ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Other Sources  (550,074)
  • NASA Technical Reports  (550,074)
Collection
  • Journals
  • Other Sources  (550,074)
Years
  • 1
    Publication Date: 2020-01-24
    Description: Presentation on Advancing Research in Hypersonic Flight at "Emerging Hypersonics Market" Panel at Transportation Research Board
    Keywords: Aeronautics (General)
    Type: HQ-E-DAA-TN76966 , Transportation Research Board; Jan 13, 2020; Washington, D.C.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-24
    Description: In this work we examine a multigrid preconditioning approach in the context of a high- order tensor-product discontinuous-Galerkin spectral-element solver. We couple multigrid ideas together with memory lean and efficient tensor-product preconditioned matrix-free smoothers. Block ILU(0)-preconditioned GMRES smoothers are employed on the coarsest spaces. The performance is evaluated on nonlinear problems arising from unsteady scale- resolving solutions of the Navier-Stokes equations: separated low-Mach unsteady ow over an airfoil from laminar to turbulent ow. A reduction in the number of ne space iterations is observed, which proves the efficiency of the approach in terms of preconditioning the linear systems, however this gain was not reflected in the CPU time. Finally, the preconditioner is successfully applied to problems characterized by stiff source terms such as the set of RANS equations, where the simple tensor product preconditioner fails. Theoretical justification about the findings is reported and future work is outlined.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN76312 , AIAA SciTech 2020; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-01-24
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN76613 , American Meteorological Society (AMS) Annual Meeting; Jan 12, 2020 - Jan 16, 2020; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-01-24
    Description: The NASA Global Imagery Browse Services (GIBS) and Worldview interactive mapping site leverage scientific and community best practices, open source software, and public standards to provide a scalable, compliant, and authoritative source for NASA Earth Observing System (EOS) Earth science data visualizations. GIBS and Worldview allow end users to easily and quickly interact with more than 800 full resolution pre-generated raster- and vector-based visualizations. This interactive discovery approach relies on visual observation and identification of phenomena that are not as simply identified otherwise. This eLightning presentation will exhibit the broad set of capabilities and visualization layers made possible through the GIBS and Worldview open source software. Specific dependencies on, and contributions to, open source software will be highlighted. Additionally, opportunities for future improvements for better interoperability and reuse through open source software will be discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN76098 , American Geophysical Union (AGU) Fall Meeting 2019; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-01-24
    Description: A multiple shaker placement methodology is developed and tested using a topology optimization technique. Current multiple shaker placement methodology requires optimum accelerometer placement and optimum single-shaker placement techniques. The proposed methodology is tested using a finite element model of the X-59 Low Boom Flight Demonstrator aircraft. The effective independence and the driving point acceleration transfer function (DPATF) methods are used for the accelerometer placement study. In this study, four shakers are used to excite each mode more effectively during the ground vibration test; all the modes of interest thus are separated into four groups. Each shaker takes care of a separate group of modes. Grouping the modes of interest is performed utilizing topology optimization. The number of modes for each group therefore will be automatically decided during grouping. For each group of modes, perform the following two steps to determine optimal location of four shakers: 1) At each accelerometer location, compare the magnitude of DPATF values at natural frequencies, select the minimum value, and make a vector with these minimum values of the DPATF magnitudes for each group; and 2) Select the degrees of freedom corresponding to the maximum value of this vector. The objective function value is the maximum value of the vector with minimum value of the magnitude of the superposed acceleration transfer function. This objective function value is maximized by changing the modes for each group. Forty accelerometers are enough to have good correlation between mode shapes obtained from the reduced order model and the simulated ground vibration test.
