ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (114)
  • Published Data from GFZ  (114)
  • In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS  (114)
  • 1
    Publication Date: 2021-10-15
    Description: Abstract
    Description: Following a sequence of seismic events detected by the National Geographic Institute (IGN Spain), on 13.09.2021 the new volcano Cumbre Vieja initiated an eruption, located on the mid-western flank at a location just to the north of the 1949 eruption site. The eruption fed a lava flow that buried already some hundreds of houses, with a high economic estimated loss. Previous studies have shown that La Palma was the source of 3 or 4 large sector collapses associated with avalanches under see and tsunami generation. This volcanic activity is accompanied with an increased seismic activity. The GFZ contributes to the monitoring of the seismic activity by sending experts in the frame of a Hazard and Risk Team (HART). Our partner is the National Geographic Institute. Besides tiltmeters, a temporary 4 station seismic network with TrilliumCompact 20 sec posthole seismometers, D-Cube digitisers (100 sample/sec) and C-Cubes LTE communication for real-time data transmission is being deployed near the Cumbre Vieja volcano, increasing the station density of the IGN network. Data access is being restricted for some time.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Other , Seismic Network
    Format: ~100G
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-12-03
    Description: Abstract
    Description: Hekla is one of the most active and dangerous volcanoes in Iceland presenting a high hazard to air travel and a growing tourist population. It is hence important to monitor its seismic activity in real-time. However, until now the pre-eruption warning time is only around one hour. A temporary seismic network deployed by us around Hekla summit in 2012 recorded unexpected background micro-seismicity (Eibl et al., 2014). Seismic monitoring directly on the edifice could provide a possible means to early-warning if micro-seismicity on Hekla increases prior to an eruption. In addition, the monitoring of a fissure eruption close up is expected to better understand how it initiates in detail. This prompted the installation of the Hekla Real-Time Seismic Network (HERSK) in 2018 (Möllhoff et al., 2018a/b). We experienced logistical difficulties especially in winter months, mainly in relation to power provision. In this project we build on the first phase of HERSK to (1) test novel ways of powering stations that transmit real-time data in very harsh environments and (2) to work towards a real-time event detection and location system dedicated to seismic activity at Hekla volcano. The development of the real-time system necessitates the derivation of a velocity model which we derive by inverting observed microseismicty data. This opens the way to image the internal structure of Hekla volcano. Waveform data are available from the GEOFON data centre, under network code XE and embargoed until Jan 2025.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Other , Seismic Network
    Format: ~8GB
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2022-01-25
    Description: Abstract
    Description: A network of 400 continuously running, digital, short-period seismic stations was deployed for a time period of approximately 2 weeks in an area of ~1 x 1.7 km in the Geyer region (Saxony, Germany). The network is part of a feasibility study to check whether and to which extent passive seismic methods, i.e. ambient noise techniques with a large number of stations (LARGE-N) can be used in a mineral exploration context. The project is attached to the INFACT project („Innovative, Non-invasive and Fully Acceptable Exploration Technologies“) funded by the European Union’s Horizon 2020 programme. At the same time it serves as a first field test for newly acquired LARGE-N instrumentation of the GIPP instrument pool.Waveform data are available from the GEOFON data centre, under network code XF.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; passive seismics ; mineral exploration ; ambient noise ; LARGE-N ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Other , Seismic Network
    Format: ~450G
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-04-06
    Description: Abstract
