, Knut Kielland, F. Stuart Chapin III, A. David McCuire, and Keith Van Cleve Part IV. Changing Regional Processes 16. Watershed Hydrology and Chemistry in the Alaskan Boreal Forest: The Central Role of Permafrost / Larry D. Hinzman, W. Robert Bolton, Kevin C. Petrone, Jeremy B. Jones, and Phyllis C. Adams 17. Fire Trends in the Alaskan Boreal Forest / Eric S. Kasischke, T. Scott Rupp, and David L. Verbyla 18. Timber Harvest in Interior Alaska / Tricia L. Wurtz, Robert A. Ott, and John C. Maisch 19. Climate Feedbacks in the Alaskan Boreal Forest / A. David McCuire and F. Stuart Chapin III 20. Communication of Alaskan Boreal Science with Broader Communities / Elena B. Sparrow, Janice C. Dawe, and F. Stuart Chapin III 21. Summary and Synthesis: Past and Future Changes in the Alaskan Boreal Forest / F. Stuart Chapin III, A. David McCuire, Roger W. Ruess, Marilyn W. Walker, Richard D. Boone, Mary E. Edwards, Bruce P. Finney, Larry D. Hinzman, Jeremy B. Jones, Clenn P. Juday, Eric S. Kasischke, Knut Kielland, Andrea H. Lloyd, Mark W. Oswood, Chien-Lu Ping, Eric Rexstad, Vladimir E. Romanovsky, Joshua P. Schimel, Elena B. Sparrow, Bjartmar Sveinbjornsson, David W. Valentine, Keith Van Cleve, David L. Verbyla, Leslie A. Viereck, Richard A. Werner, Tricia L. Wurtz, and John Yarie Index
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: AWI Bio-24-95736
    Description / Table of Contents: Moss-microbe associations are often characterised by syntrophic interactions between the microorganisms and their hosts, but the structure of the microbial consortia and their role in peatland development remain unknown. In order to study microbial communities of dominant peatland mosses, Sphagnum and brown mosses, and the respective environmental drivers, four study sites representing different successional stages of natural northern peatlands were chosen on a large geographical scale: two brown moss-dominated, circumneutral peatlands from the Arctic and two Sphagnum-dominated, acidic peat bogs from subarctic and temperate zones. The family Acetobacteraceae represented the dominant bacterial taxon of Sphagnum mosses from various geographical origins and displayed an integral part of the moss core community. This core community was shared among all investigated bryophytes and consisted of few but highly abundant prokaryotes, of which many appear as endophytes of Sphagnum mosses. Moreover, brown mosses and Sphagnum mosses represent habitats for archaea which were not studied in association with peatland mosses so far. Euryarchaeota that are capable of methane production (methanogens) displayed the majority of the moss-associated archaeal communities. Moss-associated methanogenesis was detected for the first time, but it was mostly negligible under laboratory conditions. Contrarily, substantial moss-associated methane oxidation was measured on both, brown mosses and Sphagnum mosses, supporting that methanotrophic bacteria as part of the moss microbiome may contribute to the reduction of methane emissions from pristine and rewetted peatlands of the northern hemisphere. Among the investigated abiotic and biotic environmental parameters, the peatland type and the host moss taxon were identified to have a major impact on the structure of moss-associated bacterial communities, contrarily to archaeal communities whose structures were similar among the investigated bryophytes. For the first time it was shown that different bog development stages harbour distinct bacterial communities, while at the same time a small core community is shared among all investigated bryophytes independent of geography and peatland type. The present thesis displays the first large-scale, systematic assessment of bacterial and archaeal communities associated both with brown mosses and Sphagnum mosses. It suggests that some host-specific moss taxa have the potential to play a key role in host moss establishment and peatland development.
    Description / Table of Contents: Während die Beziehungen zwischen Moosen und den mit ihnen assoziierten Mikroorganismen oft durch syntrophische Wechselwirkungen charakterisiert sind, ist die Struktur der Moos-assoziierten mikrobiellen Gemeinschaften sowie deren Rolle bei der Entstehung von Mooren weitgehend unbekannt. Die vorliegende Arbeit befasst sich mit mikrobiellen Gemeinschaften, die mit Moosen nördlicher, naturnaher Moore assoziiert sind, sowie mit den Umweltfaktoren, die sie beeinflussen. Entlang eines groß angelegten geographischen Gradienten, der von der Hocharktis bis zur gemäßigten Klimazone reicht, wurden vier naturbelassene Moore als Probenstandorte ausgesucht, die stellvertretend für verschiedene Stadien der Moorentwicklung stehen: zwei Braunmoos-dominierte Niedermoore mit nahezu neutralem pH-Wert sowie zwei Sphagnum-dominierte Torfmoore mit saurem pH-Wert. Die Ergebnisse der vorliegenden Arbeit machen deutlich, dass die zu den Bakterien zählenden Acetobacteraceae das vorherrschende mikrobielle Taxon der Sphagnum-Moose gleich welchen geographischen Ursprungs darstellen und insbesondere innerhalb des Wirtsmoosgewebes dominieren. Gleichzeitig gehörten die Acetobacteraceae zum wesentlichen Bestandteil der mikrobiellen Kerngemeinschaft aller untersuchten Moose, die sich aus einigen wenigen Arten, dafür zahlreich vorkommenden Prokaryoten zusammensetzt. Die vorliegende Arbeit zeigt zudem erstmals, dass sowohl Braunmoose als auch Torfmoose ein Habitat für Archaeen darstellen. Die Mehrheit der Moos-assoziierten Archaeen