    Keywords: Numerical Analysis; Aircraft Design, Testing and Performance
    Type: AFRC-E-DAA-TN73257 , SciTech 2020; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2020-01-24
    Description: The Alpha Jet Atmospheric eXperiment (AJAX) airborne science project based out of NASA Ames Research Center performed eight science flights in coordination with the California Baseline Ozone Transport Study (CABOTS) campaign. Many of these flights included a series of vertical profiles (~ 0-5 km) distributed roughly along either a North/South or East/West transect. Some flights also connected the fixed-location measurements at Visalia (TOPAZ ozone lidar) and Bodega Bay (ozonesondes). AJAX measured ozone, carbon dioxide, methane, water vapor, and 3-D winds on each flight, and those in situ measurements are the basis of the data sets collected here. Trace gas data sets including time and aircraft position have been delivered as comma-separated-value text files. Meteorological data (temperature, pressure and 3-dimensional winds) are provided at 1 Hz in ICARTT-compliant text files.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN77025
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-01-24
    Description: NASA has developed the Autonomous Operations Planner (AOP) airborne decision support tool to explore advanced air traffic control concepts that include delegating separation authority to aircraft. A key element of the AOP is its strategic conflict resolution (CR) algorithm, which must resolve conflicts while maintaining conformance with traffic flow management constraints. While a previous CR algorithm, which focused on broader flight plan optimization objectives as a part of conflict resolution, had successfully been developed, new research has identified the need for resolution routes the users find more acceptable (i.e., simpler and more intuitive). A new CR algorithm is presented that uses a combination of pattern-based maneuvers and a genetic algorithm to achieve these new objectives. Several lateral and vertical maneuver patterns are defined and the application of the genetic algorithm explained. A new approach to defining a conflicted fitness function using estimates of the local conflict region around a conflicted trajectory is also presented. Preliminary performance characteristics of the implemented algorithm are provided.
    Keywords: Air Transportation and Safety
    Type: NF1676L-LARC , AIAA Guidance, Navigation, and Control Conference and Exhibit; Aug 21, 2006 - Aug 24, 2006; Keystone, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-01-24
    Description: The proposed poster will highlight two NASA developed entry technologies that are enablers for Ice Giant Missions. They are: (1) Heat-shield for Extreme Entry Environment Technology (HEEET), and (2) Adaptable, Deployable, Entry, and Placement Technology (ADEPT), a mechanically deployable entry system. HEEET development is complete and is at TRL 6. HEEET is ready for Ice Giant in situ probe missions, and HEEET is an enabler for either direct ballistic entry or entry from Orbit. NASA plans to sustain the HEEET capability as it is needed for Venus, Saturn and higher speed sample return missions in addition to Ice Giant Missions. The emerging recognition among the scientific community that by delivering the probe from orbit will allow for simultaneous in-situ and orbital measurement can be enabled by aerocapture using ADEPT. The drag modulated aerocapture (DMA) with ADEPT is the simplest approach that can deliver an orbiter and probe together and without the significant penalty associated with propulsive insertion. Studies performed by JPL and NASA Ames teams point to this very promising possibility. Numerous DMA with ADEPT studies point to its applicability to small spacecraft missions as well as Ice Giant missions. The poster will present the current state of readiness of HEEET, ADEPT and DMA.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN76382 , Ice Giants Systems; Jan 20, 2020 - Jan 22, 2020; London, England; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-01-24
    Description: Northern peatlands are an integral part of the global carbon cyclea strong sink of atmospheric carbon dioxide and source of methane. Increasing anthropogenic carbon dioxide and methane in the atmosphere are thought to strongly impact these environments, and yet, peatlands are not routinely included in Earth system models. Here we present a quantification of the sink and stock of northern peat carbon from the last glacial period through the pre-industrial period. Additional data and new algorithms for reconstructing the history of peat carbon accumulation and the timing of peatland initiation increased the estimate of total northern peat carbon stocks from 545 Gt to 1,055 Gt of carbon. Further, the post-glacial increases in peatland initiation rate and carbon accumulation rate are more abrupt than previously reported. Peatlands have been a strong carbon sink throughout the Holocene, but the atmospheric partial pressure of carbon dioxide has been relatively stable over this period. While processes such as permafrost thaw and coral reef development probably contributed some additional carbon to the atmosphere, we suggest that deep ocean upwelling was the most important mechanism for balancing the peatland sink and maintaining the observed stability.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN74633 , Nature Geoscience (ISSN 1752-0894) (e-ISSN 1752-0908); 12; 11; 917–921
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-01-24
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN76760 , AMS Annual Meeting; Jan 12, 2020 - Jan 16, 2020; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-01-24
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: SSTI-2200-0178
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-01-24
    Description: No abstract available
    Keywords: Air Transportation and Safety; Aircraft Design, Testing and Performance
    Type: ARC-E-DAA-TN75571 , SC19; Nov 17, 2019 - Nov 22, 2019; Denver, Co; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-01-24
