ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU
Collection
  • 1
    Publication Date: 2020-10-27
    Description: Gephart and Forsyth's method has been applied to estimate stress orientations from earthquakefa ult planes olutionso f the southwesterAn lps, a regionw heret he tectonic stress regime is known to be fairly complex. Fault plane solutions have been either taken from the literature or computed using data from local and regional networks. Data refer to seismiecv entso f magnitudien the range2 .5-5.3w hicho ccurreidn the iastd ecades at depths between 0 and 25 km. Two zones with a different stress orientation have been identifiedi n the studieda rea (44.0ø-45.ø5 N, 6.5ø-8.5ø E)- the westernz one,c orresponding to the cresto f the alpine belt, where a high-dipm aximumc ompressivset ressi s found, and the easternz one (Alps chaint o Po Plain transition),c haracterizedb y an almosth orizontal E-W al and a nearly vertical as. Hypocenterso f earthquakesu sedf or stressi nversionl ie in the depthr anges0 -15 km and 5-25 km in the westerna nd easternz onesr, espectivelyT. he transitionb etweenth e two st•resdso mainsis very sharp,a nd this is alsoi ndicatedb y sp•ace distributiono f earthquakei ndividualm isfitst o the respectives tressm odels.T he findings of the present study are a good match for tectonic models which assume E-W compression derivedf rom the Adria-Europein teractiona nd producing:( 1) major thrustingp rocesses in the easterns ideo f the chaina nd (2) secondaryte nsionale ffectsa t very shallowd epth beneatht he alpineb elt crest( westernz oneo f the area studiedi n this work).
    Description: Published
    Description: 8171-8185
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-16
    Description: The sources and sinks of stratospheric reactive nitrogen (NOy) in the Antarctic are known only qualitatively, because of the very few measurements of NOy available in this region. As a result, the effects of stratospheric NOy short- and long-term changes on the stratospheric concentration of ozone, water vapor, and other climate-forcing agents are still uncertain. To better understand the annual cycle of polar stratospheric NOy, we estimate its concentration in the Antarctic stratosphere during part of 1993 and throughout 1995. These estimates are obtained at seven potential temperature levels, extending from 18 to 30 km of altitude, and are associated with ground-based measurements of another tracer, N2O, in order to produce NOy-N2O correlation curves that can provide insights on nitrogen sources and sinks. To estimate NOy mixing ratios, we use ground-based and satellite measurements of major NOy constituents, connected by using air parcel trajectories and supplemented by model calculations of minor contributing species for which no suitable measurements exist. All the available NOy-N2O correlation points are averaged over three representative seasonal time periods in 1993 and six periods in 1995. Results show very similar correlation curves during the late summer and the fall of 1995, and again during the early spring 1993 compared with the early and late winter of 1995, although there are large seasonal changes due to transport and to condensation of NOy onto polar stratospheric clouds. We calculate a loss from the latter process of N = (6.3 ± 2.6) 107 kg of stratospheric nitrogen in the southern polar vortex during 1995.We also compare our correlation curves with those obtained in the Antarctic stratosphere during the Atmospheric Trace Molecule Spectroscopy mission ATMOS/ATLAS-3 in November 1994, finding important similarities but also critical differences that suggest that extravortex air is generally not an adequate representation of prewinter inner vortex conditions. Calculations of NOy winter removal in the Antarctic stratosphere which have used extra-vortex measurements as a surrogate for prewinter conditions may thus have underestimated true NOy removal. Our prewinter NOy estimates in the vortex core match values obtained by atmospheric models that incorporate upper atmospheric sources of NOy, supporting the belief that such sources have a significant effect on polar stratospheric NOy.
    Description: Published
    Description: 4428
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Keywords: polar NOy ; NOy-N2O correlations ; denitrification ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-30
    Description: Sensitivity analysis and uncertainty estimation are crucial to the validation and calibration of numerical models. In this paper we present the application of sensitivity analyses, parameter estimations and Monte-Carlo uncertainty analyses on TEPHRA, an advection-diffusion model for the description of particle dispersion and sedimentation from volcanic plumes. The model and the related sensitivity analysis are tested on two sub-plinian eruptions: the 22 July 1998 eruption of Etna volcano (Italy) and the 17 June 1996 eruption of Ruapehu volcano (New Zealand). Sensitivity analyses are key to (i) constrain crucial eruption parameters (e.g. total erupted mass) (ii) reduce the number of variables by eliminating non-influential parameters (e.g. particle density) and (iii) investigate the interactions among all input parameters (plume height, total grain-size distribution, diffusion coefficient, fall-time threshold and mass-distribution parameter). For the two test cases, we found that the total erupted mass significantly affects the model outputs and, therefore, it can be accurately estimated from field data of the fallout deposit, whereas the particle density can be fixed at its nominal value because it has negligible effects on the model predictions
    Description: Published
    Description: B06202
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: sensitivity analysis; uncertainty estimation; tephra dispersal models; Etna; Ruapehu. ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-03
    Description: A model is developed of the gradient drift instability growth rate in the north polar cap ionosphere, utilizing a novel approach employing an ionospheric imaging algorithm. The growth rate values calculated by this model are in turn used to estimate how the amplitudes of actual gradient drift waves vary over time as the plasma drifts and the growth rates change with time. Ionospheric imaging is again used in order to determine plasma drift velocities. The final output from the model is in turn used to assess the linear correlation between the scintillation indices S4 and σØ recorded by several GPS L1 band scintillation receivers stationed in the north polar cap and mean gradient drift wave amplitudes. Four separate magnetic storm periods, totaling 13 days, are analyzed in this way. The results show weak but significant linear correlations between the mean wave amplitudes calculated and the observed scintillation indices at F layer altitudes.
    Description: Published
    Description: A07309
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: reserved
    Keywords: scintillations ; polar ionosphere ; gradient drift ; instability ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations ; 03. Hydrosphere::03.03. Physical::03.03.05. Instruments and techniques ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-18
    Description: This paper presents the project Earth Cooling by Water Vapor Radiation, an observational programme, which aims at developing a database of spectrally resolved far infrared observations, in atmospheric dry conditions, in order to validate radiative transfer models and test the quality of water vapor continuum and line parameters. The project provides the very first set of far-infrared spectral downwelling radiance measurements, in dry atmospheric conditions, which are complemented with Raman Lidar-derived temperature and water vapor profiles.
    Description: MIUR PRIN 2005, project 2005025202/Area 02.
    Description: Published
    Description: L04812
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: IR H2O rotation band ; 01. Atmosphere::01.01. Atmosphere::01.01.05. Radiation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-18
    Description: The rheological properties of suspensions containing high solid fractions are investigated. Attention is focused on viscosity of silicate and magmatic melt systems. A general empirical equation which describes the relative viscosity of suspensions as a function of suspended solid fraction is proposed. In the limit of very dilute solid concentrations it reduces to the Einstein equation. The proposed relationship is satisfactorily applied to reproduce available experimental data relative to silicate melts. Moreover, the extrapolation of the model to very high concentrations is compared with experimental observations on partially‐melted granite.
    Description: Published
    Description: L22308
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-05-17
    Description: This is the first report in the scientific literature of direct measurement of the terminal settling velocity of volcanic particles during an eruption. Field measurements using a continuous wave X-band disdrometer were carried out at Mt. Etna on 18 and 19 December 2002, when the explosive activity produced a 4 km high volcanic plume. These data allow the estimation of the intensity of the fallout and the measurement of the terminal settling velocities of the volcanic particles in real-time. The main results are: (1) the tested instrument detected coherent falling volcanic particles from 0.2 to 1 mm diameter; (2) measured terminal settling velocities were in agreement with both experimental and theoretical methods; (3) however, the measured velocities were clustered around few discrete values, rather than a range of velocities as would be expected if the particles were falling simultaneously and discretely. This new methodology has many new applications for local hazard mitigation and improved understanding of fallout processes.
    Description: Published
    Description: 1-5
    Description: partially_open
    Keywords: Volcanology: Explosive volcanism ; Volcanology: Remote sensing of volcanoes ; Volcanology: Instruments and techniques ; Volcanology: Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 163670 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-05-17
    Description: At least two transient events of extreme global warming occurred superimposed on the long-term latest Paleocene and early Eocene warming trend in the Paleocene-Eocene thermal maximum (PETM) (or ETM1 ~55.5 Ma) and the Elmo (or ETM2 ~53.6 Ma). Other than warmth, the best known PETM is characterized by (1) significant injection of 13C-depleted carbon into the ocean-atmosphere system, (2) deep-sea carbonate dissolution, (3) strong biotic responses, and (4) perturbations of the hydrological cycle. Documentation of the other documented and suspected "hyperthermals" is, as yet, insufficient to assess whether they are similar in nature to the PETM. Here we present and discuss biomagnetostratigraphic data and geochemical records across two lower Eocene successions deposited on a continental margin of the western Tethys: the Farra and Possagno sections in the Venetian pre-Alps. We recognize four negative carbon isotope excursions within chron C24. Three of these shifts correlate to known or suspected hyperthermals: the PETM, the Eocene thermal maximum 2 (~53.6 Ma), and the informally named "X event" (~52.5 Ma). The fourth excursion lies within a reverse subchron and occurred between the latter two. In the Farra section, the X event is marked by a ~0.6% negative carbon isotope excursion and carbonate dissolution. Furthermore, the event exhibits responses among calcareous nannofossils, planktic foraminifera, and dinoflagellates that are similar to, though less intense than, those observed across the PETM. Sedimentological and quantitative micropaleontological data from the Farra section also suggest increased weathering and runoff as well as sea surface eutrophication during this event.
    Description: Published
    Description: PA2209
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Paleoclimate ; Hyperthermal events ; Early Eocene ; Bio-magnetostratigraphy ; Geochemistry ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-06-25
    Description: Antarctica’s late Cenozoic (the past ~15 million years) climate history is poorly known from direct evidence, owing to its remoteness, an extensive sea ice apron, and an ice sheet cover over the region for the past 34 million years. Consequently, knowledge about the role of Antarctica’s ice sheets in global sea level and climate has relied heavily upon interpretations of oxygen isotope records from deep-sea cores. Whereas these isotopic records have revolutionized our understanding of climate-ice-ocean interactions, questions still remain about the specific role of Antarctic ice sheets in global climate. Such questions can be addressed from geological records at the marine margin of the ice sheets, recovered by drilling from floating ice platforms [e.g., Davey et al., 2001; Harwood et al., 2006; Barrett, 2007].
    Description: Published
    Description: 557-568
    Description: 3.8. Geofisica per l'ambiente
    Description: N/A or not JCR
    Description: reserved
    Keywords: Antarctic ; climate ; 02. Cryosphere::02.03. Ice cores::02.03.05. Paleoclimate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-06-21
    Description: We have processed thirty Global Positioning System (GPS) campaigns carried out at Etna from 1994 to early 2001 between the last two main flank eruptions of the Mt. Etna (Sicily, Italy). This rest period allowed us to investigate the deep magma plumbing system of the Mt. Etna. The temporal dynamics of twenty-three points observed three times or more were analyzed. All the time series show a first-order linear trend during the five years period. It suggests that the volcano was continuously deformed by the action of a deep source while a discrete activity of the volcano was observed at the summit. We have interpreted the residual deformation field as the result of an major eastward motion of the eastern flank of the volcano.
    Description: Published
    Description: L02309
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 201609 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-06-25
    Description: The Antarctic Geological Drilling (ANDRILL) program — a collaboration between Germany, Italy, New Zealand, and the United States that is one of the larger programs endorsed by the International Polar Year (IPY; http:// www .ipy .org) — successfully completed the drilling phase of the Southern McMurdo Sound (SMS) Project in December 2007. This second drill core of the program’s campaign in the western Ross Sea, Antarctica, complements the results of the first drilling season [Naish et al., 2007] by penetrating deeper into the stratigraphic section in the Victoria Land Basin and extending the recovered time interval back to approximately 20 million years ago.
    Description: Published
    Description: 89-90
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: N/A or not JCR
    Description: reserved
    Keywords: ANDRILL ; SMS Project ; MMCO (Middle Miocene Climatic Optimum) ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-11-17
    Description: We analyze the volcano seismicity recorded during the 2007 eruption of Stromboli. Data-set is composed of the continuous recordings of a three-component broad-band seismometer and of a strainmeter. Starting from the characterization of the standard activity as a stationary phase of equilibrium, we investigate the non-equilibrium phase of the effusive process. A statistical analysis of the explosions reveals that the occurrence is always driven by a Poisson process as for the standard activity, even approaching the effusion phase, with the only difference in shortening the inter-times just during the effusion. A slightly different process can be advocated for the swarms of the explosions, because a maximum in the distribution of inter-times can be evidenced. Regarding the amplitudes of the explosion-quakes, they have a log-normal distribution until the effusion onset as in the standard Strombolian activity. The actual departure from that stationarity seems to be traced by an early deformative response at very long period. It appears as a transient oscillating signal characterized by a period of about three days that modulates the explosion amplitudes. In a conceptual organ pipe-like model it is related to the chocking of the pipe. The successive activity can be interpreted as the response of volcano to restore the equilibrium condition.
    Description: Published
    Description: B09312
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Description: open
    Keywords: Stromboli ; eruption ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-11-12
    Description: Accepted for publication in Journal of Geophysical Research. Copyright (2010) American Geophysical Union.
    Description: Carbon dioxide (CO2) diffuse degassing structures (DDS) at Furnas Volcano (São Miguel Island, Azores) are mostly associated with the main fumarolic fields, evidence that CO2 soil degassing is the surface expression of rising steam from the hydrothermal system. Locations with anomalous CO2 flux are mainly controlled by tectonic structures oriented WNW-ESE and NW-SE and by the geomorphology of the volcano, as evidenced by several DDS located in depressed areas associated with crater margins. Hydrothermal soil CO2 emissions in Furnas volcano are estimated to be ~ 968 t d-1. Discrimination between biogenic and hydrothermal CO2 was determined using a 1 statistical approach and the carbon isotope composition of the CO2 efflux. Different sampling densities were used to evaluate uncertainty in the estimation of the total CO2 flux, and showed that a low density of points may not be adequate to quantify soil emanations from a relatively small DDS. Thermal energy release associated to diffuse degassing at Furnas caldera is about 118 MW (from an area of ~ 4.8 km2) based on the H2O/CO2 ratio in fumarolic gas. The DDS affect also Furnas and Ribeira Quente villages, which are located inside the caldera and in the south flank of the volcano, respectively. At these sites, 58% and 98% of the houses are built over hydrothermal CO2 emanations, and the populations are at risk due to potential high concentrations of CO2 accumulating inside the dwellings. Keywords: Soil diffuse degassing; soil CO2 flux; emission rates; Azores archipelago 2
    Description: Published
    Description: B12208
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Description: open
    Keywords: Soil CO2 emissions ; Furnas volcano ; volcano monitoring. ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-12-14
    Description: An unusual nighttime impulsive electron density enhancement was observed on 6 March 2010 over a wide region of South America, below the southern crest of the equatorial anomaly, under low solar activity and quiet geomagnetic conditions. The phenomenon was observed almost simultaneously by the F2 layer critical frequency ( foF2) recorded at three ionospheric stations which are widely distributed in space, namely Cachoeira Paulista (22.4°S, 44.6°W, magnetic latitude 13.4°S), São José dos Campos (23.2°S, 45.9°W, magnetic latitude 14.1°S), Brazil, and Tucumán (26.9°S, 65.4°W, magnetic latitude 16.8°S), Argentina. Although in a more restricted region over Tucumán, the phenomenon was also observed by the total electron content (TEC) maps computed by usingmeasurements from 12 GPS receivers. The investigated phenomenon is very particular because besides being of brief duration, it is characterized by a pronounced compression of the ionosphere. This compression was clearly visible both by the virtual height of the base of the F region (h′F) recorded at the aforementioned ionospheric stations, and by both the vertical electron density profiles and the slab thickness computed over Tucumán. Consequently, neither an enhanced fountain effect nor plasma diffusion from the plasmasphere can be considered as the single cause of this unusual event. A thorough analysis of isoheight and isofrequency ionosonde plots suggest that traveling ionospheric disturbances (TIDs) caused by gravity wave (GW) propagation could have likely played a significant role in causing the phenomenon.
    Description: Published
    Description: A12314
    Description: 1.6. Osservazioni di geomagnetismo
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: 5.4. Banche dati di geomagnetismo, aeronomia, clima e ambiente
    Description: JCR Journal
    Description: open
    Keywords: equatorial ionosphere ; travelling ionospheric disturbance ; ionosphere-atmosphere interactions ; instrument and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.07. Space and Planetary sciences::05.07.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-12-15
    Description: We propose a novel approach to analyze continuous seismic signal and separate the sources from background noise. A specific application to the seismicity recorded at Campi Flegrei Caldera during the 2006 ground uplift is presented. The fundamental objective is to improve the standard procedures of picking the emergent onset arrivals of the seismic signals, often buried in the high-level ambient noise, in order to obtain an appropriate catalogue for monitoring the activity of this densely populated volcanic area. This is particularly useful in order to estimate the release of the seismic energy and to put constraints on the source dynamics. An Independent Component Analysis based approach for the Blind Source Separation of convolutive mixtures is adopted to obtain a clear separation of Long Period events from the ambient noise. The approach presents good performance and it is suitable for real time implementation in seismic monitoring. Its application to the continuous seismic signal recorded at Campi Flegrei has allowed the extraction of high-quality waveforms, considerably improving the detection of low-energy events.