gehörte dabei zu den methanbildenden Gruppen, wenngleich die metabolischen Aktivitätsraten unter Laborbedingungen meistens kaum messbar waren. Im Gegensatz hierzu konnte die Bakterien-vermittelte Methanoxidation sowohl an Braunmoosen als auch an Sphagnum-Moosen gemessen werden. Dies zeigt eindrucksvoll, dass Moos-assoziierte Bakterien potenziell zur Minderung von Methanemissionen aus nördlichen, aber auch wiedervernässten Mooren beitragen können. Ein weiteres wichtiges Resultat der vorliegenden Arbeit ist die Bedeutung des Moortyps (Niedermoor oder Torfmoor), aber auch der Wirtsmoosart selbst für die Struktur der Moos-assoziierten Bakteriengemeinschaften, während die archaeellen Gemeinschaftsstrukturen weder vom Moortyp noch von der Wirtsmoosart beeinflusst wurden und sich insgesamt deutlich ähnlicher waren als die der Bakterien. Darüber hinaus konnte erstmalig gezeigt werden, dass sich die bakteriellen Gemeinschaften innerhalb der unterschiedlichen Moorsukzessionsstadien zwar ganz erheblich voneinander unterscheiden, ein kleiner Teil der Bakterien dennoch Kerngemeinschaften bilden, die mit allen untersuchten Moosarten assoziiert waren. Bei der hier präsentierten Arbeit handelt es sich um die erste systematische Studie, die sich auf einer großen geographischen Skala mit den bakteriellen und archaeellen Gemeinschaften von Braunmoosen und Torfmoosen aus naturbelassenen nördlichen Mooren befasst. Die vorliegenden Ergebnisse machen deutlich, dass die untersuchten Moose ein ganz spezifisches mikrobielles Konsortium beherbergen, welches mutmaßlich eine Schlüsselrolle bei der Etablierung der Wirtspflanzen am Anfang der Moorentwicklung spielt und darüber hinaus das Potential hat, die charakteristischen Eigenschaften von Mooren sowie deren weitere Entwicklung zu prägen.
    Type of Medium: Dissertations
    Pages: XX, 139, liv Seiten , Illustrationen, Diagramme
    Language: English
    Note: Dissertation, Universität Potsdam, 2024 , Content Preface Acknowledgements Summary Zusammenfassung Abbreviations 1. Introduction 1.1. Peatlands 1.1.1. Peatland development and peat bog succession 1.1.2. Characteristic peatlands of the northern hemisphere 1.1.3. Anthropogenic threats of northern peatlands 1.1.4. Peat bog restoration 1.2. Peatland bryophytes 1.2.1. Brown mosses 1.2.2. Sphagnum mosses 1.3. Moss microbiota 1.3.1. Moss-associated bacteria 1.3.2. Moss-associated archaea 1.3.3. Endophytic prokaryotic communities 1.4. Biotic and abiotic influences on moss-associated microorganisms 1.5. Objectives 1.6. Study sites 1.6.1. High Arctic peatlands of Svalbard (SV) 1.6.2. Polygonal Tundra of Samoylov (SA) 1.6.3. Palsa Bogs of Neiden (NEI) 1.6.4. Kettle Bog Peatlands of Mueritz National Park (MUE) 2. Material and Methods 2.1. Sampling scheme overview 2.2. Sampling of pore water 2.3. Sampling of moss plantlets 2.4. Analysis of pore water chemistry 2.5. Cell wall analysis 2.5.1. Cation exchange capacity (CEC) 2.5.2. Holocellulose (HC) 2.5.3. Lignin and Lignin-like polymers (LLP) 2.5.4. Bulk moss litter analysis 2.6. Moss surface sterilisation and separation of putative epiphytic and endophytic microbial communities 2.7. DNA extraction and sequencing 2.8. Sequence analyses and bioinformatics 2.9. Statistical analyses 2.10. Potential methane production and oxidation assays 2.10.1. Surface sterilisation prior to activity tests 2.10.2. Methane production 2.10.3. Methane oxidation 3. Results 3.1. Peatland bulk and pore water characteristics 3.2. Diversity and structure of natural peatland microbial communities 3.3. Environmental drivers of moss-associated microbial communities 3.4. Microbial taxa associated with brown mosses and Sphagnum mosses 3.4.1. Moss-associated bacteria 3.4.2. Moss-associated archaea 3.4.3. Bacterial and archaeal core communities 3.4.4. Acetobacteraceae as dominant taxon of the bacterial core community 3.5. Sphagnum bacteriomes of disturbed, rewetted and pristine temperate kettle bog 3.6. Potential moss-associated methane production and methane oxidation rates 3.6.1. Moss-associated methane production 3.6.2. Moss-associated methane oxidation 4. Discussion 4.1. Environmental influences on moss-associated bacterial communities 4.2. Moss-associated archaeal communities and their environmental drivers 4.3. Distinct patterns of endophytic bacteria 4.4. The core microbiota and their possible role for peatland succession 4.5. The potential role of Acetobacteraceae for Sphagnum host mosses and bog ecosystems 4.6. Moss-associated microbial communities of the methane cycle and their potential metabolic activity 4.7. Diversity and structure of Sphagnum bacteriomes from pristine, disturbed and rewetted kettle bogs 5. Conclusion 6. Critical remarks and outlook 6.1. Critical remarks 6.2. Outlook Bibliography Supplementary
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: AWI G3-24-95728
    Description / Table of Contents: This atlas is an attempt to translate and consolidate the available knowledge on permafrost. It is a timely book suffused with the compelling enthusiasm of its authors and contributors. Close to a hundred individuals participated in its making, and it does a magnificent job at describing permafrost with maps, words, art, and stories. Far from being an academic product in the traditional sense, it gathers the knowledge from the voices of scientists, Indigenous Peoples, northern residents, and local practitioners to provide a holistic and inclusive view of today’s challenges in the “country of permafrost”.