    Description: The highest priority science goals for Ice Giant missions are: 1) Interior structure of the Planet, and 2) Bulk composition that includes isotopes and noble gases. The interaction between the planetary interior and the atmosphere requires sustained global measurements. Noble gas and Isotope measurements require in situ measurement. Drag modulated aerocapture utilizing ADEPT offers more mass delivered to the Ice Giants than with propulsive orbit insertion. The Galileo Probe entered at a hot spot which created interpretation challenges. Juno is providing valuable orbital measurements, but without in situ measurements the story is incomplete. Planetary scientists interested in Ice Giant missions should perform mission design studies with these new Entry System technologies to assess the feasibility within the context of the international collaboration framework. A mission architecture that includes probe(s) along with an orbiting spacecraft can deploy the probes at the desired location while taking simultaneous measurements from orbit to provide invaluable data that can correlate both global and local measurements. Entry System Technologies currently being developed by NASA are poised to enable missions that position the Orbiter & Probes through drag modulated aerocapture (ADEPT), and HEEET enables the Probes to survive the extreme environments encountered for entry into the atmospheric interior.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN77152 , Ice Giants Systems; Jan 20, 2020 - Jan 22, 2020; London, England; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-01-24
    Description: Decision-support tools for maintaining pairwise aircraft separation rely on conflict detection to alert the operator when the predicted trajectories of aircraft will result in a loss of separation. But aircraft frequently do not follow their predicted trajectories exactly. This can cause missed alerts and the failure of strategic separation procedures. We present a technique for modeling a bounded region of uncertainty around a four-dimensional predicted trajectory and an algorithm for detecting conflicts between trajectories modeled in this way that avoids missed alerts as long as the aircraft remain within the specified regions of uncertainty. In addition, we present an algorithm for detecting the intrusion of a trajectory modeled in this way into an area hazard modeled as a polygonal region. The size of the region of uncertainty can vary along the trajectory continually and independently in the along-path, cross-track, and vertical dimensions, providing an opportunity to reduce the likelihood of false alerts while protecting against typical prediction errors. The algorithm has been implemented in the Autonomous Operations Planner, a NASA Langley prototype decision support tool for airborne self-separation.
    Keywords: Air Transportation and Safety
    Type: NF1676L-LARC , AIAA Guidance, Navigation, and Control Conference and Exhibit; Aug 21, 2006 - Aug 24, 2006; Keystone, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-01-24
    Description: The presentation discusses operational suitability metrics computed from the closed-loop simulations of EO/IR and DAA systems.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN77133 , SC-228 (Minimum Performance Standards for Unmanned Aircraft Systems) Working Group 1 EO/IR Subworking Group; Jan 14, 2020; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-01-24
    Description: This paper determined the feasibility of an adaptive hexapod simulator motion algorithm based on aircraft roll stability. An experiment was conducted that used a transport aircraft model in the Vertical Motion Simulator at NASA Ames Research Center. Eighteen general aviation pilots flew a heading-capture task and a stall task consecutively under four motion configurations: baseline hexapod, adaptive hexapod, optimized hexapod, and full motion. The adaptive motion was more similar to the baseline hexapod motion in the heading-capture task when the aircraft was more stable, and more similar to the optimized hexapod motion in the stall task when the aircraft was more unstable. Pilot motion ratings and task performance in the heading-capture task under the adaptive hexapod motion were more similar to baseline hexapod motion compared to optimized hexapod motion. However, motion ratings and task performance in the stall task under the adaptive motion were not significantly more similar to the optimized hexapod motion compared to baseline hexapod motion. Motion ratings and overall task performance under optimized hexapod motion as opposed to baseline hexapod motion were always more similar to the full motion condition. This paper showed that adaptive motion based on aircraft stability is feasible and can be implemented in a straightforward way. More research is required to test the adaptive motion algorithm in different tasks.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA 2020-2268 , ARC-E-DAA-TN76664 , AIAA Scitech 2020 Forum; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-01-24
    Description: NASAs Earth Observing System Data and Information System (EOSDIS) open source Cumulus software is designed as a common set of code and services that can be used to create a pipeline to deliver and manage earth science data in the cloud. Cumulus strives to create an ecosystem on the foundation of open source that unites those with shared problems and goals by encouraging users to contribute solutions back to the platform. Large parts of ingesting and managing data are common and much of what is created can be used by others. Our goal is to maximize collaboration and code reuse while allowing users to design a custom solution that meets their needs without having to take on extraneous functionality. In this talk we will describe how the Cumulus ecosystem works beyond just open source software. We will review the technology, the successes and challenges, and the evolution and future of Cumulus as an ecosystem.