    Description: Published
    Description: 5
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Campi Flegrei ; convolutive independent component analysis ; long-period detection ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-12-03
    Description: B: Unraveling the physical state of the upper mantle, including the transition zone, is one of the key factors for understanding the Earth's mantle dynamics. Knowledge of mantle temperature and composition is mainly based on the interpretation of seismological observations based on insights from mineral physics. Despite the progress made to image the 3-D seismic structure of the upper mantle, its interpretation in terms of physical parameters is still challenging and it requires a truly interdisciplinary approach. Due to the better knowledge of the elastic and anelastic properties of mantle minerals at high temperatures and pressures, such an approach is now becoming feasible. We propose a new waveform inversion procedure, based on a formalism previously developed at Berkeley for global elastic and anelastic tomography, and using our existing collection of long-period fundamental and higher mode surface waveforms. Here, we incorporate mineral physics data at an early stage of the process to directly map lateral variations in temperature and composition, using recent estimates of the temperature and composition derivatives of seismic velocities (∂lnV/∂lnT,C). Anelasticity introduces a non-linear dependence of the seismic velocities with temperature throughout the upper mantle, and phase-transitions confer a non-linear character to the compositional derivatives as well, therefore the kernels should be re-computed after each iteration of the inversion. We discuss ways to address the non-linearities, as well as uncertainties in the partial derivatives. In addition to constraining the lateral variations in temperature or composition, the models can have implications on the average structure of the upper mantle. The most-common accepted physical 1-D structure had problems to satisfactorily fit seismic travel time data, requiring a slower TZ to improve the fit. However, these data do not have sufficient coverage (and resolution) in the TZ. A complementary outcome of our models will be to shed light on whether the seismic data require a modification of the physical structure in the transition zone and if the three-dimensional heterogeneity introduces a significant shift of the average physical structure away from adiabatic pyrolite.
    Description: Published
    Description: San Francisco
    Description: open
    Keywords: mantle temperatures ; seismology ; 04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Format: 5932792 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-02-17
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: We study how heterogeneous rupture propagation affects the coherence of shear– and Rayleigh–Mach wave fronts radiated by supershear earthquakes. We address this question using numerical simulations of ruptures on a planar, vertical strike–slip fault embedded in a three–dimensional, homogeneous, linear elastic half–space. Ruptures propagate spontaneously in accordance with a linear slip–weakening friction law through both homogeneous and heterogeneous initial shear stress fields. In the 3–D homogeneous case, rupture fronts are curved due to interactions with the free surface and the finite fault width; however, this curvature does not greatly diminish the coherence of Mach fronts relative to cases in which the rupture front is constrained to be straight, as studied by Dunham and Bhat (2008). Introducing heterogeneity in the initial shear stress distribution causes ruptures to propagate at speeds that locally fluctuate above and below the shear–wave speed. Calculations of the Fourier amplitude spectra (FAS) of ground velocity time histories corroborate the kinematic results of Bizzarri and Spudich (2008): 1) The ground motion of a supershear rupture is richer in high frequency with respect to a subshear one. 2) When a Mach pulse is present, its high frequency content overwhelms that arising from stress heterogeneity. Present numerical experiments indicate that a Mach pulse causes approximately an –1.7 high frequency falloff in the FAS of ground displacement. Moreover, within the context of the employed representation of heterogeneities and over the range of parameter space that is accessible with current computational resources, our simulations suggest that while heterogeneities reduce peak ground velocity and diminish the coherence of the Mach fronts, ground motion at stations experiencing Mach pulses should be richer in high frequencies compared to stations without Mach pulses. In contrast to the foregoing theoretical results, we find no average elevation of 5%–damped absolute response spectral accelerations (SA) in the period band 0.05–0.4 s observed at stations that presumably experienced Mach pulses during the 1979 Imperial Valley, 1999 Kocaeli, and 2002 Denali Fault earthquakes compared to SA observed at non–Mach pulse stations in the same earthquakes. A 20% amplification of short period SA is seen only at a few of the Imperial Valley stations closest to the fault. This lack of elevated SA suggests that either Mach pulses in real earthquakes are even more incoherent that in our simulations, or that Mach pulses are vulnerable to attenuation through nonlinear soil response. In any case, this result might imply that current engineering models of high frequency earthquake ground motions do not need to be modified by more than 20% close to the fault to account for Mach pulses, provided that the existing data are adequately representative of ground motions from supershear earthquakes.
    Description: Published
    Description: B08301
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Numerical modeling ; Supershear ruptures ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-12-18
    Description: Ground-based measurements of stratospheric constituents were carried out from Thule Air Base, Greenland (76.5 N, 68.7 W), during the winters of 2001–2002 and 2002–2003, involving operation of a millimeter-wave spectrometer (GBMS) and a lidar system. This work focuses on the GBMS retrievals of stratospheric O3, CO, N2O, and HNO3, and on lidar stratospheric temperature data obtained during the first of the two winter campaigns, from mid-January to early March 2002. For the Arctic lower stratosphere, the winter 2001–2002 is one of the warmest winters on record. During a large fraction of the winter, the vortex was weakened by the influence of the Aleutian high, with low ozone concentrations and high temperatures observed by GBMS and lidar above 27 km during the second half of February and in early March. At 900 K ( 32 km altitude), the low ozone concentrations observed by GBMS in the Aleutian high are shown to be well correlated to low solar exposure. Throughout the winter, PSCs were rarely observed by POAM III, and the last detection was recorded on 17 January. During the lidar and GBMS observing period that followed, stratospheric temperatures remained above the threshold for PSCs formation throughout the vortex. Nonetheless, using correlations between GBMS O3 and N2O mixing ratios, in early February a large ozone deficiency owing to local ozone loss is noted inside the vortex. GBMS O3-N2O correlations suggest that isentropic transport brought a O3 deficit also to regions near the vortex edge, where transport most likely mimicked local ozone loss.
    Description: Published
    Description: D14304
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: remote sensing ; polar stratosphere ; 01. Atmosphere::01.01. Atmosphere::01.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-12-14
    Description: Magmas in volcanic conduits commonly contain microlites in association with preexisting phenocrysts, as often indicated by volcanic rock textures. In this study, we present two different experiments that investigate the flow behavior of these bidisperse systems. In the first experiments, rotational rheometric methods are used to determine the rheology of monodisperse and polydisperse suspensions consisting of smaller, prolate particles (microlites) and larger, equant particles (phenocrysts) in a bubble‐free Newtonian liquid (silicate melt). Our data show that increasing the relative proportion of prolate microlites to equant phenocrysts in a magma at constant total particle content can increase the relative viscosity by up to three orders of magnitude. Consequently, the rheological effect of particles in magmas cannot be modeled by assuming a monodisperse population of particles. We propose a new model that uses interpolated parameters based on the relative proportions of small and large particles and produces a considerably improved fit to the data than earlier models. In a second series of experiments we investigate the textures produced by shearing bimodal suspensions in gradually solidifying epoxy resin in a concentric cylinder setup. The resulting textures show the prolate particles are aligned with the flow lines and spherical particles are found in well‐organized strings, with sphere‐depleted shear bands in high‐shear regions. These observations may explain the measured variation in the shear thinning and yield stress behavior with increasing solid fraction and particle aspect ratio. The implications for magma flow are discussed, and rheological results and textural observations are compared with observations on natural samples.
    Description: Published
    Description: Q07024
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: analog experiments ; crystal bearing ; polydisperse suspensions ; rheology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-05-11
    Description: An empirical Green’s function (EGF) technique has been developed to detect the rupture velocity history of a small earthquake. The assumed source model is a circular crack that is characterized by a single and unipolar moment rate function (MRF). The deconvolution is treated as an inverse problem in the time domain, which involves an assumed form of the moment rate function (MRF). The source parameters of the MRF are determined by adopting a global nonlinear inversion scheme. A thorough synthetic study on both synthetic and real seismograms allowed us to evaluate the degree of reliability of the retrieved model parameters. The technique was applied to four small events that occurred in the Umbria-Marche region (Italy) in 1997. To test the hypothesis of a single rupture process, the inversion results were compared with those arising from another EGF technique, which assumes a multiple rupture process. For each event, the best fit model was selected using the corrected Akaike Information Criterion. For all the considered events the most interesting result is that the selected best fit model favors the hypothesis of a single faulting process with a clear variability of the rupture velocity during the process. For the studied events, the maximum rupture speed can even approach the P-wave velocity at the source, as theoretically foreseen in studies of the physics of the rupture and recently observed for high-magnitude earthquakes.
    Description: Published
    Description: B10314
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: EGF technique ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-05-25
    Description: The 1974 western flank eruption of Mount Etna produced a rare, nearly aphyric and plagioclase-free trachybasalt that could not be derived from the central volcano conduits and was more alkaline and more radiogenic than all previous historical lavas. New results for the petrochemistry and volatile content of its products, combined with contemporaneous seismic and volcanological observations, allow us to reinterpret the origin and significance of this event. We show that the eruption was most likely triggered by deep tectonic fracturing that allowed a dike-like intrusion to propagate in 9 days from 11 km depth up to the surface, bypassing the central conduits. Relatively fast, closed system decompression of the volatile-rich magma initially led to lava fountaining and the rapid growth of two pyroclastic cones (Mounts De Fiore), followed by Strombolian activity and the extrusion of viscous lava flows when gas-melt separation developed in the upper portion of the feeding fracture. The 1974 trachybasalt geochemistry indicates its derivation by mixing 25% of preexisting K-poor magma (best represented by 1763 La Montagnola eruption’s products) and 75% of a new K-rich feeding magma that was gradually invading Mount Etna’s plumbing system and became directly extruded during two violent flank eruptions in 2001–2003. We propose to classify 1974-type so-called ‘‘eccentric’’ eruptions on Etna as deep dike-fed (DDF) eruptions, as opposed to more common central conduit-fed flank eruptions, in order to highlight their actual origin rather than their topographic location. We ultimately discuss the possible precursors of such DDF eruptions.
    Description: Published
    Description: B07204
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: 1974 deep dike-fed eruption ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-03-02
    Description: On 17 January 2002, the city of Goma was partly destroyed by two of the several lava flows erupted from a roughly N-S oriented fracture system opened along the southern flank of Mount Nyiragongo (Democratic Republic of Congo), in the western branch of the East African rift system. A humanitarian and scientific response was promptly organized by international, governmental, and nongovernmental agencies coordinated by the United Nations and the European Union. Among the different scientific projects undertaken to study the mechanisms triggering this and possible future eruptions, we focused on the isotopic (He, C, and Ar) analysis of the magmatic-hydrothermal and cold gas discharges related to the Nyiragongo volcanic system, the Kivu and Virunga region. The studied area includes the Nyiragongo volcano, its surroundings, and peripheral areas inside and outside the rift. They have been subdivided into seven regions characterized by distinct 3He/4He (expressed as R/Rair) ratios and/or d13C-CO2 values. The Nyiragongo summit crater fumaroles, whose R/Rair and d13C-CO2 values are up to 8.73 and from 3.5% to 4.0% VPDB, respectively, show a clear mantle, mid-ocean ridge basalt (MORB)-like contribution. Similar mantle-like He isotopic values (6.5–8.3 R/Rair) are also found in CO2-rich gas emanations (mazukus) along the northern shoreline of Lake Kivu main basin, whereas the 13dC-CO2 values range from 5.3% to 6.8% VPDB. The mantle influence progressively decreases in (1) dissolved gases of Lake Kivu (2.6–5.5 R/Rair) and (2) the distal gas discharges within and outside the two sides of the rift (from 0.1 to 1.7 R/Rair). Similarly, d13C-CO2 ratios of the peripheral gas emissions are lighter (from 5.9% to 11.6% VPDB) than those of the crater fumaroles. Therefore, the spatial distribution of He and C signatures in the Lake Kivu region is mainly produced by mixing of mantle-related (e.g., Nyiragongo crater fumaroles and/or mazukus gases) and crustal-related (e.g., gas discharges in the Archean craton) fluids. The CO2/3He ratio (up to 10 1010) is 1 order of magnitude higher than those found in MORB, and it is due to the increasing solubility of CO2 in the foiditic magma feeding the Nyiragongo volcano. However, the exceptionally high 40Ar*/4He ratio (up to 8.7) of the Nyiragongo crater fumaroles may be related to the difference between He and Ar solubility in the magmatic source. The results of the present investigation suggest that in this area the uprising of mantle-originated f luids seems strongly controlled by regional tectonics in relation to the geodynamic assessment of the rift. These fluids are mainly localized in a relatively small zone between Lake Kivu and Nyiragongo volcano, with important implications in terms of volcanic activity.
    Description: Published
    Description: B01205
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-03-02
    Description: Waters and dissolved gases collected along vertical profiles in the five basins (Main, Kabuno Bay, Kalehe, Ishungu, and Bukavu) forming the 485 m deep Lake Kivu (Democratic Republic of the Congo) were analyzed to provide a geochemical conceptual model of the several processes controlling lake chemistry. The measured horizontal and vertical variations of water and gas compositions suggest that each basin has distinct chemical features produced by (1) different contribution from long circulating fluid system containing magmatic CO2, responsible of the huge CO2(CH4)-rich reservoir hosted within the deep lake water; (2) spatial variations of the biomass distribution and/or speciation; and (3) solutes from water-rock interactions. The Kabuno Bay basin is characterized by the highest rate of magmatic fluid input. Accordingly, this basin must be considered the most hazardous site for possible gas outburst that could be triggered by the activity of the Nyiragongo and Nyamulagira volcanoes, located a few kilometers north of the lake.
    Description: Published
    Description: Q02005
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-06-15
    Description: Villarrica volcano (Chile) is one of the most active volcanoes in South America. Its activity is currently characterized by continuous degassing from a summit lava lake/vent punctuated by explosive events. During November 2004 a multidisciplinary experiment was deployed for a 10-d period to define the style of emission and infer shallow conduit dynamics at this basaltic center. This involved collection of thermal, seismic and infrasonic data to describe the background activity confined inside the crater, and use of samples to texturally and chemically characterize the ejecta from more energetic explosions able to attain the crater rim. The background activity was characterized by gas bursting with a frequency of 9 events per minute. This involved emission of gas puffs fed by bubble bursting, with larger bursts emplacing sheets of magma onto the lower crater walls. The ejecta population from the more energetic events was characterized by the coexistence of both scoriae and golden pumice. These two types of clasts have different textures but identical glass compositions, suggesting that they underwent different conduit histories. The golden pumice is interpreted as the expanding inner part of a short-lived jet fed by a rapidly ascending, magma batch. The scoria forms the outer portion of the jet and comprises degassed material entrained during passage of the fresh batch through material residing in the upper-most portion of the conduit. We thus have a largely degassed upper column that feeds persistent bubble bursting, through which fresh batches occasionally rise to feed events of relatively higher energy.
    Description: Published
    Description: B08206
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: basaltic activity ; remote sensing ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-06-07
    Description: Stromboli made in July 2002 from fixed positions, using an automated plume scanning technique. Spectral data were collected using a miniature ultraviolet spectrometer, and SO2 column amounts were derived with a differential optical absorption spectroscopy evaluation routine. Scanning through the plume was enabled by a 45 turning mirror affixed to the shaft of a computer controlled stepper motor, so that scattered skylight from incremental angles within the horizon-to-horizon scans was reflected into the field of view of the spectrometer. Each scan lasted _5 min and, by combining these data with wind speeds, average fluxes of 940, 14, and 280 Mg d_1 were obtained for Etna, Vulcano, and Stromboli, respectively. For comparative purposes, conventional road and airborne traverses were also made using this spectrometer, yielding fluxes of 850, 17, and 210 Mg d_1. The automated scanning technique has the advantage of obviating the need for time-consuming traverses underneath the plume and is well suited for longer-term telemetered deployments to provide sustained high time resolution flux data.