    Type of Medium: Monograph available for loan
    Pages: 174 Seiten , Illustrationen
    Language: English
    Note: Contents Foreword Prologue Earth’s Freezer: Introduction to Permafrost Frozen grounds: Permafrost in the Arctic Permafrost in profile: Landscape features Frozen in time: The history of permafrost An icy balance: Arctic permafrost physiography What lies within: Organic carbon in permafrost When ice grows up: Pingo Canadian Landmark Drilling down: Learning the secrets of permafrost Portrait: Annett Bartsch Un/settled: Life on frozen ground Frozen States I: Russian Federation Portrait: Vyacheslav Shadrin Frozen States II: North America Portrait: Jessi Pascal Frozen States III: Nordic region Portrait: Palle Jeremiassen Awakening Giant: Permafrost and Climate Change Warming up, warming down: Increasing ground temperatures The chill is gone: Thickening of the active layer Disappearing act: Declining permafrost extent Microorganisms, macro effects: Permafrost carbon cycle Faster, deeper, stronger I: Speed of thaw in North America Faster, deeper, stronger II: Speed of thaw in Scandinavia and the Russian Federation Crossing the threshold: Future scenarios of carbon release Portrait: Dmitry Streletskiy Moving Grounds: Permafrost Changes Frost and flora: The role of vegetation in permafrost landscapes Fire on ice: Peat, permafrost, and fire State of matter: Water, snow, and permafrost The rivers run through it: Arctic rivers, deltas and hydrology Along the edge of the world: Arctic coastal classification Wear and tear: Erosion of Arctic permafrost coasts Eating into the landscape: Retrogressive thaw slumps Portrait: Angus Alunik Losing ground: Projected rates of Arctic coastal erosion Beneath the waves: Changes in subsea permafrost Arctic Ripples: Impacts of Permafrost Thaw Feeling the heat: Permafrost thaw impacts on infrastructure Risky business I: North American Arctic and Kalaallit Nunaat (Greenland) Risky business II: The Russian Federation and Scandinavian Arctic Terra infirma I: Coastal infrastructure in Yamalo-Nenets Portrait: Susanna Gartler Terra infirma II: Reinforcing runways in Paulatuk Terra infirma III: Keeping cold food cold in Alaska Terra infirma IV: Urban planning in Ilulissat Nothing in isolation: Health and wellness and permafrost Portrait: Gwen Healey Akearok Toxic grounds: Contaminants and environmental health Coming back to life: Reemerging pathogens Frozen assets I: The formal economy Frozen assets II: Traditional and subsistence activities Cultural homeland: Alaas landscapes in Yakutia Holding Tight: Adaptation to Permafrost Thaw Bumpy road ahead: Transportation infrastructure and permafrost Undermined: Mining infrastructure and permafrost Keeping the light on: Energy infrastructure and permafrost No time to waste: Waste management and permafrost Modern history: Preserving Svalbard’s cultural heritage Portrait: Ingrid Rekkavik Going South: Permafrost in Other Areas A planetary perspective: Permafrost outside the Arctic Frozen giants: Permafrost in the mountains The view from the top: The Qinghai-Tibetan Plateau, Hindu Kush Himalaya, and Andes Europe’s frozen heart: Permafrost in the Alps The ends of the Earth I: Permafrost in Antarctica The ends of the Earth II: Antarctic Peninsula The ends of the Earth III: Queen Maud Land, Victoria Land, and the McMurdo Dry Valleys Over the Horizon Authors and contributors Acknowledgments Artist spotlight: Olga Borjon-Privé (Oluko) Artist spotlight: Katie Orlinsky Glossary Acronyms References
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: AWI A7-24-95703
    Description / Table of Contents: The icosahedral non-hydrostatic large eddy model (ICON-LEM) was applied around the drift track of the Multidisciplinary Observatory Study of the Arctic (MOSAiC) in 2019 and 2020. The model was set up with horizontal grid-scales between 100m and 800m on areas with radii of 17.5km and 140 km. At its lateral boundaries, the model was driven by analysis data from the German Weather Service (DWD), downscaled by ICON in limited area mode (ICON-LAM) with horizontal grid-scale of 3 km. The aim of this thesis was the investigation of the atmospheric boundary layer near the surface in the central Arctic during polar winter with a high-resolution mesoscale model. The default settings in ICON-LEM prevent the model from representing the exchange processes in the Arctic boundary layer in accordance to the MOSAiC observations. The implemented sea-ice scheme in ICON does not include a snow layer on sea-ice, which causes a too slow response of the sea-ice surface temperature to atmospheric changes. To allow the sea-ice surface to respond faster to changes in the atmosphere, the implemented sea-ice parameterization in ICON was extended with an adapted heat capacity term. The adapted sea-ice parameterization resulted in better agreement with the MOSAiC observations. However, the sea-ice surface temperature in the model is generally lower than observed due to biases in the downwelling long-wave radiation and the lack of complex surface structures, like leads. The large eddy resolving turbulence closure yielded a better representation of the lower boundary layer under strongly stable stratification than the non-eddy-resolving turbulence closure. Furthermore, the integration of leads into the sea-ice surface reduced the overestimation of the sensible heat flux for different weather conditions. The results of this work help to better understand boundary layer processes in the central Arctic during the polar night. High-resolving mesoscale simulations are able to represent temporally and spatially small interactions and help to further develop parameterizations also for the application in regional and global models.