    Keywords: Computer Programming and Software
    Type: GSFC-E-DAA-TN75184 , American Geophysical Union (AGU) Fall Meeting 2019; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-01-24
    Description: Social media data can provide useful real-time and historical information relating to the natural world, but managing this data poses challenges. Scientists at GES DISC are exploring the potential of Twitter data to augment precipitation data from the Global Precipitation Measurement (GPM) mission. However, the format of Twitter data is unconventional in the context of NASA data centers, resulting in frustration for scientists who need to work with the data. This study investigated procedures and standards needed to properly manage Twitter data to make them compatible with these data centers. After comparing databases, the study found that the MongoDB database was best suited for the storage of raw Twitter data due to its flexibility, ability to be accessed by multiple users, and querying functionality. The study used the Python package Zarr to transform processed Twitter data into a gridded format similar to that of satellite data. Each Tweet was mapped onto a time-space grid; each grid location contained information about Tweet attributes and precipitation. The study developed a pipeline for downloading, storing, and gridding Twitter data and transformed Twitter data into an understandable format for users of NASA satellite data.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN76535 , AGU 2019 Fall Meeting; Dec 10, 2019
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-01-24
    Description: According to CDC, a sharp increase in reported Valley fever cases (Coccidioidomycosis) has been found between 2009 and 2012. Environmental conditions play an important role for Valley fever outbreaks. For example, dust storms can significantly increase the amount of the fungus Coccidioides in the air and associated strong winds can transport the fungus to other areas. In last years AGU session, we reported a preliminary study to investigate hydrometeorological conditions and their connection with dust storm activities in southwestern United States. We found wind is a major contributing factor for the seasonal variation of dust storm activities. Interannual variation of the regional hydrometeorological conditions are closely linked to the large-scale environment such as the Pacific Decadal Oscillation (PDO). Strong winds are linked with a number of weather events such cold front passages, thunderstorms that produce downbursts and strong winds, the Santa Ana winds, etc. In this presentation, we will report the results of our latest investigation on meteorological conditions associated with Valley fever outbreaks in southwestern United States, using NLDAS (North American Land Data Assimilation System), GPM (Global Precipitation Measurement), and MERRA-2 (Modern Era Retrospective-analysis for Research and Applications, Version 2) hourly datasets, from the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC).