    Description: Gruppo Nazionale per Vulcanolgia (GNV), the EC 5th Framework project ‘‘MULTIMO’’, and NERC grant GR9/04655
    Description: Published
    Description: 2455
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic gas monitoring, remote sensing, SO2 emissions, DOAS,ultraviolet spectroscopy ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-06-16
    Description: Based on global earthquake catalogs, the hypocenters, nodal planes, and seismic moments of worldwide subduction plate interface earthquakes were extracted for the period between 1900 and 2007. Assuming that the seismogenic zone coincides with the distribution of 5.5 ≤ M 〈 7 earthquakes, the subduction interface seismogenic zones were mapped for 80% of the trench systems and characterized with geometrical and mechanical parameters. Using this database, correlations were isolated between significant parameters to identify cause-effect relationships. Empirical laws obtained in previous studies were revisited in light of this more complete, accurate, and uniform description of the subduction interface seismogenic zone. The seismogenic zone was usually found to end in a fore-arc mantle, rather than at a Moho depth. The subduction velocity was the first-order controlling parameter for variations in the physical characteristics of plate interfaces, determining both the geometry and mechanical behavior. As such, the fast subduction zones and cold slabs were associated with large and steep plate interfaces, which, in turn, had large seismic rates. The subduction velocity could not account for the potential earthquake magnitude diversity that was observed along the trenches. Events with Mw ≥ 8.5 preferentially occurred in the vicinity of slab edges, where the upper plate was continental and the back-arc strain was neutral. This observation was interpreted in terms of compressive normal stresses along the plate interface. Large lateral ruptures should be promoted in neutral subduction zones due to moderate compressive stresses along the plate interface that allow the rupture to propagate laterally.
    Description: Published
    Description: Q01004
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: subduction zones ; seismicity ; statistics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-07-14
    Description: Hydrothermal alteration may weaken volcanic rocks, causing the gravitational instability of portions of active volcanoes with potentially hazardous collapses. Here we show high‐resolution multibeam, magnetic and gravity surveys of the Marsili seamount, the largest active volcano of Europe located in the southern Tyrrhenian back‐arc basin. These surveys reveal zones with exceptionally low densities and with vanishing magnetizations, due probably to the comminution of basalts during hyaloclastic submarine eruptions and to their post‐eruptive hydrothermal alteration. The location of these regions correlates with morphological data showing the occurrence of past collapses. Similar evidence has been obtained from pre existing data at Vavilov Seamount, another older volcanic system in the Tyrrhenian back‐arc basin. Here a large volume of at least 50 km3 may have collapsed in a single event from its 40 km long western flank. Given the similarities between these volcanoes, a large collapse event may also be expected at Marsili.
    Description: Published
    Description: L03305
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: 3.4. Geomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Marsili Seamount ; Gravity anomalies ; Magnetic anomalies ; Tyrrhenian Sea ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020-10-16
    Description: Recent satellite geodetic measurements help to clearly define the velocity field in the Aegean-Anatolian area. The velocity field can be broadly characterized by anticlockwise rotation of this region relative to Eurasia, around a pole located at Lat. 32.73, Long. 32.03, north of the Egyptian shoreline. Studies of the fault kinematics in the region also provide information on the time evolution of the stress field. In this work, we model deformation in the Aegean-Anatolian region to better understand the tectonic origin of the observed stress and velocity fields. We found that the observed deformation pattern can be well reproduced by imposing simple boundary conditions including: (1) northward displacement of the Arabian plate, (2) locking of eastward motion in northwestern Greece and (3) suction force at the Hellenic trench. The observed variation in the stress field occurred at 0.9 Ma can be partially explained by a change in the activity of the North Anatolian fault.
    Description: Published
    Description: 2087-2090
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Plate Motion ; Continental tectonics ; Dynamics of lithosphere and mantle ; Plate boundary ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2020-10-16
    Description: A model is proposed to explain the spatial distribution of foreshocks of the June 17th 2000, M s 6.6 earthquake in the South Iceland Seismic Zone (SISZ) and the high stress drop of the mainshock. Fluids of magmatic origin, ascending at near-lithostatic pressure through a low permeability layer perturb the regional stress field, inhibiting fluid flow laterally, where a high strength asperity is left. The asperity is modeled as elastic, embedded within a medium with low effective rigidity. Regional stresses due to tectonic motions are perturbed by the presence of the asperity, enhancing the production of hydrofractures and foreshocks in the NW and SE quadrants and increasing considerably the shear stress within the asperity, leading to the NS striking mainshock.
    Description: Published
    Description: L24305
    Description: 7T. Variazioni delle caratteristiche crostali e precursori sismici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-10-16
    Description: The distribution of the magnitudes of seismic events is generally assumed to be independent on past seismicity. However, by considering events in causal relation, for example mother-daughter, it seems natural to assume that the magnitude of a daughter event is conditionally dependent on the one of the corresponding mother event. In order to find experimental evidence supporting this hypothesis, we analyze different catalogs, both real and simulated, in two different ways. From each catalog, we obtain the law of triggered events' magnitude by kernel density. The results obtained show that the distribution density of triggered events' magnitude varies with the magnitude of their corresponding mother events. As the intuition suggests, an increase of mother events' magnitude induces an increase of the probability of having "high" values of triggered events' magnitude. In addition, we see a statistically significant increasing linear dependence of the magnitude means.
    Description: Published
    Description: 903–916
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: Statistics - Applications; Statistics - Applications; Physics - Geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2020-10-16
    Description: We present new ground-based measurements of polar stratospheric and mesospheric CO, made with a millimeter-wave spectrometer at Thule, Greenland (76.5 N, 68.7 W). Almost daily measurements were made between 17 January and 4 March 2002 and again between 5 January and 22 February 2003. We stress here the retrieval and analysis of CO mixing ratios in the 50–80 km altitude range, though it can be monitored at lower altitudes as well. Since CO exhibits a strong positive latitude gradient from the summer to the winter pole, it is an excellent tracer for poleward transport from lower latitudes. Moreover, the mixing ratio of CO increases rapidly from 40 km to at least 100 km at midlatitudes, providing a good tracer for high-altitude vertical transport as well. Our profiles indicate that in winter near the poles the CO mixing ratio decreases above 70 km because of subsidence of air and minimal high-altitude photoproduction at high latitudes. Our data also show large variations in mixing ratio and vertical distribution, yielding a good picture of stratospheric and mesospheric dynamics-induced changes on a scale of hours to days. These observations verify that CO serves as an excellent tracer of vortex-related dynamics in the 30–80 km altitude range, where other information, particularly above 40 km, may be sparse, unreliable, or nonexistent. Our results are in general agreement with analyses of 1991–1992 Improved Stratospheric and Mesospheric Sounder (ISAMS) satellite data by Lopez-Valverde et al. [1993, 1996] and by Allen et al. [1999, 2000]. We show the contrast between CO over the summer pole and CO over the winter pole with the aid of trial observations made at the South Pole during the austral summer of 1999–2000. Our Thule data indicate that large concentrations of CO generally exist in winter just outside the vortex boundary. The large rapid variations in vertical profile that are found in our data in 2002 appear to be well correlated with vortex position in the lower stratosphere. In 2003 this correlation appeared to be much weaker, but early 2003 was also a period of vortex splitting in the Arctic on three occasions during our observation period, accompanied by generally more complex vortex dynamics.
    Description: Published
    Description: D06105
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Keywords: Arctic mesosphere ; Carbon monoxide ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2020-11-26
    Description: The Tindari Fault System (southern Tyrrhenian Sea, Italy) is a regional zone of brittle deformation located at the transition between ongoing contractional and extensional crustal compartments and lying above the western edge of a narrow subducting slab. Onshore structural data, an offshore seismic reflection profile, and earthquake data are analyzed to constrain the present geometry of the Tindari Fault System and its tectonic evolution since Neogene, including the present seismicity. Results show that this zone of deformation consists of a broad NNW trending system of faults including sets of right-lateral, left-lateral, and extensional faults as well as early strike-slip faults reworked under late extension. Earthquakes and other neotectonic data provide evidence that the Tindari Fault System is still active in the central and northern sectors and mostly accommodates extensional or rightlateral transtensional displacements on a diffuse array of faults. From these data, a multiphase tectonic history is inferred, including an early phase as a right-lateral strike-slip fault and a late extensional reworking under the influence of the subductionrelated processes, which have led to the formation of the Tyrrhenian back-arc basin. Within the present, regional, geodynamic context, the Tindari Fault System is interpreted as an ongoing accommodation zone between the adjacent contractional and extensional crustal compartments, these tectonic compartments relating to the complex processes of plate convergence occurring in the region. The Tindari Fault System might also be included in an incipient, oblique-extensional, transfer zone linking the ongoing contractional belts in the Calabrian-Ionian and southern Tyrrhenian compartments.
    Description: Published
    Description: TC2006
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3563464 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2021-01-11
    Description: We present a comprehensive processing tool for the real-time analysis of the source mechanism of very long period (VLP) seismic data based on waveform inversions performed in the frequency domain for a point source. A search for the source providing the best-fitting solution is conducted over a three-dimensional grid of assumed source locations, in which the Green’s functions associated with each point source are calculated by finite differences using the reciprocal relation between source and receiver. Tests performed on 62 nodes of a Linux cluster indicate that the waveform inversion and search for the best-fitting signal over 100,000 point sources require roughly 30 s of processing time for a 2-min-long record. The procedure is applied to post-processing of a data archive and to continuous automatic inversion of real-time data at Stromboli, providing insights into different modes of degassing at this volcano
    Description: Published
    Description: L04301
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1736327 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2021-01-27
    Description: The Sciara del Fuoco (SdF) landslides that occurred at the end of December 2002 prompted researchers to install geodetic networks to monitor deformations related to potential new slope failures. With this aim, an integrated multiparametric monitoring system was designed and deployed. In particular, this complex monitoring system is composed of four single systems: an electronic distance measurement network, installed immediately after the landslide events, a realtime GPS network, a ground-based interferometric linear synthetic aperture radar (GB-InSAR), and an automated topographic monitoring system (named Theodolite Robotic Observatory of Stromboli, or THEODOROS); the three last systems provided a continuous monitoring of selected points or sectors of the SdF. Data acquired from different systems have been jointly analyzed to reach a better understanding of the SdF dynamics. Displacement data obtained from the topographic systems are compared with those obtained from GB-InSAR, and the results of the comparison are analyzed and discussed. Furthermore, in this chapter, an example of a warning system that can detect slope instability precursors on the SdF based on a statistical analysis of the data collected by the THEODOROS system is reported.
    Description: Published
    Description: 183-199
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: reserved
    Keywords: Flank instability ; Slope failure ; Terrestrial geodesy ; Ground Based InSAR ; Continuous GPS ; Landslide monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2021-03-03
    Description: Morphological and geological observations reveal that most Apenninic faults are highly segmented and that the majority of the fault segments are less than 10 km long. Although these faults have undergone numerous paleoseismological investigations, quantitative data remain crucially lacking for a large number of fault segments. Because such data are essential to understanding how these faults have ruptured and interacted in the past and how they might behave in the future, we investigated the Holocene seismic history of the Pizzalto normal fault, a 13 km long fault segment belonging to the Pizzalto-Rotella-Aremogna fault system in the Apennines. We collected 44 samples from the Pizzalto fault plane exhumed during the Holocene and analyzed the 36Cl and rare earth element (REE) contents. Together, the 36Cl and REE concentrations show that at least six events have exhumed 4.4 m of the fault scarp between 3 and 1 ka, with slip per event values ranging from 0.3 to 1.2 m. No major events have been detected over the last 1 kyr. The Rotella-Aremogna-Pizzalto fault system has a clustered earthquake behavior with a mean recurrence time of 1.2 kyr and a low to moderate probability (ranging from 4{\%} to 26{\%}) of earthquake occurrence over the next 50 years.
    Description: Published
    Description: 1983–2003
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: central Apennines,chlorine 36,fault-based earthquake rupture forecast,paleoseismology,rare earth elements
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2021-04-07
    Description: We present the results of a study of volcanic gases at Soufrière Hills Volcano, Montserrat, which includes the first spectroscopic measurements of the major gas species CO2 and H2S at this volcano using a Multisensor Gas Analyzer System (MultiGAS) sensor. The fluxes of CO2 and H2S were 640–2750 t/d and 84–266 t/d, respectively, during July 2008, during a prolonged eruptive pause. The flux of CO2 is similar to estimates for the entire arc from previous geochemical studies, while the measured H2S flux significantly alters our interpretation of the sulphur budget for this volcano. The fluxes of both sulphur and carbon show considerable excesses over that which can be supplied by degassing of erupted magma. We demonstrate, using thermodynamic models and published constraints on preeruptive volatile concentrations, that the gas composition and fluxes are best modeled by mixing between (1) gases derived from isobaric quenching of mafic magma against cooler andesite magma at depth and (2) gases derived from shallower rhyolitic interstitial melt within the porpyritic andesite. The escape of deep‐derived gases requires pervasive permeability or vapor advection extending to several kilometers depth in the conduit and magma storage system. These results provide more compelling evidence for both the contribution of unerupted mafic magma to the volatile budget of this andesitic arc volcano and the importance of the intruding mafic magma in sustaining the eruption. From a broader perspective, this study illustrates the importance and role of underplating mafic magmas in arc settings. These magmas play an important role in triggering and sustaining eruptions and contribute in a highly significant way to the volatile budget of arc volcanoes.