    Type of Medium: Dissertations
    Pages: xii, 110 Seiten , Illustrationen, Diagramme
    Language: English
    Note: Dissertation, Universität Potsdam, 2023 , Contents 1. Introduction 2. Boundary Layers Types of the Atmosphere 2.1. The Convective Boundary Layer (CBL) 2.2. The Neutral Boundary Layer (NBL) 2.3. The Stable Boundary Layer (SBL) 3. The Closure problem 4. Model description 4.1. Applied model versions 4.2. Governing equations 4.3. Horizontal grid 4.4. Vertical grid 4.5. Lateral boundaries 4.6. Parametrizations 4.6.1. Radiation scheme 4.6.2. Microphysics 4.6.3. Mellor-Yamada scheme 4.6.4. Smagorinsky scheme 4.6.5. Sea ice scheme 4.7. Difference to classical LES Models 5. Experimental Setup 6. MOSAiC Measurements 6.1. ARM Meteorological tower 6.2. Radiosondes 7. Model evaluation for the central Arctic 7.1. Impact of the horizontal resolution 7.1.1. Under cold, light wind conditions 7.1.2. Under stormy conditions 7.2. Impact of the sea-ice scheme 7.3. Impact of the lower boundary conditions 7.4. Impact of the parametrization schemes under cold, light wind conditions 7.4.1. Near-surface variables 7.4.2. Vertical profiles 7.4.3. Surface fluxes 7.4.4. Boundary Layer Height 7.5. Impact of the parametrization schemes under stormy conditions 7.5.1. Near-surface variables 7.5.2. Vertical profiles 7.5.3. Surface fluxes 7.5.4. Boundary Layer height 8. Discussion and Summary Acknowledgements Appendix
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Call number: AWI G3-24-95700
    Description / Table of Contents: With Arctic ground as a huge and temperature-sensitive carbon reservoir, maintaining low ground temperatures and frozen conditions to prevent further carbon emissions that contrib-ute to global climate warming is a key element in humankind’s fight to maintain habitable con-ditions on earth. Former studies showed that during the late Pleistocene, Arctic ground condi-tions were generally colder and more stable as the result of an ecosystem dominated by large herbivorous mammals and vast extents of graminoid vegetation – the mammoth steppe. Characterised by high plant productivity (grassland) and low ground insulation due to animal-caused compression and removal of snow, this ecosystem enabled deep permafrost aggrad-ation. Now, with tundra and shrub vegetation common in the terrestrial Arctic, these effects are not in place anymore. However, it appears to be possible to recreate this ecosystem local-ly by artificially increasing animal numbers, and hence keep Arctic ground cold to reduce or-ganic matter decomposition and carbon release into the atmosphere. By measuring thaw depth, total organic carbon and total nitrogen content, stable carbon iso-tope ratio, radiocarbon age, n-alkane and alcohol characteristics and assessing dominant vegetation types along grazing intensity transects in two contrasting Arctic areas, it was found that recreating conditions locally, similar to the mammoth steppe, seems to be possible. For permafrost-affected soil, it was shown that intensive grazing in direct comparison to non-grazed areas reduces active layer depth and leads to higher TOC contents in the active layer soil. For soil only frozen on top in winter, an increase of TOC with grazing intensity could not be found, most likely because of confounding factors such as vertical water and carbon movement, which is not possible with an impermeable layer in permafrost. In both areas, high animal activity led to a vegetation transformation towards species-poor graminoid-dominated landscapes with less shrubs. Lipid biomarker analysis revealed that, even though the available organic material is different between the study areas, in both permafrost-affected and sea-sonally frozen soils the organic material in sites affected by high animal activity was less de-composed than under less intensive grazing pressure. In conclusion, high animal activity af-fects decomposition processes in Arctic soils and the ground thermal regime, visible from reduced active layer depth in permafrost areas. Therefore, grazing management might be utilised to locally stabilise permafrost and reduce Arctic carbon emissions in the future, but is likely not scalable to the entire permafrost region.