    Keywords: Meteorology and Climatology
    Type: GH44A-08 , GSFC-E-DAA-TN76501 , American Geophysical Union (AGU) Fall Meeting 2019; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-01-24
    Description: Machine learning (ML) is being increasingly utilized in Earth science research. Benefits of ML include efficiency, reduction of human error, and ability to extract hidden patterns within data. However, the mutual lack of each others domain knowledge by ML and Earth science stands as a barrier to timely and effective implementation. Earth science, in particular, faces challenges in generating sample data, compared to those of traditional ML problems such as face recognition or stock predictions, where data is abundant and not lacking in ground truth, which is necessary for labeling. Earth science data are more varying in formats, such as HDF5 and image resolutions, and are not standardized across instruments, even within a given Earth science discipline. Previous studies have been done to outline the specific challenges that Earth science faces with ML, while others have focused on using existing publications to mine information efficiently. Other resources such as Scikit-Learn have developed decision trees for choosing appropriate machine learning algorithms, but application within Earth science subjects becomes much more complex. For the current study, we propose a methodology and tool that aids in implementation of ML in Earth science using natural language processing (NLP). Our work comprises three main parts: (1) analyzing existing publications related to ML and Earth science, using natural language processing: (2) extracting from the publications information on ML models subjects in Earth Science: and (3) visualizing the extracted relationships as a network graph. The resulting network graph should aid the Earth science communities in applying optimal ML algorithms and guiding data preparation through visualization of similar studies. The network graph and analysis of document similarity will be the basis of our next step, which is to develop a decision tree for selecting optimal machine learning methodologies for specified Earth science applications.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: GSFC-E-DAA-TN76534 , American Geophysical Union (AGU) Fall Meeting 2019; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2020-01-24
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN76317 , American Geoscience Union (AGU) Fall Meeting; Dec 09, 2019 - Dec 13, 2020; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-01-24
    Description: Active optical (Laser/Lidar) measurement techniques are critical for the future National Aeronautics and Space Administration (NASA) Earth, Planetary Science, Exploration, and Aeronautics measurements. The latest science decadal surveys recommend a number of missions requiring active optical systems to meet the science measurement objectives and the aeronautics community continues to use Laser/Lidar technologies to meet the aeronautics measurement objectives. With these drivers, the NASA Agency Program Management Council (APMC), chaired by the NASA Associate Administrator, has tasked the NASA Sensors and Instrumentation (S&I) Capability Leadership Team (CLT) Leader to determine if the Agency has the necessary expertise and capabilities to execute successfully the active optical-based systems necessary to make the required measurements for Science, Exploration, and Aeronautics. This NASA Technical Interchange Meeting (TIM) was a forum to exchange perspectives on the current state of the disciplines technologies and the direction NASA needs to take in the future to raise the Technical Readiness Level (TRL) of the measurement technologies to meet these measurement needs in the applications domains. The information developed at this TIM was used in formulating the Agency-level strategy and solutions for advancing high-risk Laser/Lidar technologies that are not currently being sufficiently planned, developed, or risk-reduced to meet NASAs mission requirements. Given the crosscutting synergies in critical Active Optical measurements for NASA Science, Exploration, and Aeronautics, a strategic approach is needed to identify areas where NASA should lead, leverage or collaborate with existing national and international industries to meet its future needs. The TIM aimed at focusing NASAs directions to attain the necessary TRLs to meet the Agency-level priority Active Optical measurements in Space and Aeronautics. The TIM presentations and strategic inputs were synthesized by the NASA Active Optical Tiger Team for presentation to the NASA APMC with a suggested strategy to address the Agencys needs in a crosscutting, synergistic and cost-effective manner.
    Keywords: Social and Information Sciences (General); Aeronautics (General)
    Type: NASA/CP-2019-220422 , L-21082 , NF1676L-35025 , NASA TIM: Active Optical Systems for Supporting Science, Exploration, and Aeronautics Measurements Needs; Jul 31, 2018 - Aug 02, 2018; Columbia, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020-01-24
    Description: Atmospheric rivers (ARs) are responsible for some of the hydroclimatic extremes around the world. Their mechanisms and contribution to flooding in the Middle East are relatively poorly understood. This study shows that the record floods during March 2019 across the Middle East were caused by a powerful AR, originated from the North Atlantic Ocean. Iran, in particular, was substantially affected by the floods. The nearly 9000 km long AR propagated across North Africa and the Middle-East, and was fed by additional moisture from several other sources on its pathway. Simultaneous presence of a mid-latitude system and a subtropical jet facilitated the moisture supply. The AR, as passing over the Zagros Mountains, produced record rainfall induced by the orographic forcing.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN76114