    Description: Published
    Description: Q04005
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: magma degassing ; thermodynamics ; volcanic gases ; Soufriere Hills ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    AGU
    In:  EPIC3AGU Fall Meeting 2017, New Orleans, 2017-12-11-2017-12-15New Orleans, AGU
    Publication Date: 2018-01-07
    Description: A prominent two-step rise in atmospheric CO2 marked the end of the last glacial. The steps coincided with climatic intervals Heinrich Stadial 1 (HS1) and the Younger Dryas (YD). Records of 231Pa/230Th on sediment cores bathed by NADW, revealed a rapid reduction of the Atlantic Meridional Overturning Circulation (AMOC), during these intervals. It was argued that a weakened AMOC would have significantly reduced the efficiency of the biological pump and thus might have contributed to the rise in atmospheric CO2. Despite playing an important role, this process fails to account for the enigmatic drop in atmospheric Δ14C and δ13C during HS1 that marks the first step of the CO2-rise. Increasing CO2-concentrations with a simultaneous drop in their Δ14C, call for the ventilation of an old and 14C-depleted carbon reservoir. In this respect, several studies point to the presence of very old, 14C-depleted deep-waters in the glacial Southern Ocean, which rejuvenated during the last deglaciation. However, the accumulation of 14C-depleted, carbon-rich waters in the deep Southern Ocean requires circulation patterns that significantly differ from todays. Here we present a combined set of 231Pa/230Th-, Rare Earth Element- and XRF-proxy records to understand the evolution of the South Pacific Overturning Circulation (SPOC) over the last 35,000 years. Our reconstructions are based on a transect of five sediment cores from the Southwest Pacific, covering the AAIW as well as the UCDW and LCDW. Our data show that throughout the last glacial the SPOC was significantly weakened. This reduction favored the observed accumulation of 14C-depleted CO2 in Circumpolar Deep Waters (CDW). Parallel to the HS1 increase of atmospheric CO2, the deep circulation picked up its pace and recovered toward the Holocene. This trend is in remarkable agreement with water mass radiocarbon reconstructions from the very same area, as well as with atmospherical changes in CO2, Δ14C and δ13C. Hence, we are confident that the Southern Ocean – represented here by the South Pacific – played the dominant role in the first rise in atmospheric CO2. In addition the observed deglacial SPOC strengthening may have supported the transport of warm CDW onto the shelf areas since the timing of retreating West Antarctic ice sheets is in good agreement with recent reconstructions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-05
    Description: The extended multiple linear regression (eMLR) technique is used to determine changes in anthropogenic carbon in the intermediate layers of the Eurasian Basin based on occupations from four cruises between 1996 and 2015. The results show a significant increase in basin‐wide anthropogenic carbon storage in the Nansen Basin (0.44‐0.73 ± 0.14 mol C m−2 yr−1) and the Amundsen Basin (0.63‐1.04 ± 0.09 mol C m−2 yr−1). Over the last two decades, inferred changes in ocean acidification (0.020‐0.055 pH units) and calcium carbonate desaturation (0.05‐0.18 units) are pronounced and rapid. These results, together with results from carbonate‐dynamic box model simulations and 129I tracer distribution simulations, suggest that the accumulation of anthropogenic carbon in the intermediate layers of the Eurasian Basin are consistent with increasing concentrations of anthropogenic carbon in source waters of Atlantic origin entering the Arctic Ocean followed by interior transport. The dissimilar distributions of anthropogenic carbon in the interior Nansen and Amundsen Basins are likely due to differences in the lateral ventilation of the intermediate layers by the return flows and ramifications of the boundary current along the topographic boundaries in the Eurasian Basin.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-09-04
    Description: In situ ocean bottom pressure (OBP) obtained from 154 different locations irregularly scattered over the globe is carefully processed to isolate signals related to the ocean general circulation and large‐scale sea level changes. Comparison against a global numerical ocean model experiment indicates poor correspondence for periods below 24 hr, possibly related to residual tidal signals and small timing errors in the atmospheric forcing applied to the ocean model. Correspondence increases rapidly for periods between 3 and 10 days, where wind‐driven dynamics are already well understood and consequently well implemented into numerical models. Coherence decreases again for periods around 30 days and longer, where processes not implemented into ocean general circulation models as barystatic sea level changes become more important. Correspondence between in situ data and satellite‐based OBP as obtained from the Gravity Recovery and Climate Experiment (GRACE) German Research Centre for Geosciences RL05a gravity fields critically depends on the postprocessing of Level‐2 Stokes coefficients that also includes the selection of appropriate averaging regions for the GRACE‐based mass anomalies. The assessment of other available GRACE Level‐2 products indicates even better fit of more recent solutions as ITSG‐Grace2016 and the Center for Space Research and Jet Propulsion Laboratory RL05 mascons. In view of the strong high‐frequency component of OBP, however, a higher temporal resolution of the oceanic GRACE products would be rather advantageous.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2020-04-22
    Description: One of the most intriguing facets of the climate system is that it exhibits variability across all temporal and spatial scales; pronounced examples are temperature and precipitation. The structure of this variability, however, is not arbitrary. Over certain spatial and temporal ranges, it can be described by scaling relationships in the form of power laws in probability density distributions and autocorrelation functions. These scaling relationships can be quantified by scaling exponents which measure how the variability changes across scales and how the intensity changes with frequency of occurrence. Scaling determines the relative magnitudes and persistence of natural climate fluctuations. Here, we review various scaling mechanisms and their relevance for the climate system. We show observational evidence of scaling and discuss the application of scaling properties and methods in trend detection, climate sensitivity analyses, and climate prediction.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    AGU
    In:  EPIC3Paleoceanography and Paleoclimatology, AGU, 35(9), pp. e2019PA003782, ISSN: 2572-4517
    Publication Date: 2021-02-16
    Description: The past provides evidence of abrupt climate shifts and changes in the frequency of climate and weather extremes. We explore the non‐linear response to orbital forcing and then consider climate millennial variability down to daily weather events. Orbital changes are translated into regional responses in temperature, where the precessional response is related to nonlinearities and seasonal biases in the system. We question regularities found in climate events by analyzing the distribution of inter‐event waiting times. Periodicities of about 900 and 1150 years are found in ice cores besides the prominent 1500‐years cycle. However, the variability remains indistinguishable from a random process, suggesting that centennial‐to‐millennial variability is stochastic in nature. New numerical techniques are developed allowing for a high resolution in the dynamically relevant regions like coasts, major upwelling regions, and high latitudes. Using this model, we find a strong sensitivity of the Atlantic meridional overturning circulation depending on where the deglacial meltwater is injected into. Meltwater into the Mississippi and near Labrador hardly affect the large‐scale ocean circulation, whereas subpolar hosing mimicking icebergs yields a quasi shutdown. The same multi‐scale approach is applied to radiocarbon simulations enabling a dynamical interpretation of marine sediment cores. Finally, abrupt climate events also have counterparts in the recent climate records, revealing a close link between climate variability, the statistics of North Atlantic weather patterns, and extreme events.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2021-05-06
    Description: First, we retune an algorithm based on empirical orthogonal functions (EOFs) for globally retrieving the chlorophyll a concentration (Chl‐a) of phytoplankton functional types (PFTs) from multisensor merged ocean color (OC) products. The retuned algorithm, referred to as EOF‐SST hybrid algorithm, is improved by: (i) using 23% more matchups between the updated global in situ pigment database and satellite remote sensing reflectance (Rrs) products, and (ii) including sea surface temperature (SST) as an additional input parameter. In addition to the Chl‐a of the six PFTs (diatoms, haptophytes, dinoflagellates, green algae, prokaryotes, and Prochlorococcus), the fractions of prokaryote and Prochlorococcus Chl‐a to total Chl‐a (TChl‐a), are also retrieved by the EOF‐SST hybrid algorithm. Matchup data are separated for low and high‐temperature regimes based on different PFT dependences on SST, to establish SST‐separated hybrid algorithms which demonstrate further improvements in performance as compared to the EOF‐SST hybrid algorithm. The per‐pixel uncertainty of the retrieved TChl‐a and PFT products is estimated by taking into account the uncertainties from both input data and model parameters through Monte Carlo simulations and analytical error propagation. The algorithm and its method to determine uncertainties can be transferred to similar OC products until today, enabling long‐term continuous satellite observations of global PFT products. Satellite PFT uncertainty is essential to evaluate and improve coupled ecosystem‐ocean models which simulate PFTs, and furthermore can be used to directly improve these models via data assimilation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2021-03-14
    Description: “Artificial Intelligence for Cold Regions” (AI-CORE) is a collaborative project of the German Aerospace Center (DLR), the Alfred Wegener Institute (AWI), the Technical University Dresden (TU Dresden), and is funded by the Helmholtz Foundation since early 2020. The project aims at developing artificial intelligence methods for addressing some of the most challenging research questions in remote sensing of the cryosphere. Rapidly changing ice sheets and thawing permafrost are big societal challenges, hence quantifying these changes and understanding the mechanisms are of major importance. Given the vast extent of polar regions and the availability of exponentially increasing satellite remote sensing data, intelligent data analysis is urgently required to exploit the full information in satellite time series. This is where AI-CORE comes into play: Four geoscientific use cases have been defined, including a) change pattern identification of outlet glaciers in Greenland; b) object identification in permafrost areas; c) edge detection of calving fronts of glaciers/ice shelves in Antarctica; d) firn line detection and monitoring: The glacier mass balance indicator. For these four use cases, AI-methods are being developed to allow for an accurate, efficient, and automated extraction of the desired parameters. Once these methods have been successfully developed, they will be implemented in processing infrastructures at AWI, TU Dresden, and DLR, and subsequently made available to other research institutes. The presentation will outline the specific goals and challenges of the four use cases as well as the current state of the developments and preliminary results.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2021-03-14
    Description: Iron (Fe) plays a key role in mediating organic carbon (OC) decomposition rates in permafrost soils. Fe-bearing minerals stabilize OC through complexation, co-precipitation or aggregation processes and thus hinder degradation of OC. In addition, Fe(III) reduction can inhibit methanogenesis and decrease warming potential of greenhouse gases release. Ice-rich permafrost is subject to abrupt thaw and thermokarst formation, which unlocks OC and minerals from deep deposits and exposes OC to mineralization. These ice-rich domains include Yedoma sediments that have never thawed since deposition and Alas sediments that have undergone previous thermokarst processes during the Lateglacial and Holocene warming periods. The post-depositional history of these sediments may affect the distribution and reactivity of Fe-bearing minerals and the role Fe plays in mediating present day OC mineralization. Here we quantify Fe concentrations, Fe spatial and depth distribution, and Fe mineralogy in unthawed Yedoma and previously thawed Alas deposits from the Yedoma domain (West Siberia, Laptev Sea region, Kolyma region, New Siberian Islands and Alaska). Total Fe concentrations of ice-rich Yedoma deposits and previously thawed Alas deposits were determined using a portable X-ray fluorescence (XRF) device. This non-destructive method allowed a total iron concentration assessment of Yedoma domain deposits based on 1292 sediment samples. Portable XRF-measured concentrations trueness were calibrated from alkaline fusion and inductively coupled plasma optical emission spectrometry (ICP-OES) measurement method on a subset of 144 samples (R² = 0.81). Fe extractions of unthawed and previously thawed deposits display that, on average, 25% of the total iron is considered as reactive species, either as crystalline or amorphous oxides, or complexed with OC, with no significant difference between Yedoma and Alas deposits. We observe a constant total Fe concentration in Yedoma deposits, but a depletion or accumulation of total Fe in Alas deposits, which experienced previous thaw and/or flooding events, suggesting that redox driven processes during the Lateglacial and Holocene thermokarst formation impact the present day distribution of reactive Fe and its association with organic carbon in ice-rich permafrost.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2021-03-14
    Description: Thematic Open Access data portals foster and support an open data culture in order to reduce knowledge gaps and data uncertainty. Here we present the Arctic Permafrost Geospatial Center (APGC), which provides open access, high quality spatial data in the field of permafrost research. The distribution and easy access of a wide range of permafrost-related data products supports multi-scale and interdisciplinary analysis of combined field, remote sensing and modelling data. The APGC mission is to provide data that is of high usability, significance and impact, and to facilitate data discovery, data view and supports metadata documentation and exchange via the APGC data catalogue at https://apgc.awi.de/. The catalogue structure can host data models of varying themes, formats, and spatial and temporal extents. Data can be searched by interactively selecting locations on a base map and by many predefined metadata filters. Data can be downloaded directly through a link to the publishing data repository such as PANGAEA. The Catalogue is based on the open source CKAN catalogue architecture, which allows on-the-fly access to catalogued data in QGIS. The APGC currently features over 200 selected datasets from projects such as ERC PETA-CARB, ESA GlobPermafrost, and others. Data products provide information about surface and subsurface permafrost characteristics in the Arctic, Antarctica, or mountain permafrost areas, e.g., soil temperatures, soil carbon, ground ice, land cover, vegetation, periglacial landforms, subsidence and more. Collections of datasets allow users to easily get an overview of the spatial distributions of datasets or their availability in different formats. An additional WebGIS application allows users to explore most of the data interactively (https://maps.awi.de). Data submissions are evaluated according to the following access criteria: permafrost focus, broader significance and impact, open access, high quality, and available metadata.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2021-03-14
    Description: Lakes and drained lake basins (DLBs) are dominant landforms across Arctic lowland regions. The long-term dynamics of lake formation and drainage is evident in the abundance of lakes and DLBs covering as much as 80% of the landscape in various regions of Arctic Alaska, Russia, and Canada. Lake drainage can be triggered through different mechanisms such as lake tapping by an adjacent stream, bank overflow or ice wedge degradation. Following drainage, DLBs can become valuable grazing land for caribou and reindeer as well as usable land for infrastructure development due to low ground ice content in recent DLBs. In addition, DLBs can be sites for soil organic carbon accumulation in the form of peat which also play a role for carbon cycling. Comprehensive and accurate mapping of DLB distribution, age and drainage mechanism, will further inform our understanding of their role in permafrost landscape evolution across varying timescales. DLBs differ from the surrounding terrain in vegetation structure and composition, soil moisture, elevation, size and types of ice-wedge polygons and other parameters that make them an identifiable target based on remote sensing data. Here, we present a novel approach to map DLBs in permafrost landscapes with a specific focus on the North Slope of Alaska as well as select areas in Siberia and northwestern Canada. To map DLBs, we combined multispectral satellite imagery (Landsat-8 and Sentinel-2), Synthetic Aperture Radar (SAR) acquisitions (Sentinel-1), and DEM data (ArcticDEM). To cover the entire study area in each region, we included Landsat-8 acquisitions from all available years and Sentinel-2 for 2016 and 2018 to create cloud-free mosaics. The classification combines methodologies from pixel-based and object-based image analysis. To allow for processing of these large datasets that cover more than 200.000 km2, a classification workflow was developed in Google Earth Engine. Preliminary results show good agreement of our classification with previously published data sets for subsets of our North Slope study area. This work marks the first attempt to map DLBs at the pan-Arctic scale. Our results highlight the importance of treating areas of different surficial geology and vegetation communities separately in the classification process to ensure higher classification accuracy.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2021-04-05
    Description: Uncertainty in carbon cycling in terrestrial ecosystems contributes to overall uncertainty in Earth System Models. In particular, polar terrestrial ecosystems are understudied. Here, we focus on optical and radar remote sensing approaches to understand above-ground carbon dynamics related to vegetation as primary producers in tundra permafrost landscapes. In the ongoing Russian-German research cooperation and joint field expeditions we evaluate the applicability of remote sensing for assessing vegetation stocks and short-term fluxes in the Lena River Delta in the Siberian Arctic. New spaceborne satellite missions such as Sentinel-1, Sentinel-2 and ESA Data User Element DUE Permafrost provide useful services and data for this investigation. i) We evaluated and ground-truthed circumarctic-harmonized geospatial products of land cover and vegetation height from the ESA GlobPermafrost program for the Lena Delta region. The remote sensing products were derived from radar Sentinel-1 and optical Sentinel-2 satellite data. They are findable in the Arctic Permafrost Spatial Center (APGC) (apgc.awi.de) and are published under 10.1594/PANGAEA.897916, [Titel anhand dieser DOI in Citavi-Projekt übernehmen] and 10.1594/PANGAEA.897045 [Titel anhand dieser DOI in Citavi-Projekt übernehmen] . ii) We classified land cover using Sentinel-2 data based on in-situ vegetation data and optimized on biomass and wetness regimes. iii) We investigated the applicability of different land cover products for upscaling in-situ field-based biomass estimates to landscape-scale above-ground vegetation carbon stocks. iv) We investigated how disturbances enhance above-ground vegetation carbon cycling using in-situ data on vegetation community, biomass, and stand age and including remote sensing observations. Our research suggests that subarctic land cover needs to show biomass and moisture regimes to be applicable. Sentinel-1 and Sentinel-2 satellite missions provide adequate spatial high resolution to upscale vegetation communities and biomass in permafrost tundra landscapes. Biomass is providing the magnitude of the carbon flux, whereas stand age is irreplaceable to provide the cycle rate. High disturbance regimes such as floodplains, valleys, and other areas of thermo-erosion are linked to high and rapid carbon fluxes compared to low disturbance on Yedoma upland tundra and holocene terraces with polygonal tundra.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    AGU
    In:  EPIC3Journal of Geophysical Research: Oceans, AGU, 126(5)
    Publication Date: 2021-05-19
    Description: Increased ocean‐to‐ice heat fluxes play a key role in the accelerated mass loss of Greenland’s marine‐terminating glaciers. Ocean current variability leads to variations in this heat flux. A year‐long time series of ocean currents at all gateways to the ocean cavity under Greenland’s largest remaining floating ice tongue at the Nioghalvfjerdsfjorden Glacier (79NG) was analyzed. The variability of the exchange flow at intra‐annual to near‐daily timescales was characterized. The currents exhibit considerable variability with standard deviations exceeding the time mean flow strength by a factor of 2. The inflow of warm Atlantic Intermediate Water into the cavity and the outflow via the northernmost calving front were directly coupled on intra‐annual timescales (periods, T 〉 30 days) with enhanced fluctuations in the winter months. A strong correlation between the variability of the deep inflow and currents in the subsurface boundary current on the continental shelf suggests a link between cavity and continental shelf circulation. Variability on higher frequencies (T 〈 30 days) in the outflow was only partly induced by the inflow variability. Two export branches of the cavity circulation were identified, which were potentially constrained by subglacial meltwater channels. The relative importance of the two export branches varies on monthly time scales. This research has provided evidence that the large intra‐annual ocean current variability at the 79NG is strongly influenced by the continental shelf circulation. Temporally varying preferred export routes increase the complexity of the cavity circulation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2021-08-03
    Description: High-resolution seafloor mapping provides insights into the dynamics of past ice sheets/ice shelves on high-latitude continental margins. Geological/geophysical studies in the Arctic Ocean suggest widespread Pleistocene ice grounding on the Chukchi–East Siberian continental margin. However, flow directions, timing, and behavior of these ice masses are not yet clear due to insufficient data. We present a combined seismostratigraphic and morphobathymetric analysis of the Chukchi Rise off the northwestern Chukchi margin using the densely acquired subbottom profiler (SBP) and multibeam echosounder (MBES) data. Comparison with deeper airgun seismic records shows that the SBP data cover most of the glaciogenic stratigraphy possibly spanning ca. 0.5–1Ma. Based on the stratigraphic distribution and geometry of acoustically transparent glaciogenic diamictons, the lateral and vertical extent of southern- sourced grounded ice became smaller over time. The older deposits are abundant as debris lobes on the slope contributing to a large trough mouth fan, whereas younger grounding-zone wedges are found at shallower depths. MBES data show two sets of mega-scale lineations indicating at least two fast ice- streaming events of different ages. Contour-parallel recessional morainic ridges mark a stepwise retreat of the grounded ice margin, likely controlled by rising sea levels during deglaciation(s). The different inferred advance and retreat directions of the southern-sourced ice reflect complex geomorphic settings. The overall picture shows that the Chukchi Rise was an area where different ice streams had complex interactions. In addition to glaciogenic deposits, we identify a number of related or preceding seabed features including mounds, gullies/channels, and sediment waves.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    AGU
    In:  EPIC3Journal of Geophysical Research: Earth Surface, AGU, 125, pp. e2020JF005714, ISSN: 2169-9003
    Publication Date: 2020-11-02
    Description: We present a series of simple shear numerical simulations of dynamic recrystallization of two‐phase non‐linear viscous materials that represent temperate ice. Firstly, we investigate the effect of the presence of water on the resulting microstructures and, secondly, how water influences on P‐wave (Vp) and fast S‐wave (Vs) velocities. Regardless the water percentage, all simulations evolve from a random fabric to a vertical single maximum. For a purely solid aggregate, the highest Vp quickly aligns with the maximum c‐axis orientation. At the same time, the maximum c‐axis development reduces Vs in this orientation. When water is present, the developed maximum c‐axis orientation is less intense, which results in lower Vp and Vs. At high percentage of water, Vp does not align with the maximum c‐axis orientation. If the bulk modulus of ice is assumed for the water phase (i.e., implying that water is at high pressure), we find a remarkable decrease of Vs while Vp remains close to the value for purely solid ice. These results suggest that the decrease in Vs observed at the base of the ice sheets could be explained by the presence of water at elevated pressure, which would reside in isolated pockets at grain triple junctions. Under these conditions water would not favor sliding between ice grains. However, if we consider that deformation dominates over recrystallization water pockets get continuously stretched, allowing water films to be located at grain boundaries. This configuration would modify and even overprint the maximum c‐axis‐dependent orientation and the magnitude of seismic anisotropy.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2021-02-28
    Description: Permafrost coasts make up roughly one third of all coasts worldwide. Their erosion leads to the release of previously locked organic carbon, changes in ecosystems and the destruction of cultural heritage, infrastructure and whole communities. Since rapid environmental changes lead to an intensification of Arctic coastal dynamics, it is of great importance to adequately quantify current and future coastal changes. However, the remoteness of the Arctic and scarcity of data limit our understanding of coastal dynamics at a pan-Arctic scale and prohibit us from getting a complete picture of the diversity of impacts on the human and natural environment. In a joint effort of the EU project NUNATARYUK and the NSF project PerCS-Net, we seek to close this knowledge gap by collecting and analyzing all accessible high-resolution shoreline position data for the Arctic coastline. These datasets include geographical coordinates combined with coastal positions derived from archived data, surveying data, air and space born remote sensing products, or LiDAR products. The compilation of this unique dataset will enable us to reach unprecedented data coverage and will allow us a first insight into the magnitude and trends of shoreline changes on a pan-Arctic scale with locally highly resolved temporal and spatial changes in shoreline dynamics. By comparing consistently derived shoreline change data from all over the Arctic we expect that the trajectory of coastal change in the Arctic becomes evident. A synthesis of some initial results will be presented in the 2020 Arctic Report Card on Arctic Coastal Dynamics. This initiative is an ongoing effort – new data contributions are welcome!