    Description: Starting in 2016, the Taroko Earth Surface Observatory (TESO), a catchment-wide geomorphic observatory was set up in the Liwu catchment in the Taroko National Park in Taiwan. The set up consists of two basic station types: combined seismic and weather stations, featuring a broadband seismometer logging and a multi-parameter weather sensor, and hydrometric stations, the instrumentation of which are specific at each location. Seismic data hosted by the GEOFON database is openly accessible in real time. Waveform data are available from the GEOFON data centre, under network code TQ.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Other , Seismic Network
    Format: 〉1T
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-03
    Description: Abstract
    Description: "2-year seismological experiment near Fagradalsfjall, Reykjanes peninsula in 2021/22" is a two-year seismological experiment realized near the eruptive site at Fagradalsfjall on the Reykjanes peninsula, Iceland, by Eva Eibl (University of Potsdam) in collaboration with Gylfi P. Hersir, Egill Á. Gudnason and Friðgeir Pétursson from ISOR Iceland. From March to September 2021 an effusive, basaltic eruption happened in Geldingadalir near mount Fagradalsfjall on the Reykjanes peninsula. The aim of the seismic experiment was to monitor volcano-seismic signals such as LP events, VT events and tremor, before, during and after the eruption from 14 March 2021 to August 2022. We used two broadband seismometers (Nanometrics Trillium Compact 120 s) and two rotational sensors (iXblue blueSeis-3A) and stored the data on DataCubes and CommunicationCubes, respectively. Sensors were until mid-June installed on the surface and shielded from wind using a bucket. From mid-June they were buried 40cm deep in the ground at about 2 km from the eruptive vent. At any given time, at least one station recorded the seismic signals caused by the eruption. Waveform data are available from the GEOFON data centre, under network code 9F.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Other , Seismic Network
    Format: ~600G
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-13
    Description: Abstract
    Description: This data publication provides supplementary data to the X9_2015 network that was operated from 2015 until 2016 within the KISS experiment in the area of the Klyuchevskoy Volcanic Group. In addition, the associated seismic waveform data are archived in the GFZ GEOFON archive with the https://doi.org/10.14470/K47560642124 (Shapiro et al., 2015) and the associated Scientific Technical Report – Data (Green et al., 2021, https://doi.org/10.48440/GFZ.B103-21019). Please refer to this site for any further information. Data in the KISS experiment was mainly recorded by Cube3 digitizers which requires a conversion into standard seismological formats including a resampling to adjust the timing of the data to the GPS signals. The data in the GEOFON archive does therefore already include some degree of processing and some loss of information contained in the GPS tags of the raw data. We therefore provide a copy of the raw data as it was retrieved from the Cube digitizers (www.gfz-potsdam.de/gipp → Instruments). Additionally, we provide raw data from the Baikal digitizers and photographs of the sites from the station collection.
    Keywords: Volcano seismology ; Kamchatka ; GIPP Grant Number 201505 ; 201505 ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-13
    Description: Abstract
    Description: The dataset contains waveform data of shallow seismic profiles at two locations in the western part of the Alai valley, Kyrgyzstan. At each location a “long” profile (~5 km and ~2.5 km length, respectively) and one or two short profiles (~120 m and ~250 m) were acquired, centered on known or presumed tectonic faults. As sources, a trailer-mounted weight drop and a hammer were used. The measurements were part of the CaTeNA project. Within the sub-project "The recent deformation in the Pamir based on seismic and geodetic data, dynamic landslide-susceptibility and risk analysis, and seismic imaging of the North Pamir Thrust", which forms part of the international and interdisciplinary CaTeNA project (Climatic and Tectonic Natural Hazards in Central Asia), shallow seismic profiling at two locations has been carried out in the Alai Valley, southern Kyrgyzstan, to investigate the spatio-temporal evolution of the Pamir Frontal Thrust (PFT). Eight seismic profiles were acquired in September 2019 at two locations in the western part of the Alai valley, (1) in the village of Achyk Suu and b) at the Koman fault (SSW of the village of Kashka Suu). At each location a long profile (5 and 2.5km, respectively) and one or two short profiles (~250m) across interesting (presumed) fault structures were acquired.