    Type of Medium: Dissertations
    Pages: X, 104, A-57 Seiten , Illustrationen, Diagramme
    Language: English
    Note: Dissertation, Universität Potsdam, 2024 , Table of contents ABSTRACT ZUSAMMENFASSUNG ABBREVIATIONS AND NOMENCLATURE CHAPTER 1: INTRODUCTION 1.1 SCIENTIFIC BACKGROUND 1.1.1 ARCTIC GROUND 1.1.2 THE PHENOMENON OF PERMAFROST 1.1.3 ARCTIC NON - PERMAFROST AREAS 1.1.4 HYPOTHESIS 1.2 AIMS AND OBJECTIVES 1.3 METHODS 1.3.1 FIELD METHODS AND SAMPLING APPROACH 1.3.2 STUDY AREA SELECTION 1.3.3 LABORATORY METHODS 1.4 THESIS ORGANISATION CHAPTER 2: LARGE HERBIVORES ON PERMAFROST – A PILOT STUDY OF GRAZING IMPACTS ON PERMAFROST SOIL CARBON STORAGE IN NORTHEASTERN SIBERIA 2.1 ABSTRACT 2.2 I NTRODUCTION 2.3 STUDY AREA 2.4 METHODS 2.4.1 FIELD SAMPLING APPROACH 2.4.2 LABORATORY WORK 2.4.3 DATA ANALYSIS AND EXTERNAL DATA 2.5 RESULTS 2.5.1 VEGETATION ASSESSMENT 2.5.2 SEASONAL THAW DEPTH 2.5.3 CARBON PARAMETERS (TOC, TOC/TN RATIOS , AND Δ13 C RATIOS ) 2.5.4 GRAIN SIZE DISTRIBUTION AND WATER CONTENT 2.5.5 STATISTICS AND CORRELATION ANALYSIS 2.6 DISCUSSION 2.6.1 EFFECTS OF GRAZING ON VEGETATION STRUCTURE AND PERMAFROST THAW 2.6.2 CARBON ACCUMULATION UNDER GRAZING IMPACT 2.6.3 METHODOLOGICAL LIMITATIONS OF THE PILOT STUDY 2.7 CONCLUSION 2.8 DATA AVAILABILITY STATEMENT 2.9 AUTHOR CONTRIBUTIONS 2.10 FUNDING 2.11 ACKNOWLEDGEMENTS 2.12 CONFLICT OF INTERESTS CHAPTER 3: IMPACTS OF REINDEER ON SOIL CARBON STORAGE IN THE SEASONALLY FROZEN GROUND OF NORTHERN FINLAND: A PILOT STUDY 3.1 ABSTRACT 3.2 I NTRODUCTION 3.3 STUDY AREA 3.4 METHODS 3.4.1 FIELD WORK 3.4.2 LABORATORY ANALYSIS 3.4.3 DATA ANALYSIS AND CALCULATIONS 3.5 RESULTS 3.5.1 CORE DESCRIPTIONS 3.5.2 VEGETATION 3.5.3 CARBON PARAMETERS 3.5.6 COMPARATIVE DATA ANALYSIS 3.6 DISCUSSION 3.6.1 REINDEER IMPACT ON SOIL CARBON STORAGE 3.6.2 REINDEER IMPACT ON VEGETATION 3.6.3 REINDEER IMPACT ON GROUND CHARACTERISTICS 3.6.4 SOC DENSITY AND STOCKS ACROSS THE KUTUHARJU STATION AREA 3.6.5 METHODOLOGICAL LIMITATIONS OF THE PILOT STUDY DESIGN 3.6.6 IMPLICATIONS OF THE PILOT STUDY FOR FUTURE RESEARCH 3.7 CONCLUSION 3.8 DATA AVAILABILITY 3.9 AUTHOR CONTRIBUTION 3.10 COMPETING INTERESTS 3.11 ACKNOWLEDGEMENTS 3.12 FUNDING TABLE 3-1 TABLE 3-2 TABLE 3-3 CHAPTER 4: LIPID BIOMARKER SCREENING TO TRACE RECENT LARGE HERBIVORE INFLUENCE ON SOIL CARBON IN PERMAFROST AND SEASONALLY FROZEN ARCTIC GROUND 4.1 ABSTRACT 4.2 I NTRODUCTION 4.3 STUDY AREA 4.4 METHODS 4.4.1 SAMPLING APPROACH 4.4.2 LABORATORY ANALYSIS 4.4.3 LIPID BIOMARKER INDICES 4.4.4 STATISTICS 4.5 RESULTS 4.5.1 TOC 4.5.2 C/N RATIO 4.5.3 STABLE CARBON ISOTOPE RATIO 4.5.4 ABSOLUTE N- ALKANE CONCENTRATION 4.5.5 AVERAGE CHAIN LENGTH 4.5.6 CARBON PREFERENCE INDEX 4.5.7 HIGHER - PLANT ALCOHOL INDEX 4.5.8 STATISTICAL RESULTS 4.6 DISCUSSION 4.6.1 EFFECTS OF GRAZING INTENSITY ON BIOMARKER SIGNALS 4.6.2 EFFECTS OF GROUND THERMAL REGIME ON SOIL OM DEGRADATION 4.6.3 I MPACT OF HERBIVORY ON PERMAFROST OM STORAGE 4.7 CONCLUSION 4.8 ACKNOWLEDGEMENTS 4.9 COMPETING INTERESTS 4.10 AUTHOR CONTRIBUTION 4.11 FUNDING 4.12 DATA AVAILABILITY CHAPTER 5: SYNTHESIS 5.1 ECOSYSTEM CHANGES UNDER THE IMPACT OF LARGE HERBIVORES 5.2 GRAZING EFFECTS ON SOIL ORGANIC MATTER DECOMPOSITION 5.3 F EASIBILITY OF UTILISING HERBIVORY IN THE ARCTIC 5.4 RESEARCH IMPLICATIONS FOR SUCCESSFUL PLANNING AND USE OF ARCTIC HERBIVORY REFERENCES 93 FINANCIAL AND TECHNICAL SUPPORT APPENDIX 1 APPENDIX I ORGANIC CARBON CHARACTERISTICS IN ICE - RICH PERMAFROST IN ALAS AND YEDOMA DEPOSITS , CENTRAL YAKUTIA, SIBERIA APPENDIX II WHAT ARE THE EFFECTS OF HERBIVORE DIVERSITY ON TUNDRA ECOSYSTEMS ? A SYSTEMATIC REVIEW (ABSTRACT) APPENDIX III SUPPLEMENTARY MATERIAL TO CHAPTER 2: LARGE HERBIVORES ON PERMAFROST – A PILOT STUDY OF GRAZING IMPACTS ON PERMAFROST SOIL CARBON STORAGE IN NORTHEASTERN SIBERIA APPENDIX IV SUPPLEMENTARY MATERIAL TO CHAPTER 3: IMPACTS OF REINDEER ON SOIL CARBON STORAGE IN THE SEASONALLY FROZEN GROUND OF NORTHERN FINLAND : A PILOT STUDY APPENDIX V SUPPLEMENTARY MATERIAL TO CHAPTER 4: A PILOT STUDY OF LIPID BIOMARKERS TO TRACE RECENT LARGE HERBIVORE INFLUENCE ON SOIL CARBON IN PERMAFROST AND SEASONALLY ROZEN ARCTIC GROUND APPENDIX VI SUPPLEMENTARY MATERIAL TO APPENDIX IV: ORGANIC CARBON CHARACTERISTICS IN ICE - RICH PERMAFROST IN ALAS AND YEDOMA DEPOSITS , CENTRAL YAKUTIA, SIBERIA ACKNOWLEDGEMENTS - DANKSAGUNG
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Call number: 21/M 20.94120 ; AWI S6-24-91420
    Type of Medium: Monograph available for loan
    Pages: 288 Seiten , Illustrationen, Karten
    Language: English
    Location: Reading room
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Monograph available for loan
    Monograph available for loan
    New York, NY : Humana Press
    Call number: AWI Bio-24-95664