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    AGU
    In:  EPIC3Paleoceanography and Paleoclimatology, AGU, 35, pp. e2020PA004020
    Publication Date: 2020-12-07
    Description: The importance of volcanic CO2 release, continental weathering and coral reef growth on the global carbon cycle has been highlighted by several different studies. Based on these independent approaches we here revisit the last 800 kyr with the box model BICYCLE, which has been extended by a process based sediment module to be able to address these solid Earth contributions to the carbon cycle in detail. We show, that the volcanic outgassing of CO2 as function of sea level change from mid ocean ridges and hot spot island volcanoes cannot be the generic process that leads during phases of falling obliquity to a sea level-CO2 decoupling as has been suggested before. The combined contribution from continental and marine volcanism, if both lagging sea level change by 4 kyr, might have added up to 13 ppm to the glacial/interglacial CO2 rise. The shallow water carbonate sink related to coral reef growth as suggested by an independent model are dur- ing glacial terminations about an order of magnitude too high to be reconciled with meaningful carbon cycle dynamics. Global riverine input of bicarbonate caused by silicate and carbonate weathering is suggested to have been stable over Termination I. However, if weathering fluxes are changed by up to 50% in sensitivity experiments the corresponding bi- carbonate input might contribute less than 20 ppm to the deglacial atmospheric CO2 rise. The overall agreement of re- sults with the new process-based sediment module and the previously applied time-delayed response function to mimic carbonate compensation gives confidence in the results obtained in previous applications of the BICYCLE model without solid Earth processes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2020-12-21
    Description: Southern Ocean westerly wind intensity and position are thought to play a crucial role in controlling glacial/interglacial CO2 changes through their impact on Antarctic upwelling intensity and the delivery of iron-rich dust that stimulates biological production during glacial periods. Sediment-core grain size records can provide key insights into changes in wind strength and source-area characteristics over glacial-interglacial timescales. However, so far, little is known about G/IG grain size changes in Southern Ocean sediments. For this study, we analyzed the grain-size distributions of two subantarctic deep sea sediments cores from the Pacific (PS75/056-1) and Atlantic (ODP Site 1090) sectors of the Southern Ocean. Dust mean grain size shows opposing trends in the two Southern Ocean sectors. Coarser glacial grain sizes are observed in the Pacific sector, while finer glacial grain-sizes are observed in the Atlantic. Our results suggest that changes in the latitudinal position of the SWW had distinct impacts on grain size distribution in the Atlantic and Pacific sectors, also likely associated with shifts in the dust source areas. These findings indicate that more extensive studies of grain-size distribution in the Southern Ocean can provide important insights on the timing and latitudinal extent of the westerly winds changes during ice ages.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    AGU
    In:  EPIC3AGU Fall Meeting 2020, Virtual/Online, 2020-12-01-2020-12-17AGU
    Publication Date: 2021-03-14
    Description: Ebullition (bubbling) is often the dominant form of methane (CH4) emission from Arctic lakes. Understanding the dynamics of CH4 ebullition in these lakes is important to the global atmospheric CH4 budget and climate models. Lake CH4 ebullition bubbles generally originate from either ecologic or geologic sources. Ecologic CH4 is produced through anaerobic microbial decomposition of organic matter within lake sediments and the talik - a thawed zone beneath lakes in permafrost regions. Emissions from these seeps can be quantified and scaled based on existing field-based and remote-sensing methods. The other type of ebullition has not been well quantified, yet emits gas at a much higher rate than ecologic seeps. Geologic CH4 seeps originate from microbial, thermogenic, or a combination of both processes altering buried organics in ancient sedimentary basins. Bubbling rates of geologic seeps are strong enough to maintain holes in thick (〉1 m) lake ice – creating winter traveling hazards in the Arctic and sub-Arctic. While ecologic CH4 seeps produced in surficial sediments have modern to Holocene radiocarbon (14C) ages and those produced deeper in the talik have Pleistocene to early Holocene 14C ages, geologic CH4 seeps are often 14C-depleted due to the large contribution of carbon from fossil sources. Quantification and upscaling of geologic CH4 seepage is challenging because CH4 accumulations are distributed beneath complex, site-specific geologic and cryospheric settings. Previously, geologic seeps were studied through aerial surveys and ground truthing of open holes in winter lake ice along a north-south Alaskan transect. However, this is not efficient for quantifying these “superseeps” on a larger scale. Therefore, a remote sensing approach is needed. This work aims to detect superseeps using space borne Synthetic Aperture Radar (SAR). Engram et al. (2013) showed that L-band SAR backscatter correlates with roughness caused by stratigraphically-layered ecologic CH4 bubbles trapped during freeze-up – the greater the ebullition, the stronger the backscatter. Using this correlation, we developed a new method that identifies superseeps as perennial backscatter anomalies in lake ice on a landscape scale. Results from three regions in Alaska will be presented and compared to other methods of studying superseeps.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2021-03-14
    Description: Permafrost thaw has been observed at several locations across the pan-Arctic in recent decades, yet the pan-Arctic extent and potential spatial-temporal variations in thaw are poorly constrained. Thawing of ice-rich permafrost can be inferred and quantified with satellite imagery due to the subsequent differential ground subsidence and erosion that in turn affects land surface cover. Information contained within existing and rapidly growing collections of high-resolution satellite imagery (Big Imagery) is here extracted across the Arctic region through a collaboration between software engineers, computer- and earth scientists. More specifically, we are a) developing geospatial data down to sub-meter resolution, and also b) enabling discovery and knowledge-generation through visualization tools. This cyberinfrastructure platform, the Permafrost Discovery Gateway (PDG), is being designed with input from users of the PDG, e.g. primarily the Arctic earth science community but also the general public. The PDG builds upon other NSF supported data management resources (Arctic Data Center and Clowder) and the Fluid Earth Viewer. The Fluid Earth Viewer, which is the first visualization tool implemented into the PDG, was initially created for the public to explore atmospheric and oceanographic visualizations and is here modified to support permafrost geospatial products, and a number of community built analytic tools to identify permafrost artifacts within satellite imagery. The effort also includes workflow optimization of remote sensing code for pan-Arctic sub-meter scale mapping of ice-wedge polygons from optical imagery. We are additionally actively engaging with the user-community to ensure that the PDG becomes useful, both in terms of the type of data contained within the PDG and the design of the visualization tools. The PDG has the potential to fill key Arctic science gaps, such as bridging plot to pan-Arctic scale findings, while also serving as a resource informing decisions regarding the economy, security, and resilience of the Arctic region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2021-03-14
    Description: While increasing Arctic temperatures have been identified to induce widespread thermokarst development in permafrost lowland landscapes over only several decades, disturbances, such as tundra fires can cause similar impacts within a few years. Transition from low-centered to high-centered polygons through the formation of troughs is an immediate result of melting ice wedges 3-4 years after a fire (Jones et al., 2015). Liljedahl et al (2016) have shown that widespread ice-wedge degradation can lead to hydrological connectivity and increased drainage of entire landscapes through newly developing trough networks. Quantifying such dynamics is important for projecting the hydrological outcomes of climate change impacts across vast Arctic landscapes. New VHR remote sensing approaches allow assessing ice wedge polygonal structures and their change in unprecedented detail. Data science methods provide valuable tools for understanding and modeling resulting very large datasets of changing ice wedge networks. Here we quantify thermokarst development representing the network of troughs as a graph, a concept from discrete mathematics used to model complex networks. Our analysis is based on optical VHR aerial imagery of the DLR MACS sensors and DSMs derived from LiDAR. Datasets are available for 2009, 2014 and 2019 of the northern Anaktuvuk River Fire scar in Alaska, which formed due to a large tundra fire in 2007. In particular, the post-fire permafrost degradation is observable in the northern ice-rich region of the fire scar on short timescales, offering an ideal site for the monitoring of degradation processes. We use morphological image analysis to extract a graph from the imagery and further deduce trough parameters, such as soil volume, depth, and water availability. Quantifying these factors for the study area shows that soil erosion and ice melt within individual troughs have progressed, while the overall connectivity of the network has increased, implying strong thermo-erosion since 2009. Using graphs to monitor the ongoing development offers a detailed and computationally efficient method that will allow quantification of ice-wedge degradation over very large spatial and temporal scales and may provide useful metrics for projecting landscape trajectories in thaw-vulnerable permafrost environments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2021-06-11
    Description: The importance of non-growing season greenhouse gas fluxes to annual budgets in pristine northern terrestrial ecosystems is growing in awareness. Greenhouse gas (GHG) fluxes during the non-growing season and freeze-thaw dynamics are still underrepresented and may be a reason why current process-based models predict inadequate annual methane (CH4) and nitrous oxide (N2O) budgets. FluxWIN is therefore investigating ecological and biogeochemical processes in global carbon (C) and nitrogen (N) cycles during the non-growing and shoulder seasons by combining high-frequency greenhouse gas measurements, biogeochemical monitoring and process-based modeling. Siikaneva, nearby Hyytiälä Research Station in boreal Finland, is an ICOS-certified site and well situated within long-term scientific infrastructure to compare and combine high-frequency greenhouse gas measurement techniques and investigate freeze-thaw dynamics. An automated static chamber technique is used with inline laser gas analysis to obtain soil-atmosphere CH4 and N2O exchange in real time. Additional automated sampling of diffusion tubing will sample soil gas concentrations in the same analytical system. We control for climatic variability and isolate differences in non-growing season emissions by using a moisture gradient from well-drained upland soils to adjacent wetland ecosystems. The use of these automated high-frequency GHG measurements in combination with year-round biogeochemical monitoring maximizes the likelihood of capturing episodic emissions and their drivers, which are particularly important during fall freeze and spring thaw periods. The gained information on ecosystem function and biogeochemical cycles for temperate, boreal, and arctic regions will improve feedback estimates to climate change by including non-growing season processes in global-scale process-based models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-12-24
    Description: Lakes in the northern permafrost region are a significant source of atmospheric methane (CH4), a potent greenhouse gas, yet large uncertainties exist in quantifying lake-source CH4. In thermokarst (thaw) lakes, the dominant pathway of CH4, ebullition (bubbling), is sporadic and spatially irregular. These lakes are also generally remote and difficult to access, resulting in challenging and costly field measurements. Scaling up field measurements from a few study lakes to regional and pan-Arctic scales relies on the assumption that the sampled lakes are a fair representation of all lakes across a landscape, which is not always the case. We present an innovative new method of quantifying lake-source CH4 using space-borne synthetic aperture radar (SAR), an instrument which can image at night, through clouds and dry snow, valuable attributes for Arctic remote sensing. Our recent work using satellite-based SAR data showed a significant correlation between polarimetric L-band SAR backscatter from lake ice and field-measured ebullition bubbles: L-band SAR backscatter intensity increases with the amount of ebullition bubbles trapped by early winter lake ice. We developed a regionally robust empirical model based on this correlation to quantify ebullition across surfaces of over 5,000 individual Alaskan lakes in satellite SAR scenes. We produced SAR-based ebullition fluxes from each lake across the landscape and created CH4 maps for five sub-regions in Alaska. Our SAR-based lake-source CH4 fluxes compare favorably with airborne CH4 measurements on the Barrow Peninsula and Atqasuk regions, and with scaled-up field measurements. We examine how our SAR remote sensing application can 1) improve selection of study lakes for field work, 2) provide regional estimates of CH4 ebullition from lakes in remote areas where field work is limited, 3) improve lake-size vs. flux relationships for upscaling field measurements and 4) shed light on the discrepancy of top-down vs. bottom-up CH4 flux estimates in the Arctic. This new approach to estimate lake-source CH4 from ebullition offers a unique opportunity to improve knowledge about CH4 fluxes for seasonally ice-covered lakes globally.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    AGU
    In:  EPIC3AGU Fall Meeting 2019, San Francisco, USA, 2019-12-09-2019-12-13San Francisco, USA, AGU
    Publication Date: 2020-02-17
    Description: Thermokarst lakes are one of the most abundant landforms in periglacial landscapes. They develop in regions underlain by permafrost as a consequence of soil subsidence triggered by the melting of excess ground ice. As a result of further permafrost degradation and shoreline erosion, thermokarst lakes increase in size, expanding vertically and laterally. This growth process has strong impacts on local to regional hydrological networks and ecological functions of the surrounding landscape. Previous research on the lateral growth of thermokarst lakes usually focused on decadal time scales which results in averaged expansion rates. These averages mask the temporal and spatial variations of lateral thermokarst expansion that occur over shorter time periods of only a few years. The short-term variability results from complex interactions between local erosion processes and meteorological and permafrost conditions. The aim of our study is to quantify these short-term changes of lake shorelines to provide a better understanding of permafrost landscape processes using multi-temporal high-resolution satellite imagery. The images are in the visible and near-infrared spectrum with a resolution of 0.3 to 0.7 m. They cover the period from 2006 to 2017 with acquisitions every 2 to 4 years. In order to map the lake shoreline changes we developed a fully-automated, open-source workflow for analyzing the changes of waterbodies larger than 1000 m². First, all necessary pre-processing steps are implemented such as pansharpening and smoothing of any speckle over waterbodies. Then, the normalized difference water index (NDWI) is applied to extract waterbodies from the imagery and derive their shoreline geometry. After filtering for potentially misclassified elements that originate from infrastructure, shoreline movement rates are calculated using a nearest point analysis. The workflow is independent of scale, image spatial resolution, and waterbody geometry. Preliminary findings demonstrate that the approach provides reliable shoreline recognition for every time step in the different study areas even under difficult light conditions. Changes can be detected on a sub-meter scale. Finally, we discuss the influence of the waterbody’s size and geometry on the shoreline change processes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-12-24
    Description: Thematic Open Access data portals foster and support an open data culture in order to reduce knowledge gaps and data uncertainty. We here present the Arctic Permafrost Geospatial Center (APGC), which provides open access, high quality geospatial data in the field of permafrost research. The APGC mission is (i) to provide data that is of high usability, significance and impact, and (ii) to facilitate data discovery, data view and supports metadata documentation and exchange via a data catalogue (http://apgc.awi.de/). The Data Catalogue is based on the open source CKAN data catalogue architecture, which uses the metadata standard DCAT. The catalogue structure can host a variety of data models of varying themes, format, spatial and temporal extents. Data is documented according to the fair data principles. Each catalogue entry has a data abstract, data preview and extensive metadata that can be downloaded in RDF/XML-, JSON- or Turtle-format. Data can be searched by location – using spatial keywords or by interactively selection locations on a base map. Data can further be searched by product type, project, tags, keywords, license type, or data format. Data can be downloaded directly via link to the publishing data repository such as PANGAEA. APGC, initially supported by the ERC PETA-CARB and the ESA GlobPermafrost projects currently features over 100 selected datasets mainly from these projects. A WebGIS application is available for most of these data sets, which allows users to explore the data interactively (http://maps.awi.de). Data provide information about surface and subsurface permafrost characteristics in the Arctic, Antarctica, or mountain permafrost areas, e.g., soil temperatures, soil carbon, ground ice, land cover, vegetation, periglacial landforms, subsidence and more. Data include in-situ measurements, earth observation, and modelling and are provided in vector or raster format. New data submissions to the catalogue are evaluated according to the following access criteria: permafrost focus, significance and impact, access, quality, and metadata. APGC invites submissions from both individual users as well as project consortiums.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-12-24