    Keywords: shallow seismic profiling ; reflection ; refraction ; thrust fault ; Pamir ; Tien Shan ; fault zone structure ; compressional waves ; shear waves ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-06-21
    Description: Abstract
    Description: “1-month seismological experiment on Etna, Italy in 2019" is a 1-month seismological experi-ment realized near the Pizzi Deneri Observatory on Etna, Italy, by Eva Eibl and Daniel Vollmer (University of Potsdam) in collaboration with Philippe Jousset from GFZ Potsdam Germany and Gilda Currenti and Graziano Larocca from INGV-OE, Italy. From August to September 2019, we recorded the volcano-seismic events accompanying the volcanic activity using a rotational sensor and a co-located seismometer. The aim of the seismological experiment was to study LP events, VT events and tremor. We used a 3-component broadband seismometer (Nanometrics Trillium Compact 120 s) and a 3-component rotational sensor (iXblue blueSeis-3A) and stored the data on a DataCube and CommunicationCube, respectively. Sensors were installed on the same 35 * 35 * 3 cm3 granitic base plate at about 40 cm depth enclosed by backfilled pyroclastic material to avoid wind noise. The instruments recorded at 200 Hz sampling rate and were located about 2 km from the craters on Etna. The setup was powered using 3 solar panels of 140W each and three batteries of 75Ah each. We oriented the rotational sensor and seismometer using a Quadrans fiber-optical gyrocompass. The Quadrans is not affected by magnetic minerals in the ground and our sensors are hence properly aligned to geographic north. We converted the seismometer data to MSEED using Pyrocko’s Jackseis program and created a catalogs of LP events and VT events that were further investigated in Eibl et al. 2022. Waveform data are available from the GEOFON data centre, under network code ZR.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Rotational seismometer ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Other , Seismic Network
    Format: ~60G
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-09-23
    Description: Abstract
    Description: This interactive webpage contains supplementary information for the publication by Jamalreyhani et al., 2020: Seismicity related to the eastern sector of Anatolian escape tectonics: A seismic gap partly filled by the 24 January 2020 Mw 6.8 Elazığ-Sivrice earthquake.
    Description: Methods
    Description: The analysis has been performed using the Grond software package (Heimann et al., 2018). The open source software for seismic source parameter optimization Grond implements a bootstrap-based method to retrieve solution sub-spaces, parameter trade-offs and uncertainties of earthquake source parameters. Green's functions (GFs) for three different velocity models were calculated with the orthonormal propagator method (QSEIS, Wang, 1999; see https://github.com/pyrocko/fomosto-qseis/). All GFs are stored in Pyrocko GF stores (Pyrocko toolbox, Heimann et al., 2017, Heimann et al. 2019). Green's functions were computed employing a tapered Heaviside wavelet, a sample rate of 25 Hz and a grid spacing of 50 m allowing for interpolation of Green's functions between nodes. The databases comprise source depths from 1 to 4 km and receiver depths from 0 to 200 m. We used a nearest neighbor interpolation inbetween grid points of the pre-computed GFs.
    Keywords: finite fault inversion ; moment tensor inversion ; seismology ; Earth Remote Sensing Instruments 〉 Active Remote Sensing 〉 Imaging Radars ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 CRUSTAL MOTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Other , Other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-20
    Description: Abstract
    Description: KivuSNet represents the first dense broadband seismic network installed in the Kivu Rift region, which is located in the bordering region of the Democratic Republic of Congo and Rwanda. Here the active volcanoes Nyamulagira (the most active in Africa) and Nyiragongo (host to the largest persistent lava lake on Earth) threaten the city of Goma and neighbouring agglomerations, and destructive earthquakes can also affect the region. The deployement started with the first stations in 2012/2013 and since October 2015, 13 stations are operated with real-time data transmission. The development of KivuSNet has been carried out in the framework of several research projects and is in particular associated with the project REmote Sensing and In Situ detection and Tracking of geohazards (RESIST), funded by the Belgian Science Policy and the National Research Fund of Luxembourg. KivuSNet aims at opening a new window for the seismological knowledge in this highly active rifting region, allowing for unprecedented insights into tectonic and volcanic seismicity, tremor patterns and Earth structure as well as for sustainable real-time monitoring of the volcanoes in the area. Together with the often co-located KivuGNet geodetic stations, KivuSNet closes a dramatic observational gap in this region. Waveform data is available from the GEOFON data centre, under network code KV. Embargo policy: - All data before 1 August 2019 remain under embargo until 1 August 2024; - Data acquired from 1 August 2019 onwards are opened 3 years after their acquisition, progressively in 1-months batches (e.g. Data from August 2019 would be opened on 1 September 2022, data from September 2019 would be opened on 1 October 2022 etc.) - For any access request to data that are still under embargo, written permission of the RESIST project partners is needed.
    Keywords: Seismic monitoring ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~2.5T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...