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-01-23
    Description: Properly assessing the asteroid threat depends on the knowledge of asteroid pre-entry parameters, such as size, velocity, mass, density, and strength. Although a vast number of possible bodies to study exist, such characterization of asteroid populations is currently limited by substantial costs associated with space rendezvous missions and rare meteorite findings. As asteroids fragment, ablate, and decelerate in the atmosphere, they emit light detectable by ground-based and space-borne instruments. Earths atmosphere, thus, becomes an accessible laboratory that enables impactor risk assessments by facilitating inference of the pre-entry parameters. These asteroid pre-entry conditions are typically deduced by modeling the entry and breakup physics that best reproduce the observed light or energy deposition curve. However, this process requires extensive manual trial-and-error of uncertain modeling parameters. Automating meteor modeling and inference would improve property distributions used in risk assessments and enable population characterization as more light curves become more readily available through the presence of space assets and ground-based camera networks. We previously developed a genetic algorithm to automate meteor modeling by using the fragment-cloud model (FCM) to search for the values of the FCM input parameters (e.g., diameter) that generate energy deposition profiles that match the observed one. Now, we apply deep learning to infer asteroid diameter, velocity, and density from observed energy deposition curves. We trained and tested our neural network models with synthetic energy deposition curves modeled using the FCM rubble pile implementation. We present an application of a 1D convolutional neural network and compare its performance to other attempted regressors and machine learning techniques, such as a fully connected neural network and Random Forest regression, to demonstrate its capabilities. We validate our model weights and approach using the Chelyabinsk, Tagish Lake, Beneov, Koice, and Lost City meteors.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN76511 , AGU Fall 2019 Meeting; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2020-01-23
    Description: Transient, narrow plumes of strong water vapor transport, referred to as Atmospheric Rivers (ARs) are responsible for much of the precipitation along the west coast of the United States. Along the coast of Oregon and Washington, the most intense cool season precipitation events are almost always induced by an AR and can result in detrimental impacts on society due to mudslides and flooding. It is therefore important to understand the large scale influence on extreme AR events so that they can be accurately predicted on timescales ranging from numerical weather prediction to seasonal forecasts. Here, characteristics of ARs that result in observed extreme precipitation events are compared to typical ARs on the coast of Washington State using data from the Modern Era Retrospective analysis for Research and Applications, Version 2. In addition to more intense water vapor transport, notable differences in the synoptic scale forcing are present during extreme precipitation events that are not present during typical AR events. In particular, an anomalously deep low pressure system is stationed to the west in the Gulf of Alaska, alongside a jet streak overhead. Attention will also be given to subseasonal and seasonal teleconnection patterns that are known to influence the weather in the Pacific Northwest of the United States. While little influence can be seen from the phase of the El Nino Southern Oscillation, Pacific Decadal Oscillation, and Pacific North American Pattern, the Madden Julian Oscillation (MJO) can play a role in determining the strength of precipitation associated with in AR on the Washington Coast. Lastly, interactions between the MJO and other teleconnection patterns will be explored to determine key features that should be investigated when making subseasonal predictions for AR activity and the associated precipitation in the Pacific Northwest.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN76941 , AMS Annual Meeting; Jan 12, 2020 - Jan 16, 2020; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2020-01-23
    Description: This presentation is a refinement of an earlier presentation describing the methods of generating models used for designing control laws for use in vehicles with significant structural effects.
    Keywords: Aircraft Stability and Control
    Type: AFRC-E-DAA-TN76537 , AIAA SciTech Forum 2020; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2020-01-23
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN76011 , AGU 2019 Fall Meeting; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2020-01-23
    Description: The paper introduces the midpoint monitoring method for detecting cell voltage imbalance in a series string of 8 electrochemical cells. Monte Carlo analysis is performed for normal cell End of Discharge open and closed circuit voltage behavior to assess the extent to which derived guard band voltage limits will detect over discharged cells, provide false positive indication, or fail to detect over discharged cells. Forward work is proposed to refine the battery monitoring method for operational use in 28V lithium ion batteries.