    Description: Until now permafrost carbon feedback modeling has focused on gradual thaw of near-surface permafrost in terrestrial environments, which leads to enhanced carbon dioxide (CO2) and methane (CH4) emissions that accelerate global climate warming. The state-of-the-art land models do not simulate emissions from deeper permafrost thaw beneath thermokarst lakes or other abrupt-thaw processes, and so have not quantified the impact of abrupt thaw on the permafrost carbon feedback. We reanalyzed output from the Community Land Model (CLM4.5BGC), to quantify carbon emissions originating from gradual permafrost thaw in the terrestrial environment, and added to this box-model-projected permafrost carbon emissions from abrupt thaw beneath thermokarst lakes. Simulations spanned 2010 to 2100 under moderate and high Representative Concentration Pathways (RCP4.5 and RCP8.5). Supported by field observations, radiocarbon dating, and remote sensing, this re-analysis of model data leads to four striking conclusions. First, accounting for abrupt permafrost thaw beneath lakes more than doubles the radiative effect of circumpolar permafrost carbon release in the 21st century beyond that of gradual thaw alone. Second, permafrost carbon emissions from lakes are similar under RCP4.5 and RCP8.5, but their contribution to the circumpolar permafrost carbon radiative effect (CPCRE) is much larger under the moderate warming scenario. Third, CH4, not CO2, is the dominant driver of the CPCRE, responsible for up to ~70% of circumpolar permafrost-carbon radiative forcing this century. Finally, including abrupt thaw beneath lakes, a process that accelerates mobilization of ancient, deeply frozen carbon, increases old permafrost soil carbon (C-CO2e) emissions by ~125% to 190% compared to gradual thaw alone. Since abrupt thaw has not been considered in earth system models, these findings have important implications for climate change scientists and policy makers, who will now need to account for a 〉100% larger radiative effect from permafrost carbon loss this century.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-12-24
    Description: Permafrost is an Essential Climate Variable (ECV) within the Global Climate Observing System (GCOS), which is characterized by subsurface temperatures and the depth of the seasonal thaw layer. Complementing ground-based monitoring networks, the Permafrost CCI project funded by the European Space Agency (ESA) 2018-2021 will establish Earth Observation (EO) based products for the permafrost ECV spanning the last two decades. Since ground temperature and thaw depth cannot be directly observed from space-borne sensors, we will ingest a variety of satellite and reanalysis data in a ground thermal model, which allows to quantitatively characterize the changing permafrost systems in Arctic and High-Mountain areas. As recently demonstrated for the Lena River Delta in Northern Siberia, the algorithm uses remotely sensed data sets of Land Surface Temperature (LST), Snow Water Equivalent (SWE) and landcover to drive the transient permafrost model CryoGrid 2, which yields ground temperature at various depths, in addition to thaw depth. For the circumpolar CCI product, we aim for a spatial resolution between 10 and 1km, but ensemble runs will be performed for each pixel to represent the subgrid variability of snow and land cover. The performance of the transient algorithm crucially depends on the correct representation of ground properties, in particular ice and organic contents. Therefore, the project will compile a new subsurface stratigraphy product which also holds great potential for improving Earth System Model results in permafrost environments. We report on simulation runs for various permafrost regions and characterize the accuracy and ability to reproduce trends against ground-based data. Finally, we evaluate the feasibility of future “permafrost reanalysis” products, exploiting the information content of various satellite products to deliver the best possible estimate for the permafrost thermal state over a range of spatial scales.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2020-01-09
    Description: Several recent studies from both Greenland and Antarctica have reported significant changes in the water isotopic composition of near‐surface snow between precipitation events. These changes have been linked to isotopic exchange with atmospheric water vapor and sublimation‐induced fractionation, but the processes are poorly constrained by observations. Understanding and quantifying these processes are crucial to both the interpretation of ice core climate proxies and the formulation of isotope‐enabled general circulation models. Here, we present continuous measurements of the water isotopic composition in surface snow and atmospheric vapor together with near‐surface atmospheric turbulence and snow‐air latent and sensible heat fluxes, obtained at the East Greenland Ice‐Core Project drilling site in summer 2016. For two 4‐day‐long time periods, significant diurnal variations in atmospheric water isotopologues are observed. A model is developed to explore the impact of this variability on the surface snow isotopic composition. Our model suggests that the snow isotopic composition in the upper subcentimeter of the snow exhibits a diurnal variation with amplitudes in δ18O and δD of ~2.5‰ and ~13‰, respectively. As comparison, such changes correspond to 10–20% of the magnitude of seasonal changes in interior Greenland snow pack isotopes and of the change across a glacial‐interglacial transition. Importantly, our observation and model results suggest, that sublimation‐induced fractionation needs to be included in simulations of exchanges between the vapor and the snow surface on diurnal timescales during summer cloud‐free conditions in northeast Greenland.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-12-24
    Description: Permafrost thaw has been observed at several locations across the pan-Arctic in recent decades, yet the pan-Arctic extent and potential spatial-temporal variations in thaw are poorly constrained. Thawing of ice-rich permafrost can be inferred and quantified with satellite imagery due to the subsequent differential ground subsidence and erosion that also affects land surface cover, storage and flow of water, sediment, and nutrients. However, a lack of supporting cyberinfrastructure necessary to harness information from the existing and rapidly growing collection of high-resolution satellite imagery (Big Imagery) has limited our advances in understanding the nature of pan-Arctic permafrost degradation. In the coming four years, we will empower the broader Arctic community with a cyberinfrastructure platform, the Permafrost Discovery Gateway (PDG), aimed at making Big Imagery permafrost information accessible and discoverable through novel visualization and analysis tools designed with input from users of the PDG, e.g. the diverse peoples living, working, and/or studying in the Arctic. From the start of the project, we will engage the user-community through in-person and online meetings to ensure effective development of permafrost Big Imagery products for archiving, processing, analyzing, and visualizing. The framework will utilize existing resources, such as the (1) NSF supported data management resources the Arctic Data Center and Clowder, (2) web application visualization tools (Fluid Earth Viewer, Google Earth, and Gapminder Foundation), (3) high performance computing resources (XSEDE, Google Earth Engine etc.), and (4) and satellite imagery (Polar Geospatial Center, Landsat, Sentinel, and Planet). The PDG will include the management of ingesting remote sensing big data into machine and deep learning models. We welcome collaborations with national and international Native, industry, and academic organizations and individuals to ensure broad community engagement and dissemination. The PDG will enable diverse peoples to contribute to and have access to pan-Arctic permafrost knowledge, which can immediately inform the economy, security, and resilience of the Nation, the Arctic region, and the globe with respect to pan-Arctic change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-12-24
    Description: Arctic river deltas are sensitive polar landscapes at the land-ocean interface. In contrast to lower latitude deltas, Arctic deltas are characterized by low temperatures, a strong seasonality and the presence of permafrost. Seasonal freezing conditions and underlying permafrost hinders runoff for most of the year and leads to typical land forms such as ice wedge polygons, frost mounds and thermokarst lakes. However, compared to other permafrost dominated landscapes, Arctic deltas are more dynamic. The surface morphology is changing constantly due to river ice break up and subsequent spring flooding, coastal and shoreline erosion, thaw slumping, and degradation of ice rich deposits. Deltaic sediments also tend to be highly susceptible to ground-ice aggradation, making them more ice-rich than adjacent nondeltaic landscapes. In addition, Arctic deltas will be severely affected by global climate change through sea level rise, lengthened thaw season, changing river discharge, storm surge flooding and thawing permafrost. We are therefore at risk, to face reactivation of millennia-old soil carbon and nitrogen deposits by the degradation of previously permanently frozen river delta deposits. However, there is a lack of studies on Arctic deltas and only very coarse estimates on Arctic delta carbon and nitrogen stocks exist. Here we present a new data-set of 140 soil cores, including more than 1400 samples from 17 different deltas spread across the Arctic. We combine new and legacy soil core data to estimate for the first time pan-Arctic deltaic carbon and nitrogen stocks and close a knowledge gap for deep permafrost stock estimations. We found that Arctic deltas present a significant pool for organic carbon and nitrogen, thus their change poses risks far beyond the Arctic. Permafrost thaw in such dynamic landscapes will increase nutrient transport from land to ocean with implications on Arctic near-shore zones (e.g. affecting foodwebs and biogeochemical processes) as well as increased greenhouse gas release due to large amounts of carbon and nitrogen becoming available from previously frozen ground. Our study highlights the need to better understand dynamic processes in Arctic deltas, since these vulnerable carbon and nitrogen rich deposits will be severely affected by the effects of global climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2020-05-14
    Description: Currently, the most rapid increase in near-surface air temperature takes place in the Arctic, accompanied by reduced sea ice concentration. Under the resulting retreat of sea ice, the underwater shortwave radiation and, thus, the amount and types of phytoplankton may change. In this study, we use a coupled sea-ice – ocean – ecological model (Darwin-MITgcm) to simulate the variability of the ocean’s major optically active constituents, comprising six phytoplankton functional types (PFTs) and colored dissolved organic matter (CDOM), in response to Arctic amplification. We further set up the general circulation model to account for the biogeochemical processes, in terms of light attenuation, so that their feedback on Arctic Ocean’s physical and biogeochemical properties can be assessed. Here, for the first time, CDOM is included in the underwater light attenuation scheme as a prognostic model variable that interacts with the changes induced by its presence. The coupled model simulation, allowing to consider explicitly the optical constituents, is compared with a constant attenuation depth formulation corresponding to Jerlov water type I, which is the case in most ocean models. Our findings suggest that the presence of CDOM and phytoplankton, by modulating the vertical distribution of the incoming light, affects significantly the upper ocean thermal structure. The promotion of heat-trapping near the surface results in summertime warming, locally even in more than 1°C, and to sea ice reduction. These changes have implications to upper ocean stratification and are accompanied by changes in nutrients supply, as well as in total but also partial PFTs chlorophyll-a.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2017-01-20
    Description: Mesoscale eddies in the ocean strongly impact the distribution of planktonic particles, mediating carbon fluxes over ~1/3 of the world ocean. However, mechanisms controlling particle transport through eddies are complex and challenging to measure in situ. Here we show the subsurface distribution of eddy particles funneled into a wineglass shape down to 1000 m, leading to a sevenfold increase of vertical carbon flux in the eddy center versus the eddy flanks, the “wineglass effect”. We show that the slope of the wineglass (R) is the ratio of particle sinking velocity to the radially inward velocity, such that R represents a tool to predict radial particle movement (here 0.05ms�1). A simple model of eddy spindown predicts such an ageostrophic flow concentrating particles in the eddy center. We explore how size-specific particle flux toward the eddy center impacts eddies' biogeochemistry and export fluxes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2015-09-15
    Description: The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 838N 68W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (〈1000 m2), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-16
    Description: Biomass burning influences global climate change and the composition of the atmosphere. The drivers, effects, and climate feedbacks related to fire are poorly understood. Many different proxies have been used to reconstruct past fire frequency from lake sediments and polar ice cores. Reconstruction of historical trends in biomass burning is challenging because of regional variability and the qualitative nature of various proxies. Vanillic acid (4-hydroxy-3-methoxybenzoic acid) is a product of the combustion of conifer lignin that is known to occur in biomass burning aerosols. Biomass burning is likely the only significant source of vanillic acid in polar ice. In this study we describe an analytical method for quantifying vanillic acid in polar ice using HPLC with electrospray ionization and tandem mass spectrometric detection. The method has a detection limit of 100 pM and a precision of ± 10% at the 100 pM level for analysis of 100 μl of ice melt water. The method was used to analyze more than 1000 discrete samples from the Akademii Nauk ice cap on Severnaya Zemlya in the high Russia Arctic (79°30’N, 97°45’E) (Fritzsche et al., 2002; Fritzsche et al., 2005; Weiler et al., 2005). The samples range in age over the past 2,000 years. The results show a mean vanillic acid concentration of 440 ± 710 pM (1σ), with elevated levels during the periods from 300-600 and 1450-1550 C.E.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2017-09-13
    Description: Proxy-based reconstructions of past changes in the marine biological carbon pumps are limited, especially in the Southern Ocean. This work provides new insights into the productivity variations in the Pacific sector of the Southern Ocean. We present new data derived from three sediment cores that show glacial/interglacial coccolithophore variability across Marine Isotope Stage 11 (MIS 11). The cores were retrieved during R/V Polarstern cruise PS75 from the Subantarctic Zone and Polar Front Zone at the western flank of the East Pacific Rise and in the vicinity of the Antarctic-Pacific Ridge. Coccolithophore assemblages were overwhelmingly dominated by the species Gephyrocapsa caribbeanica and small Gephyrocapsa. Total numbers of coccoliths, coccolith accumulation rates, coccolith fraction (CF; 〈20 μm fraction) Sr/Ca data, and temperature-corrected CF Sr/Ca records consistently showed an increase in coccolithophore productivity during Termination V (MIS 12-11 boundary), highest productivity throughout MIS 11 (~424–374 kyr), and a decrease during late MIS 11 in all the cores. We end with a discussion of back-calculated coccolith calcification rate in the surface ocean and its potential contribution to changes in the concentration of atmospheric CO2.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2021-06-09
    Description: Abstract We present a comprehensive study showing new results from a shallow gas seep area in �40 m water depth located in the North Sea, Netherlands sector B13 that we call ‘‘Dutch Dogger Bank seep area.’’ It has been postulated that methane presumably originating from a gas reservoir in �600 m depth below the seafloor is naturally leaking to the seafloor. Our ship-based subbottom echosounder data indicate that the migrating gas is trapped in numerous gas pockets in the shallow sediments. The gas pockets are located at the boundary between the top of the Late Pliocene section and overlying fine-grained sediments, which were deposited during the early Holocene marine transgression after the last glaciation. We mapped gas emissions during three R/V Heincke cruises in 2014, 2015, and 2016 and repeatedly observed up to 850 flares in the study area. Most of them (�80%) were concentrated at five flare clusters. Our repeated analysis revealed spatial similarities of seep clusters, but also heterogeneities in emission intensities. A first calculation of the methane released from these clusters into the water column revealed a flow rate of 277 L/min (SD5140), with two clusters emitting 132 and 142 L/min representing the most significant seepage sites. Above these two flare clusters, elevated methane concentrations were recorded in atmospheric measurements. Our results illustrate the effective transport of methane via gas bubbles through a �40 m water column, and furthermore provide an estimate of the emission rate needed to allow for a contribution to the atmospheric methane concentration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    AGU
    In:  EPIC3AGu Fall Meeting, New Orleans, 2017-12-11-2017-12-15AGU
    Publication Date: 2017-12-17
    Description: Ultraslow spreading mid-ocean ridges (〈15 mm/y full spreading rate) differ from faster spreading ridges by their uneven melt distribution. Crustal thickness varies along axis from zero to more than 8 km at volcanic centers. These volcanic centers receive more melt than the regional average and may remain spatially located for millions of years. The segmentation pattern and active volcanism at ultraslow spreading ridges therefore differs from faster spreading ridges where elongate axial volcanic ridges typically erupt magma. Using networks of ocean bottom seismometers with an along-axis extent of about 60 km at three differing ridge segments, we could show that the maximum depth of brittle faulting, equivalent approximately to temperatures of 600-700°C, varies drastically along axis. Ridge sections that lack an igneous crust exhibit a thick lithosphere as evidenced by the deepest mid-ocean ridge earthquakes observed so far at more than 30 km depth. Beneath areas of basalt exposure, in particular beneath pronounced volcanic centers, the axial lithosphere may be more than 15 km thinner allowing for melt flow at the base of the lithosphere towards the volcanoes, a process that has been postulated to explain the anomalous melt distribution at the slowest spreading ridges. Spreading events at ultraslow spreading ridges are unusual as we found from two spreading episodes at 85°E Gakkel Ridge and Segment 8 volcano on the Southwest Indian Ridge. These eruptions were preceded or accompanied by large (M〉5) and long-lasting earthquakes swarms and active magmatism lasted over 3-16 years. A massive hydrothermal event plume and sounds from deep submarine explosive volcanism were observed at Gakkel Ridge. At the Segment 8 volcano, we imaged a melt reservoir extending to about 8 km depth below the volcano that potentially fed a sill intrusion recorded by an ocean bottom seismometers about 30 km away at a neighboring subordinate volcanic center. To better understand the segmentation and melt transport at ultraslow spreading rigdes, we recently conducted a segment-scale seismicity survey of Knipovich Ridge in the Norwegian-Greenland Sea, instrumenting the ridge along 160 km of its axis with 28 ocean bottom seismometers for a period of a year, the currently largest mid-ocean ridge microseismicity experiment.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-10-08
    Description: This study presents the data on 129I and 236U concentrations in seawater samples and sea ice cores obtained during two expeditions to the Arctic Ocean that took place onboard R/V Polarstern (PS94) and R/V Lance (N-ICE2015) in summer 2015. Carbon-14 was also measured in the deep water samples from the Nansen, Amundsen, and Makarov Basins. The main goal was to investigate the distribution of 129I and 236U in a transect from the Norwegian Coast to the Makarov Basin to fully exploit the potential of combining 129I and 236U as a dual tracer to track Atlantic waters throughout the Arctic Ocean. The use of the 129I/236U and 236U/238U atom ratios allowed identifying a third Atlantic branch that enters the Arctic Ocean (the Arctic Shelf Break Branch) following the Norwegian Coastal Current that carries a larger proportion of the European reprocessing plants signal compared to Fram Strait Branch Water and Barents Sea Branch Water. The combination of 129I and 236U also allowed quantifying the different proportions of the La Hague stream, the Scottish stream, and Atlantic waters forming the three Atlantic branches of the Arctic Ocean Boundary Current. The results show that the 129I/236U atom ratio can now be used to identify the different Atlantic branches entering the Arctic Ocean. New input functions for 129I, 236U, and 129I/236U have also been described for each branch, which can be further used for calculation of transit time distributions of Atlantic waters.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    AGU