    Description / Table of Contents: This volume provides detailed protocols for the isolation, enumeration, characterization of diverse bacteriophages, including both small to jumbo bacteriophages, from soil, fecal, municipal wastewater, and from food niche samples. Chapters highlight the diversity of bacteriophages in different environments, quantifications using culture, molecular techniques, protocols for isolate, interaction of bacteriophage proteins with host cells, and how to use bacteriophages to transfer foreign genetic elements to bacterial strains. In addition to the above, chapters feature the application of bacteriophages/bacteriophage-derived products. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips (in the Notes section) on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Bacteriophages: Methods and Protocols aims to ensure successful results in further study of this vital field.
    Type of Medium: Monograph available for loan
    Pages: XVI, 431 Seiten , Illustrationen
    ISBN: 978-1-0716-3548-3 , 9781071635483
    ISSN: 1064-3745 , 1940-6029
    Series Statement: Methods in Molecular Biology 2738
    Language: English
    Note: Contents Preface Contributors PART I AN OVERVIEW OF THE DIVERSITY OF BACTERIOPHAGES 1 Structural and Genomic Diversity of Bacteriophages / Bert Ely, Jacob Lenski, and Tannaz Mohammadi 2 The Diversity of Bacteriophages in the Human Gut / Amanda Carroll-Portillo, Derek M. Lin, and Henry C. Lin 3 Breaking the Ice: A Review of Phages in Polar Ecosystems / Mara Elena Heinrichs, Gonçalo J. Piedade, Ovidiu Popa, Pacifica Sommers, Gareth Trubl, Julia Weissenbach, and Janina Rahlff 4 The Diversity of Bacteriophages in Hot Springs / Timothy J. Marks and Isabella R. Rowland PART II ISOLATION OF BACTERIOPHAGES 5 Isolation of Bacteriophages from Soil Samples in a Poorly Equipped Field Laboratory in Kruger National Park / Ayesha Hassim and Kgaugelo Edward Lekota 6 Purification and Up-Concentration of Bacteriophages and Viruses from Fecal Samples / Frej Larsen, Rasmus Riemer Jakobsen, Xiaotian Mao, Josue Castro-Mejia, Ling Deng, and Dennis S. Nielsen 7 Isolation of Enterococcus Bacteriophages from Municipal Wastewater Samples Using an Enrichment Step / Cory Schwarz and Jacques Mathieu 8 Phage DNA Extraction, Genome Assembly, and Genome Closure / Justin Boeckman, Mei Liu, Jolene Ramsey, and Jason Gill PART III ENUMERATION OF BACTERIOPHAGES 9 Enumeration of Bacteriophages by Plaque Assay / Diana Elizabeth Waturangi 10 Detection and Quantification of Bacteriophages in Wastewater Samples by Culture and Molecular Methods/ Laura Sala-Comorera, Maite Muniesa, and Lorena Rodríguez-Rubio 11 Flow Virometry: A Fluorescence-Based Approach to Enumerate Bacteriophages in Liquid Samples / Elena A. Dlusskaya and Rafik Dey 12 A Metagenomics Approach to Enumerate Bacteriophages in a Food Niche / Kelsey White, Giovanni Eraclio, Gabriele Andrea Lugli, Marco Ventura, Jennifer Mahony, Fabio Dal Bello, and Douwe van Sinderen PART IV CHARACTERIZATION OF BACTERIOPHAGES 13 Bioinformatic Analysis of Staphylococcus Phages: A Key Step for Safe Cocktail Development / Soledad Telma Carrasco and He´ctor Ricardo Morbidoni 14 Use of Localized Reconstruction to Visualize the Shigella Phage Sf6 Tail Apparatus / Chun-Feng David Hou, Fenglin Li, Stephano Iglesias, and Gino Cingolani 15 Bacteriophage–Host Interactions and Coevolution / Diana M. Álvarez-Espejo, Dácil Rivera, and Andrea I. Moreno-Switt 16 Unraveling Physical Interactions of Clostridioides difficile with Phage and Phage-Derived Proteins Using In Vitro and Whole-Cell Assays / Wichuda Phothichaisri, Tanaporn Phetruen, Surang Chankhamhaengdecha, Tavan Janvilisri, Puey Ounjai, Robert P. Fagan, and Sittinan Chanarat 17 Phage Transduction of Staphylococcus aureus / Melissa-Jane Chu Yuan Kee and John Chen PART V APPLICATION OF BACTERIOPHAGES AND BACTERIOPHAGE-DERIVED COMPONENTS 18 The Next Generation of Drug Delivery: Harnessing the Power of Bacteriophages / Alaa A. A. Aljabali, Mohammad B. M. Aljbaly, Mohammad A. Obeid, Seyed Hossein Shahcheraghi, and Murtaza M. Tambuwala 19 Construction of Nonnatural Cysteine-Cross-Linked Phage Libraries / Brittney Chau, Kristi Liivak, and Jianmin Gao 20 Application of Deep Sequencing in Phage Display / Vincent Van Deuren, Sander Plessers, Rob Lavigne, and Johan Robben 21 The Application of Bacteriophage and Photoacoustic Flow Cytometry in Bacterial Identification / Robert H. Edgar, Anie-Pier Samson, and John A. Viator 22 Propagation, Purification, and Characterization of Bacteriophages for Phage Therapy / Katarzyna Kosznik-Kwaśnicka, Gracja Topka, Jagoda Mantej, Łukasz Grabowski, Agnieszka Necel, Grzegorz Węgrzyn, and Alicja Węgrzyn 23 Overcoming Bacteriophage Resistance in Phage Therapy / Elina Laanto 24 Bacteriophage Virus-Like Particles: Platforms for Vaccine Design / Ebenezer Tumban Index