    Keywords: Engineering (General)
    Type: JSC-E-DAA-TN75972 , NASA Aerospace Battery Workshop; Nov 19, 2019 - Nov 21, 2019; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2020-01-23
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN76529 , AGU 2019 Fall Meeting; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-01-23
    Description: The isotopes of chlorine (37Cl and 35Cl) are highly fractionated in lunar samples compared to most other Solar System materials. Recently, the chlorine isotope signatures of lunar rocks have been attributed to large-scale degassing processes that occurred during the existence of a magma ocean. In this study we investigated how well a suite of lunar basalts, most of which have not previously been analyzed, conform to previous models. The Cl isotope compositions (37Cl () = [(37Cl/35Clsample/37Cl/35ClSMOC) 1] 1000, where SMOC refers to standard mean ocean chloride) recorded range from +7 to +14 (Apollo 15), +10 to +19 (Apollo 12), +9 to +15 (70017), +4 to +8 (MIL 05035), and +15 to +22 (Kalahari 009). The Cl isotopic data from the present study support the mixing trends previously reported by Boyce et al. (2015) and Barnes et al. (2016), as the Cl isotopic composition of apatites are positively correlated with bulk-rock incompatible trace element abundances in the low-Ti basalts, inclusive of low-Ti and KREEP basalts. This trend has been interpreted as evidence that incompatible trace elements, including Cl, were concentrated in the urKREEP residual liquid of the lunar magma ocean, rather than the mantle cumulates, and that urKREEP Cl had a highly fractionated isotopic composition. The source regions for the basalts were thus created by variable mixing between the mantle (Cl-poor and relatively unfractionated) and urKREEP. The high-Ti basalts show much more variability in measured Cl isotope ratios and scatter around the trend formed by the low-Ti basalts. Most of the data for lunar meteorites also fits the mixing of volatiles in their sources, but Kalahari 009, which is highly depleted in incompatible trace elements, contains apatites with heavily fractionated Cl isotopic compositions. Given that Kalahari 009 is one of the oldest lunar basalts and ought to have been derived from very early-formed mantle cumulates, a heavy Cl isotopic signature is likely not related to its mantle source, but more likely to magmatic or secondary alteration processes, perhaps via impact-driven vapor metasomatism of the lunar crust.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN75349 , Geochimica et Cosmochimica Acta; 266; 144–162
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2020-01-23
    Description: As aircraft move to using composite materials as their primary structure they become lighter and more flexible as well. This presents some significant challenges in association with gust load alleviation. In this paper we develop an aeroservoelastic model for use in developing controllers that utilize distributed control surfaces for active gust load alleviation in a set of wind tunnel experiments. The model is based on an preexisting aeroelastic wing tunnel model and compares the baseline functionality to it. We also provide simple full state feedback simulations for the model.
    Keywords: Aerodynamics
    Type: AIAA 2020-0211 , ARC-E-DAA-TN76375 , AIAA Scitech 2020 Forum; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2020-01-23
    Description: This paper covers the design and first measurements of non-perturbative, external inductive magnetic diagnostics for arcjet constrictors which can measure the motion of the arc current channel. These measurements of arc motion are motivated by previous simulations using the ARC Heater Simulator (ARCHeS), which predicted unsteady arc motion due to the magnetic kink instability. Measurements of the kink instability are relevant to characterizing motion of the enthalpy profile of the arcjet, the arcjet operational stability, and electrode damage due to associated arc detachment events. These first measurements indicate 4 mm oscillations at 0.5-2 kHz of the current profile.
    Keywords: Plasma Physics
    Type: AIAA 2020-0919 , ARC-E-DAA-TN76208 , AIAA Scitech 2020 Forum; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2020-01-23
    Description: The Lynx mission concept, under development ahead of the 2020 Astrophysics Decadal Review, includes the Lynx X-ray Microcalorimeter (LXM) as one of its primary instruments. The LXM uses a microcalorimeter array at the focus of a high-throughput soft x-ray telescope to enable high-resolution nondispersive spectroscopy in the soft x-ray waveband (0.2 to 15 keV) with exquisite angular resolution. Similar to other x-ray microcalorimeters, the LXM uses a set of blocking filters mounted within the dewar that pass the photons of interest (x-rays) while attenuating the out-of-band long-wavelength radiation. Such filters have been successfully used on previous orbital and suborbital instruments; however, the Lynx science objectives, which emphasize observations in the soft x-ray band (〈1keV), pose more challenging requirements on the set of LXM blocking filters. We present an introduction to the design of the LXM optical/IR blocking filters and discuss recent advances in filter capability targeted at LXM. In addition, we briefly describe the external filters and the modulated x-ray sources to be used for onboard detector calibration.