    In:  EPIC3Geophysical Research Letters, AGU, 44(16), pp. 8473-8480, ISSN: 00948276
    Publication Date: 2017-09-14
    Description: Radiocarbon (14C) dating calibration for the last glacial period largely relies on cross-dated marine 14C records. However, marine reservoirs are isotopically depleted with respect to the atmosphere and therefore have to be corrected by the Marine Radiocarbon Ages of surface waters (MRAs), whose temporal variabilities are largely unknown. Here we present simulations of the spatial and temporal variability in MRAs using a three-dimensional ocean circulation model covering the past 50,000 years. Our simulations are compared to reconstructions of past surface ocean Δ14C. Running the model with different climatic boundary conditions, we find that low-latitude to midlatitude MRAs have varied between 400 and 1200 14C years, with values of about 780 14C years at the Last Glacial Maximum. Reservoir ages exceeding 2000 14C years are simulated in the polar oceans. Our simulation results can be used as first-order approximation of the MRA variability in future radiocarbon calibration efforts.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-04-17
    Description: We present a comprehensive regional bathymetric data compilation for the southwest Indian Ocean (swIOBC) covering the area from 4°S to 40°S and 20°E to 45°E with a spatial resolution of 250 m. For this, we used multibeam and singlebeam data as well as data from global bathymetric data compilations. We generated the swIOBC using an iterative approach of manual data cleaning and gridding, accounting for different data qualities and seamless integration of all different kinds of data. In comparison to existing bathymetric charts of this region, the new swIOBC benefits from nearly four times as many data-constrained grid cells and a higher resolution, and thus reveals formerly unseen seabed features. In the central Mozambique Basin a surprising variety of landscapes were discovered. They document a deep reaching influence of the Mozambique Current eddies. Details of the N-S trending Zambezi Channel could be imaged in the central Mozambique Basin. Maps are crucial not only for orientation but also to set scientific processes and local information in a spatial context. For most parts of the ocean seafloor, maps are derived from satellite data with only kilometer resolution. Acoustic depth measurements from ships provide more detailed seafloor information in tens to hundreds of meters resolution. For the southwest Indian Ocean, all available depth soundings from a variety of sources and institutes are combined in one coherent map. Thus, in areas where depth soundings exist, this map shows the seafloor in so-far unknown detail. This detailed map forms the base for subsequent studies of e.g. the direction of ocean currents, geological and biological processes in the southwest Indian Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    AGU
    In:  EPIC3Geochemistry, Geophysics, Geosystems, AGU, 17(8), pp. 3131-3149, ISSN: 15252027
    Publication Date: 2016-10-09
    Description: A detailed reflection seismic investigation on sediment deposition at the northern Argentine margin (37°S to 42°S) resolves major modifications in oceanographic circulation during the Cenozoic, which resulted from variations in both climatic and tectonic processes. After an extensive erosional period following the onset of glaciation of Antartica at ∼34 Ma, which affected all water depth levels, a buried elongated mounded drift within the continental shelf was shaped by bottom current activity during the Miocene. This may represent the earliest deposits of the Malvinas Current that branches from the Antartic Circumpolar Current and today is part of a complex shallow water circulation system known as the Brazil-Malvinas confluence. At the same time a major terrace grew to its present form on the upper slope indicating that a precursor of Antarctic Intermediate Water was also part of the Brazil-Malvinas confluence. After another major erosional phase inferred from a seismic unconformity at ∼6 Ma, sheeted drifts, mounded drifts and sediment waves formed at the continental rise during the Pliocene/Pleistocene. These extensive contourite deposits are diagnostic for a steady north setting bottom flow at the depth level of todays Antarctic Bottomwater. Evidence for downslope transport mainly stems from the presence of buried turbidites and canyon related depocenters. These features can be related to Andean uplift during the Eocene and to the activation of the canyon system during the Pliocene.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2016-12-25
    Description: Permafrost regions have been identified to host a soil organic carbon (C) pool of global importance, storing more than 1500 PgC. A large portion of this C pool is currently frozen in deep soils and permafrost deposits. Permafrost thaw hence may result in mobilization of large amounts of C as greenhouse gases, dissolved organic C, or particulate organic matter, with substantial impacts on C cycling and C pool distribution. Understanding potential consequences and feedbacks of permafrost degradation therefore requires better quantification of processes and landforms related to thaw. While many predictive land surface models so far consider a gradual increase in the average active layer thickness across the permafrost domain, rapid shifts in landscape topography and surface hydrology caused by thaw of ice-rich permafrost are much more difficult to project. Field studies of thermokarst and thermo-erosion indicate highly complex and rapid landscape-ecosystem feedbacks. Contrary to top-down permafrost thaw that may affect any permafrost type at the surface, both thermokarst and thermo-erosion are considered pulse disturbances that are closely linked to presence of near-surface ice-rich permafrost, are active on short sub-annual to decadal time scales, and may affect C stores tens of meters deep. Here we present a comprehensive review synthesizing measured and modeled rates of thermokarst and thermo-erosion processes from the scientific literature and own observations across the northern Hemisphere permafrost regions. The goal of our synthesis is (1) to provide an overview on the range of thermokarst and thermo-erosion rates that may be used for parameterization of thermokarst and thermo-erosion in ecosystem and landscape models; and (2) to assess simple back-of-the-envelope scenarios of the magnitude of C thaw due to thermokarst and thermo-erosion versus projected active layer thickening. Example scenarios considering thermokarst lake expansion and talik growth indicate that rapid thaw processes have a high possibility to contribute substantially to permafrost C mobilization over the coming century.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-07-09
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2012-02-03
    Description: We explore the relationships between the fracture energy density (E_G) and the key parameters characterizing earthquake sources, such as the rupture velocity (v_r), the total fault slip (u_tot), and the dynamic stress drop (Dt_d). We perform several numerical experiments of three‐dimensional, spontaneous, fully dynamic ruptures developing on planar faults of finite width, obeying different governing laws and accounting for both homogeneous and heterogeneous friction. Our results indicate that E_G behaves differently, depending on the adopted governing law and mainly on the rupture mode (pulselike or cracklike, sub‐ or supershear regime). Subshear, homogeneous ruptures show a general agreement with the theoretical prediction of E_G *proportional to* (1 - (v_r/v_S)^2)^(1/2), but for ruptures that accelerate up to supershear speeds it is difficult to infer a clear dependence of fracture energy density on rupture speed, especially in heterogeneous configurations. We see that slip pulses noticeably agree with the theoretical prediction of E_G *proportional to* u_tot^2 , contrarily to cracklike solutions, both sub‐ and supershear and both homogeneous and heterogeneous, which is in agreement with seismological inferences, showing a scaling exponent roughly equal to 1. We also found that the proportionality between E_G and Dt_d^2, expected from theoretical predictions, is somehow verified only in the case of subshear, homogeneous ruptures with RD law. Our spontaneous rupture models confirm that the total fracture energy (the integral of EG over the whole fault surface) has a power law dependence on the seismic moment, with an exponent nearly equal to 1.13, in general agreement with kinematic inferences of previous studies. Overall, our results support the idea that E_G should not be regarded as an intrinsic material property.
    Description: Published
    Description: B10307
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: Fracture energy ; Dynamic models ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2012-02-03
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: The time of occurrence of an earthquake is related to the state of the fault, tectonic loading, and possible triggering mechanisms, and it plays a prominent role in hazard assessment. In this paper we incorporate the effects of wear generation into a seismogenic model. We show that without wear the recurrence time of repeated earthquakes is constant through time and it is controlled by the initial conditions, tectonic loading and constitutive properties, including the presence of pore fluids. Our results indicate that considering the wear development into the fault model dramatically affects the temperature evolution of the fault, the stress release, the developed cosesimic slip and ultimately the duration of the seismic cycle. Moreover, we find that as long as the slipping zone thickness increases, the recurrence time continuously decreases through time. This further complicates the predictability of a subsequent earthquake, even in the simple case of an isolated fault.
    Description: Published
    Description: L20315
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: Earthquake recurrence ; Dynamic models ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2012-02-03
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: We analyze P and S wave spectra from moderate‐ to deep‐focus teleseisms recorded at the Retreating‐Trench, Extension, and Accretion Tectonics (RETREAT) temporary broadband seismic network to assess the variations of the Earth mantle attenuation in the northern Apennines region (Italy). For each earthquake, we compute the ratio between the spectrum at each station and the average spectrum, in order to estimate t* residuals (Δt*) from the spectral ratio decay. The number and distribution of the teleseisms useable for the P wave t* calculation allow for a gross azimuthal analysis; although the (Δt*) values at single station display, in most cases, azimuthal‐dependent fluctuations, their overall distribution shows a partition of the study region into two main areas, whose gross features remain almost unchanged over the whole azimuthal range. This partition is confirmed by the S wave t* mean values, computed for each station over the set of useable events. We distinguish a relatively high attenuation area on the western, Tyrrhenian side and a relatively low attenuation area on the eastern, Adriatic side. By correlating our Δt* estimates and the velocity structure derived from the existing tomographic models, we compute the ranges of possible P and S wave Q values in the mantle wedge above the Apennines slab (on the Tyrrhenian side) and in the asthenosphere below the Adriatic region. Furthermore, the determined attenuation properties are used to draw some inferences on the thermal state of the uppermost mantle and on the physical properties of the tectonic elements, which constitute the subduction system in the region.
    Description: Published
    Description: B09309
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Northern Apennine ; Slab ; RETREAT ; attenuation ; mantle ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2017-04-04
    Description: Seismic activity linked to the 2002–03 Mt. Etna eruption was investigated by analyzing the Md 〉 2.3 earthquakes. The results of 3D relocation were used to compute fault plane solutions and a selected dataset was inverted to determine stress and strain tensors. The analysis revealed a complex kinematic response of the eastern flank dominated by fast stress propagation and reorientation. We hypothesize that a vertical dike intruded the southern flank, generating an extensional regime that triggered a radial intrusion in the northeast sector of the volcano. The combined effects gave rise to a rotation of the stress tensor that controlled the activation of the Pernicana fault system. The volcanic and tectonic interactions produced a second reorientation of the stress tensor, causing a structural response in the southeast lower flank. The overall result of the deformation processes observed during the eruption was an E-W extension on the eastern flank of the volcano.
    Description: Published
    Description: 4
    Description: partially_open
    Keywords: Seismology: Seismicity and seismotectonics ; Seismology: Volcano seismology ; Volcanology: Eruption mechanisms ; Volcanology: Magma migration ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 788747 bytes
    Format: 490 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2017-04-04
    Description: Radon emissions are frequently monitored in volcanically and tectonically active areas in order to reveal changes in soil degassing, as radon acts a tracer for the more abundant CO2 degassing commonly observed in such areas. Between July 2002 and May 2003 a series of discrete measurements of radon concentrations in soil were made with high spatial resolution (∼5–100 m) in the Santa Venerina area on Mt. Etna. These measurements revealed well-defined linear anomalies that we interpret as being caused by active faults whose higher porosity than surrounding soils allows an increased CO2 flux, carrying radon from beneath. These faults were not visible at the surface and were therefore revealed at high spatial resolution by our radon survey. Our hypothesis that the positive anomalies are attributable to active faults was strengthened by the observation of concentrated damage along this geometry during the earthquakes that struck this area in late October 2003.
    Description: Published
    Description: 4
    Description: partially_open
    Keywords: Structural Geology: Role of fluids ; Structural Geology: Fractures and faults ; Structural Geology: Instruments and techniques ; Volcanology: Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 713186 bytes
    Format: 490 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2017-04-04
    Description: Stress inversion of the twenty best-quality earthquake fault-plane solutions available in the area of the 1908 Messina earthquake showed a nearly uniform extensional regime with σmin constrained between N284°E and N312°E, coinciding with the direction of extension derived from geostructural data. The misfits of earthquake nodal planes and related slip vectors to the stress tensor allowed us to identify the fault planes of thirteen of the earthquakes used for inversion. In particular, the fault plane of 1908 earthquake was found in the north-trending east-dipping nodal plane of the focal mechanism. These findings and strain tensor estimates performed with the same dataset lead us to propose that in spite of stress uniformity detected over the study area the seismic strain orientations change significantly in the crustal volume under investigation due to different fault orientations in the different sectors. However, when comparing strong earthquakes with background seismicity in a given sector the strain orientations are found to be similar.
    Description: Published
    Description: 1-5
    Description: partially_open
    Keywords: Seismology: Earthquake parameters ; Seismology: Seismicity and seismotectonics ; Tectonophysics: Stresses—crust and lithosphere ; Information Related to Geographic Region: Europe ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 170488 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2017-04-04
    Description: Source and Qp parameters were estimated from the inversion of first arrival P waveform durations of about 300 microearthquakes recorded at a digital seismic network operating in southeastern Sicily. The average risetime and pulse width at each station do not show large differences, allowing us to exclude significant differential attenuation site effects. A first Qp estimate was obtained by applying the classical risetime method, under the assumption of a point-like source time function. In order to investigate the effect of directivity due to the finiteness of seismic sources, new nonlinear relationships, based on a circular crack model rupturing at a constant velocity, were numerically built. These relationships were used to formulate a nonlinear inverse method for retrieving source (radius, dip, and strike of the circular crack) and Qp parameters from the inversion of risetime and pulse width data. The application of the method produced a better fit of the observed data and a Qp value higher than that obtained by applying the risetime method. The discrepancy between the different Q estimates may be due to a trade-off among source dimension and Qp, as we inferred from a test on a subset of low-magnitude events (Ml ≤ 2.5). A good agreement with independent estimates of fault plane solutions, as inferred from P polarities and S polarizations, was found. The estimated stress drops are generally very low (0.1–10 bars). This suggests that the background seismic activity in southeastern Sicily is related to fault segments and/or weakened zones where great stress accumulations are hindered.
    Description: Published
    Description: 1-14
    Description: partially_open
    Keywords: source and Qp parameters ; risetime ; pulse width ; attenuation ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 654914 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2017-04-04
    Description: In the Apennines subduction (Italy), earthquakes mainly occur within overriding plate, along the chain axis. The events concentrate in the upper 15 km of the crust above the mantle wedge and focal solutions indicate normal faulting. In the foreland, the seismogenic volume affects the upper 35 km of the crust. Focal solutions indicate prevailing reverse faulting in the northern foreland and strike-slip faulting in the southern one. The deepening of the seismogenic volume from the chain axis to the foreland follows the deepening of the Moho and isotherms. The seismicity above the mantle wedge is associated with uplift of the chain axial zone, volcanism, high CO2 flux, and extension. The upward pushing of the asthenospheric mantle and the mantle-derived, CO2-rich fluids trapped within the crust below the chain axis causes this seismicity. All these features indicate that the axial zone of Apennines is affected by early rifting processes. In northern Italy, the widespread and deeper seismicity in the foreland reflects active accretion processes. In the southern foreland, the observed dextral strike-slip faulting and the lack of reverse focal solutions suggest that accretion processes are not active at present. In our interpretation of the Apennines subduction, the shallower seismicity of the overriding plate is due to the dynamics (uprising and eastward migration) of the asthenospheric wedge.