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: AWI P5-24-95011
    Description / Table of Contents: The greatest wilderness on earth, the circumpolar Arctic has for centuries stirred our imagination and challenged us to explore its vast lands and seas. The Arctic World captures the spirit of this most northerly frontier - the majesty of its landscapes, the beauty of its plants and animals, the remarkable history of its peoples. Encompassing the northern reaches of seven countries and an area of 28 million square miles, the Arctic is, in fact, one natural realm where plants, animals and humans have learned to live in a hostile climate. Its expanses of land and water, however, are not always the barren tracts of popular myth. There are towering mountain ranges, the largest forest in the world, spectacular displays of flowers in the spring, and -a rich variety of sea and land birds and mammals. Its people range from the Inuit of the Canadian Arctic, Greenland and Alaska to the Lapps of Scandinavia and the Chukchi of Siberia. The Arctic World offers an exciting visual journey through this immense land. The 130 color and 100 black and white photographs, taken in each of the polar countries by renowned photographers, range from breathtaking scenery to intimate portraits of people at work and at play. Those depicting traditional ways of life that have all but disappeared from the modern Arctic are important visual records of the unique heritage of northern peoples. Old engravings and early photographs of arctic explorers, whalers and native men and women provide a historical perspective. The fascinating story of the adaptation of man, plants and animals to the arctic environment is told by six polar experts from around the world. They focus on the history of the Arctic from the ice ages to the present, the impact of European exploration, the astonishing variety of arctic flora and fauna, and the future of the Arctic in the face of twentieth-century technology.
    Type of Medium: Monograph available for loan
    Pages: 256 Seiten , Illustrationen
    ISBN: 0-517-67572-2 , 0517675722
    Language: English
    Note: Contents Preface / Minnie Aodla Freeman Foreword / Dr. William E. Taylor, Jr. PART ONE A LAND MOLDED BY ICE / Fred Bruemmer 1 The Northern Vision 2 The Circumpolar Realm Photo Essay: The Surprising Arctic 3 Trial by Ice 4 Hunters and Herders Photo Essay: Arctic Waters 5 Early Exploration 6 The Arctic Route to Cathay Photo Essay: From the Mountains to the Sea 7 Fur Empires of Siberia and Alaska 8 Arctic Knights 9 From Furs to Factories Photo Essay: Polar Animals and Birds PART TWO THE ARCTIC WILDERNESS 10 Wildlife of the Sea and Land / Dr. Thor Larsen 11 Plants of the Arctic and Sub-Arctic / Dr. Frans Wielgolaski Photo Essay: A Brief Flowering PART THREE PEOPLE OF THE FAR NORTH 12 The Ancient Arctic / Dr. Robert McGhee Photo Essay: Traditional Life 13 Polar Exploration / Academician A.F. Treshnikov 14 A Changing World / Dr. Ernest S. Burch, Jr. Photo Essay: Modern Life Index
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Series available for loan
    Series available for loan
    [Bremerhaven] : Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research
    Associated volumes
    Call number: ZSP-290-2013/2016-2
    In: Status report 2013-2016 / Alfred-Wegener-Institut, Vol. 2
    Type of Medium: Series available for loan
    Pages: 86 Seiten , Illustrationen
    Language: English
    Note: Contents I. Selected scientific and coordinating staff Research Unit 1a: The polar atmosphere and cryosphere in a changing climate Boike, Julia Diekmann, Bernhard Eisen, Olaf Grosse, Guido Hellmer, Hartmut H. Herzschuh, Ulrike Humbert, Angelika Lantuit, Hugues Mollenhauer, Gesine Rex, Markus Wilhelms, Frank Research Unit lb: Climate interactions with polar seas, marine ecosystems Bridging research and society: products, tools and climate services and biogeochernical processes Boetius, Antje Bracher, Astrid Brey, Thomas Haas, Christian Kanzow, Torsten Klaas, Christine Meyer, Bettina Pörtner, Hans-Otto Richter, Claudio Rost, Björn Soltwedel, Thomas Strass, Volker H. Waite, Anya M. Research Unit 2: Fragile coasts and she!f seas Abele, Doris Boersma, Maarten Buschbaum, Christian Gerdts, Gunnar John, Uwe Kasten, Sabine Koch, Boris Wegner, K. Mathias Wiltshire, Karen Helen Research Unit 3: The Earth system from a polar perspective: data, modeling and synthesis Bijma, Jelle Jokat, Wilfried Jung, Thomas Knorr, Gregor Köhler, Peter Laepple, Thomas Lamy, Frank Lohmann, Gerrit Schlindwein, Vera Stein, Rüdiger Tiedemann, Ralf Wolf-Gladrow, Dieter Research Unit 4: Bridging research and society: products, tools and climate services Bergmann, Melanie Buck, Bela H. Frickenhaus, Stephan Grosfeld, Klaus Gutow, Lars Krause, Gesche Research Unit 5: Research infrastructure - performance categories LK I and LK II Nixdorf, Uwe II. Indicators and resources 1. Indicators and resources by Research Units 2. Indicators and resources by user facilities 3. Indicators and resources by program Program PACES II "Marine, Coastal and Polar Systems" 4. Indicators for the center Ill. Definition of indicators IV. List of abbreviations Imprint