    Description: Published
    Description: Q02013
    Description: JCR Journal
    Description: open
    Keywords: Apenninnes ; crustal seismicity ; rifting ; subduction ; fluids ; geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2459547 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2017-04-04
    Description: SKS splitting at the Calabrian subduction zone, with delay times (δt) up to 3s, reveals the presence of a strong anisotropic fabric. Fast directions (ϕ) are oriented NNE-SSW in the Calabrian Arc (C.A.) and rotate NNW-SSE to the north following the arcuate shape of the subducting plate. We interpret the trench-parallel ϕ as local-scale mantle flow driven by the retrograde motion of the slab; the absence of trench perpendicular ϕ below the Southern Apennines (S.A.) excludes the presence of a seismically detectable return flow at its NE edge. This may be due to the relative youth and limited width of the S.A. slab tear. A possible return flow is identified farther north at the boundary of the S.A. and Central Apennines. Different and weaker anisotropy is present below the Apulian Platform (A.P.). This implies that the influence of the slab rollback in the sub-slab mantle is limited to less then 100 km from the slab.
    Description: Published
    Description: L05302
    Description: JCR Journal
    Description: open
    Keywords: shear-wave splitting, calabrian subduction zone ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1261235 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2017-04-04
    Description: We modeled Pnl phases from several moderate magnitude earthquakes in the eastern Mediterranean to test methods and develop path calibrations for determining source parameters. The study region, which extends from the eastern part of the Hellenic arc to the eastern Anatolian fault, is dominated by moderate earthquakes that can produce significant damage. Our results are useful for analyzing regional seismicity as well as seismic hazard, because very few broadband seismic stations are available in the selected area. For the whole region we have obtained a single velocity model characterized by a 30 km thick crust, low upper mantle velocities and a very thin lid overlaying a distinct low velocity layer. Our preferred model proved quite reliable for determining focal mechanism and seismic moment across the entire range of selected paths. The source depth is also well constrained, especially for moderate earthquakes.
    Description: Published
    Description: N/A or not JCR
    Description: reserved
    Keywords: Body wave propagation ; earthquake parameters ; lithosphere ; upper-mantle ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 690519 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2017-04-04
    Description: This study concerns the unstable scarp named Sciara del Fuoco (SDF) at Stromboli volcano, merging geostructural observations, live-cam records in the visible and IR bands, analysis of vertical aerial photographs, and seismic records. These are used to assess morpho-structural changes between 2002 and 2004. The onset of the lava effusion on 28 December, 2002 preceded a gravitational collapse by two days, affecting a wide area of the SDF above and below sea level. We surmise that the collapse enhanced latent instability of the scarp. The 2002–2003 lava flows had a remarkable stabilizing effect on wide portions (〉50%) of the SDF, whilst erosive phenomena continued in the zone not covered by lava. This caused unrelenting regression of the upper landslide scarp toward the summit craters in the form of rockfalls and debris flows. If the crater conduit were involved in the sliding, then a change in eruptive behavior cannot be excluded.
    Description: Published
    Description: L09304
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3767834 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2017-04-04
    Description: Two unusual, highly explosive flank eruptions succeeded on Mount Etna in July August 2001 and in October 2002 to January 2003, raising the possibility of changing magmatic conditions. Here we decipher the origin and mechanisms of the second eruption from the composition and volatile (H2O, CO2, S, Cl) content of olivine-hosted melt inclusions in explosive products from its south flank vents. Our results demonstrate that powerful lava fountains and ash columns at the eruption onset were sustained by closed system ascent of a batch of primitive, volatile-rich ( 4 wt %) basaltic magma that rose from 10 km depth below sea level (bsl) and suddenly extruded through 2001 fractures maintained opened by eastward flank spreading. This magma, the most primitive for 240 years, probably represents the alkali-rich parental end-member responsible for Etna lavas’ evolution since the early 1970s. Few of it was directly extruded at the eruption onset, but its input likely pressurized the shallow plumbing system several weeks before the eruption. This latter was subsequently fed by the extrusion and degassing of larger amounts of the same, but slightly more evolved, magma that were ponding at 6–4 km bsl, in agreement with seismic data and with the lack of preeruptive SO2 accumulation above the initial depth of sulphur exsolution ( 3 km bsl). We find that while ponding, this magma was flushed and dehydrated by a CO2-rich gas phase of deeper derivation, a process that may commonly affect the plumbing system of Etna and other alkali basaltic volcanoes.
    Description: Published
    Description: B04203
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1729601 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2017-04-04
    Description: Ground-based thermal imaging is becoming an increasingly important tool for volcano surveillance, however the impact of volcanic plumes on quantitative measurements of surface temperature has not been previously evaluated. Here we use a radiative transfer model to simulate gas (primarily H2O and SO2) and aerosol absorptions over the path between a thermal camera and a heat source on Stromboli volcano, Italy. A FTIR spectrometer was used to quantify path amounts of gases likely to be encountered when making thermal measurements of the active craters. We find that when using a camera sensitive from 7.5 to 13 mm, underestimates of 400 K may be produced when viewing a source with an actual temperature of 1200 K. Cameras that operate between 3 and 5 mm are somewhat less susceptible to these errors.
    Description: Published
    Description: L14311
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1098429 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2017-04-04
    Description: Late on the night of 26 October 2002, a dike intrusion started suddenly at Mount Etna, producing intense explosive activity and lava effusion on the southern flank. Five to six hours afterward, a long field of eruptive fractures propagated radially along the northeastern flank of the volcano, producing marked variations at the permanent tilt network. The dike propagation velocity was inferred by the associated seismicity. We modeled the temporal evolution of the continuously recorded tilt data, both during the vertical dike propagation on the high south flank on 26 October and during the radial propagation along the northeast flank, between 27 and 28 October. The reproduction of the recorded tilt signal allowed us to describe the geometry and characteristics of the two dikes in greater detail than the previous static inversion. We deduced that the eruption was characterized by an unusual composite mechanism, clearly showing a transition from a nearly pure opening mode displacement to a mechanism characterized by an equally strong normal dip-slip component and a smaller left lateral strike-slip component. In this study we demonstrate the interaction between the final segment of the dike and a preexisting structure that was reactivated in response to the intrusion. We show that tilt and its modeling represent a powerful tool to verify and constrain dike intrusions in detail.
    Description: Published
    Description: B06404,
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3184806 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2017-04-04
    Description: Biomonitoring of magnetic properties of tree leaves has been postulated to be a good approach to measure particulate matter (PM) pollution levels. We studied the variation of magnetic hysteresis parameters on leaves of Quercus ilex, an evergreen oak previously used for magnetic biomonitoring of air pollution in Rome (Italy). The hysteresis parameters (MRS, MS, BCR and BC) measured on specimens collected at a close spacing on the surface of two single leaves show variances that are smaller than those observed on a collection of Q. ilex leaves sampled from several trees distributed along high-traffic roads. The variability is higher for magnetizations than for coercivities. This suggests a uniform source for the magnetic particles, such that variations are due mainly to changes in concentration. The normalized hysteresis cycles are remarkably similar for all the specimens. Normalization of magnetic moments by mass appears however more efficient than normalization by volume.
    Description: Published
    Description: L06306
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: environmental magnetism ; hysteresis properties ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2017-04-04
    Description: We present a two-stage nonlinear technique to invert strong motions records and geodetic data to retrieve the rupture history of an earthquake on a finite fault. To account for the actual rupture complexity, the fault parameters are spatially variable peak slip velocity, slip direction, rupture time and risetime. The unknown parameters are given at the nodes of the subfaults, whereas the parameters within a subfault are allowed to vary through a bilinear interpolation of the nodal values. The forward modeling is performed with a discrete wave number technique, whose Green’s functions include the complete response of the vertically varying Earth structure. During the first stage, an algorithm based on the heat-bath simulated annealing generates an ensemble of models that efficiently sample the good data-fitting regions of parameter space. In the second stage (appraisal), the algorithm performs a statistical analysis of the model ensemble and computes a weighted mean model and its standard deviation. This technique, rather than simply looking at the best model, extracts the most stable features of the earthquake rupture that are consistent with the data and gives an estimate of the variability of each model parameter. We present some synthetic tests to show the effectiveness of the method and its robustness to uncertainty of the adopted crustal model. Finally, we apply this inverse technique to the well recorded 2000 western Tottori, Japan, earthquake (Mw 6.6); we confirm that the rupture process is characterized by large slip (3-4 m) at very shallow depths but, differently from previous studies, we imaged a new slip patch (2-2.5 m) located deeper, between 14 and 18 km depth.
    Description: Published
    Description: B07314
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: partially_open
    Keywords: earthquake ; kinematic ; finite fault ; inversion ; source mechanics ; waveform ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2017-04-04
    Description: The role of mesoscales on the formation and spreading of water masses in the Western Mediterranean Sea (WMED) is studied with an ocean general circulation model (OGCM). The model is forced with inter- annually variable surface forcing for the years from 1979 to 1999. The simulations are compared with some recent observational studies of the mesoscale processes in the WMED. It is found that the model reproduces the major features of the observed mesoscale variability during the preconditioning of the deep convection in the Gulf of Lions and also the large mesoscale eddies evolution in the Algerian Basin. Thus the model is used to study the deep convection in the Gulf of Lions and the processes of spreading of deep waters after the convection period. The simulations suggest that the flow structure during the preconditioning period is dominated by the Ligurian- Provencal Current in the surface and intermediate layers, which intensifies, meanders and forms a mesoscale vortex over the Rhone fan. In the deep layers the density structures due to the old deep waters tend to organise in (deep) mesoscale cyclonic eddies. The instability of the transition zone between old and newly formed deep waters, which takes place after the violent mixing stages of the deep convection, leads to collapse of the mixed patch and formation of mesoscale eddies. Some of these eddies propagate out of the Gulf of Lions transporting deep waters into the Algerian Basin. The rest of the mesoscale eddies filled with newly formed deep waters remain in the Gulf of Lions, and tend to merge, enlarge and reorganise in an area with two or three large cyclonic eddies. After the cyclonic eddies reach the Algerian Basin they interact with the intense mesoscale field existing there. The model data together with the available satellite SLA data reveal a regular westward propagation of mesoscale eddies in the Northern Algerian Basin. This transport together with southward propagation of mesoscale eddies out of the Gulf of Lions is suggesting that the intermediate and deep waters of the WMED are transported westward by mesoscale eddies. Equivalently we can argue the intermediate and deep waters conveyor belt of the WMED is eddy driven.
    Description: MFSTEP project
    Description: Published
    Description: C02024
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: partially_open
    Keywords: water mass dynamics ; Gulf of Lyons ; 03. Hydrosphere::03.01. General::03.01.05. Operational oceanography
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2017-04-04
    Description: In order to test the potentiality of soil CO2 diffuse degassing measurements for the study of underground mass and heat transfer in geothermal systems detailed surveys were performed at Latera Caldera which is an excellent test site, due to the abundant available subsurface data. Over 2500 measurements of soil CO2 flux revealed that endogenous CO2 at Latera Caldera concentrates on a NE-SW band coinciding with a structural high of fractured Mesozoic limestones hosting a water-dominated high-enthalpy geothermal reservoir. The total hydrothermal CO2 degassing from the structural high has been evaluated at 350 t d-1 from an area of 3.1 km2. It has been estimated that such a CO2 release would imply a geothermal liquid flux of 263 kg s-1, with a heat release of 239 MW. The chemical and isotopic composition of the gas indicates a provenance from the geothermal reservoir and that CO2 is partly originated by thermal metamorphic decarbonation in the hottest deepest parts of the system and partly has a likely mantle origin. The ratios of CO2, H2, CH2 and CO to Ar, were used to estimate the T-P conditions of the reservoir. Results cluster at T ~ 200-300°C and PCO2 ~ 100-200 bars, close to the actual well measurements. Finally the approach proved to be an excellent tool to investigate the presence of an active geothermal reservoir at depth and that the H2-CO2-CH4-CO-Ar gas composition is a useful T-P geochemical indicator for such CO2 rich geothermal systems.
    Description: Published
    Description: B12204
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: partially_open
    Keywords: Carbon Dioxide degassing ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2017-04-04
    Description: A permanent automatic infrared (IR) station was installed at Solfatara crater, the most active zone of Campi Flegrei caldera. After a positive in situ calibration of the IR camera, we analyze 2175 thermal IR images of the same scene from 2004 to 2007. The scene includes a portion of the steam heated hot soils of Solfatara. The experiment was initiated to detect and quantify temperature changes of the shallow thermal structure of a quiescent volcano such as Solfatara over long periods. Ambient temperature results as the main parameter affecting IR temperatures while air humidity and rain control image quality. A geometric correction of the images was necessary to remove the effects of slow movement of the camera. After a suitable correction the images give a reliable and detailed picture of the temperature changes, over the period October 2004 – January 2007, which suggests origin of the changes were linked to anthropogenic activity, vegetation growth and to the increase of the flux of hydrothermal fluids in the area of the hottest fumaroles. Two positive temperature anomalies were registered after the occurrence of two seismic swarms which affected the hydrothermal system of Solfatara in October 2005 and October 2006. It is worth noting that these signs were detected in a system characterized by a low level of activity with respect to systems affected by real volcanic crisis where more spectacular results will be expected. Results of the experiment show that this kind of monitoring system can be a suitable tool for volcanic surveillance.
    Description: Published
    Description: B12206
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: partially_open
    Keywords: Termal Monitoring of Hydrothermal ; Activity ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2017-04-04
    Description: Frictional melt is implied in a variety of processes such as seismic slip, ice skating,and meteorite combustion. A steady state can be reached when melt is continuously produced and extruded from the sliding interface, as shown recently in a number of laboratory rock friction experiments. A thin, low-viscosity, high-temperature melt layer is formed resulting in low shear resistance. A theoretical solution describing the coupling of shear heating, thermal diffusion, and extrusion is obtained, without imposing a priori the melt thickness. The steady state shear traction can be approximated at high slip rates by the theoretical form : tau=sn^[1/4] (A/sqrt[R]) sqrt[ log[2 V/W] / (V/W) ] under a normal stress sn, slip rate V, radius of contact area R (A is a dimensional normalizing factor and W is a characteristic rate). Although the model offers a rather simplified view of a complex process, the predictions are compatible with experimental observations. In particular, we consider laboratory simulations of seismic slip on earthquake faults. A series of highvelocity rotary shear experiments on rocks, performed for sn in the range 1–20 MPa and slip rates in the range 0.5–2 m/s, is confronted to the theoretical model. The behavior is reasonably well reproduced, though the effect of radiation loss taking place in the experiment somewhat alters the data. The scaling of friction with sn, R, and V in the presence of melt suggests that extrapolation of laboratory measures to real Earth is a highly nonlinear, nontrivial exercise.
    Description: Published
    Description: B01308
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: friction ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2017-04-04
    Description: A statistical analysis of the polarization pattern of low-frequency geomagnetic field fluctuations (0.8-3.6 mHz) covering the entire 24-hour interval has been performed at an Antarctic station (Terra Nova Bay) and a low-latitude station (L'Aquila, Italy) during the entire 1995. The results show a complex pattern in which, in agreement with predictions, four polarization reversals occur at high latitude during the local day. A comparison with another Antarctic station, McMurdo, during a shorter interval in 1994 confirms these results. At low latitude the polarization sense in the afternoon reverses with respect to the morning, but the reversal is delayed by a few hours after the expected local noon. In Antarctica the polarization pattern does not show any dependence on frequency and season, while at L'Aquila it is better defined for frequencies below ≈2 mHz and during local summer.
    Description: Published
    Description: 305-310
    Description: JCR Journal
    Description: reserved
    Keywords: Polarization pattern ; low-frequency geomagnetic field fluctuations ; Antarctica ; L'Aquila, Italy ; 01. Atmosphere::01.03. Magnetosphere::01.03.99. General or miscellaneous ; 01. Atmosphere::01.03. Magnetosphere::01.03.04. Structure and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2017-04-04
    Description: We document the aggradational history of the Tiber River delta through the last 17,000 years by means of 17 new 14C ages from peat or wood collected from the delta sediment. An abrupt change in sediment clast size, grading from gravel to clay, occurred between 13.63 (±0.20) and 12.80 (±0.15) ka, indicating that it was synchronous with the last glacial termination, with no appreciable phase lag. Knowing this phase relationship enables us to reduce the magnitudes of age uncertainties for aggradational sections corresponding to glacial terminations IX through III, which we had dated previously by 40Ar/39Ar methods. Glacial terminations VIII, VI, and IV precede beyond 95% confidence the ages predicted by Northern Hemisphere summer insolation maxima. Additionally, we find that each of these seven glacial terminations follows particularly mild insolation minima, which we suggest may be regarded as the preconditioning factor to trigger a glacial termination.
    Description: Published
    Description: PA2205
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: climate changes ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...