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Series available for loan
    Series available for loan
    [Bremerhaven] : Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research
    Associated volumes
    Call number: ZSP-290-2013/2016-1
    In: Status report 2013-2016 / Alfred-Wegener-Institut, Vol. 1
    Type of Medium: Series available for loan
    Pages: 182 Seiten , Illustrationen
    Language: English
    Note: Contents List of most commonly used abbreviations I. Helmholtz Association - Mission and Strategy II. Helmholtz Research Field Earth and Environment II.1 Overview II. 2 Programs Ill. Alfred Wegener Institute Helmholtz Centre III.1 Organization Ill. 2 Strategic partnerships and cooperation Ill. 3 Research infrastructure Ill. 4 Career development, talent management and equal opportunity Ill. 5 Knowledge and technology transfer Ill. 6 Scientific awards and appointments Ill. 7 Membership of international Boards and Committees 2013-2016 (selection) IV. Research Units IV. 1a Research Unit 1a The polar atmosphere and cryosphere in a changing climate IV. 1a.1 Mission statement IV. 1a.2 Introduction IV. 1a.3 Scientific questions IV. 1a.4 Approach of the Research Unit IV. 1a.5 Structure of the Research Unit IV. 1a.6 Scientific outcomes IV. 1a.7 Leadership of and contributions to large national and international projects and programs IV. 1a.8 Career development and personnel turnover IV. 1a.9 Overview of Contribution to Grand Challenges IV. 1a.10 Outlook IV. 1a.11 Budget, personnel and publications IV. 1a.12 References IV. 1b Research Unit 1b Climate interactions with polar seas, marine ecosystems and biogeochemical processes IV. 1b.1 Mission statement IV. 1b.2 Introduction IV. 1b.3 Scientific questions IV. 1b.4 Approach of the Research Unit IV. 1b.5 Structure of the Research Unit IV. 1b.6 Scientific outcomes IV. 1b.7 Leadership of and contributions to large national and international projects and programs IV. 1b.8 Career development and personnel turnover IV. 1b.9 Overview of contribution to Grand Challenges IV. 1b.10 Outlook IV. 1b.11 Budget, personnel and publications IV. 1b.12 References IV.2 Research Unit 2 Fragile coasts and shelf seas IV. 2.1 Mission statement IV. 2.2 Introduction IV. 2.3 Scientific questions IV. 2.4 Approach of the Research Unit IV. 2.5 Structure of the Research Unit IV. 2.6 Scientific outcomes IV. 2.7 Leadership of and contributions to large national and international projects and programs IV. 2.8 Career development and personnel turnover IV. 2.9 Overview of contribution to Grand Challenges IV. 2.10 Outlook IV. 2.11 Budget, personnel and publications IV. 2.12 References IV. 3 Research Unit 3 The Earth system from a polar perspective: data, modeling and synthesis IV. 3.1 Mission statement IV. 3.2 Introduction IV. 3.3 Scientific questions IV. 3.4 Approach of the Research Unit IV. 3.5 Structure of the Research Unit IV. 3.6 Scientific outcomes IV. 3.7 Leadership and contributions to large national and international projects and programs IV. 3.8 Career development and personnel turnover IV. 3.9 Overview of contribution to Grand Challenges IV. 3.10 Outlook IV. 3.11 Budget, personnel and publications IV. 3.12 References IV. 4 Research Unit 4 Bridging research and society: products, tools and climate services IV. 4.1 Mission statement IV. 4.2 Introduction IV. 4.3 Scientific tasks and services IV. 4.4 Approach of the Research Unit IV. 4.5 Structure of the Research Unit IV. 4.6 Scientific outcomes IV. 4.7 Leadership of and contributions to large national and international projects and programs IV. 4.8 Career development and personnel turnover IV. 4.9 Outlook IV. 4.10 Budget, personnel and publications IV. 4.11 References IV.5 Research Unit 5 Research infrastructure - performance categories LK I and LK II IV. 5.1 Mission statement IV. 5.2 Overview IV. 5.3 Research Unit SA IV. 5.4 Research Unit 58 (LK II Infrastructure) V. Recommendations of the Helmholtz Senate V.1 Recommendations of the Helmholtz Senate V.2 Detailed recommendations of the Helmholtz Senate for each Research Unit (not covered above) Imprint
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...