    Keywords: Optics; Instrumentation and Photography
    Type: GSFC-E-DAA-TN75246 , Journal of Astronomical Telescopes, Instruments, and Systems (ISSN 2329-4124) (e-ISSN 2329-4221); 5; 2; 021020
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2020-01-23
    Description: Electromagnetic Compatibility (EMC) is essential to the success of any vehicle design that incorporates a complex assortment of electronic, electrical, and electromechanical systems and sub-systems that is expected to meet operational and performance requirements while exposed to a changing set of electromagnetic environments composed of both man-made and naturally occurring threats. The combined aspects of these environments are known as Electromagnetic Environmental Effects (E3). The attainment of EMC is accomplished through the application of sound engineering principles and practices that enable a complex vehicle or vehicles to operate successfully when exposed to the effects of its expected and/or specified electromagnetic environments.
    Keywords: Electronics and Electrical Engineering
    Type: DSG-RQMT-004 , JSC-E-DAA-TN72653-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2020-01-23
    Description: Spaceborne lidar observations have great potential to provide accurate global estimates of the aerosol direct radiative effect (DRE) in both clear and cloudy conditions. However, comparisons between observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) and multiple years of Atmospheric Radiation Measurement (ARM) programs ground-based Raman lidars (RL) show that CALIPSO does not detect all radiatively significant aerosol, i.e. aerosol that directly modifies the Earths radiation budget. We estimated that using CALIPSO observations results in an underestimate of the magnitude of the global mean aerosol DRE by up to 54%. The ARM RL datasets along with NASA Langley airborne high spectral resolution lidar (HSRL) data from multiple field campaigns are used to compute the detection sensitivity required to accurately resolve the aerosol DRE. This shows that a lidar with a backscatter coefficient detection sensitivity of about 12x10(exp -4)km(exp -1)sr(exp -1) at 532nm would resolve all the aerosol needed to derive the DRE to within 1%.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-27456 , Geophysical Research Letters; 44; 17; 9059-9067
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2020-01-23
    Description: A research project is underway at NASA Lewis to produce a computer code which can accurately predict ice growth under any meteorological conditions for any aircraft surface. This report will present results from version 2.0 of this code, which is called LEWICE. This version differs from previous releases due to its robustness and its ability to reproduce results accurately for different spacing and time step criteria across computing platform. It also differs in the extensive amount of effort undertaken to compare the results in a quantified manner against the database of ice shapes which have been generated in the NASA Lewis Icing Research Tunnel (IRT). The results of the shape comparisons are analyzed to determine the range of meteorological conditions under which LEWICE 2.0 is within the experimental repeatability. This comparison shows that the average variation of LEWICE 2.0 from the experimental data is 7.2% while the overall variability of the experimental data is 2.5%.
    Keywords: Aerodynamics
    Type: NASA/CR-1999-208690 , E-11479 , NAS 1.26:208690
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2020-01-23
    Description: To enable NASAs plans to return astronauts to the lunar surface and eventually to Mars, the agency is putting emphasis on reusable cryogenic systems. Such systems will require replenishing of cryogens on-orbit via a cryogenic tanker or refueling depot, and potentially on the lunar or Martian surfaces with the utilization of in-situ resources. Surface replenishing requires the in-situ production of gaseous oxygen (and hydrogen if on the lunar surface), followed by liquefaction and storage. The liquefaction system can be integrated into the propulsion system propellant tanks, or in a separate storage facility and transferred to the propulsion system when needed. In interest of developing a liquefaction and storage system that is efficient, reliable and scalable, a multicenter team of NASA engineers was formed. The team conducted trade studies on various system level concepts including multiple heat exchanger configurations to be integrated with active cooling (cryocoolers). When the trade studies concluded, the team settled on a system level configuration which included a propellant tank outfitted with a tube-on-tank heat exchanger integrated with a cryocooler. The team executed a development plan to include: 1) a brassboard level test series to demonstrate proof of concept, 2) model development to predict system performance, 3) model validation utilizing brassboard test results, 4) the design, development and demonstration of a Mars surface liquefaction and storage system prototype, and 5) eventually conduct an end-to-end demonstration to include in-situ production, liquefaction, and long duration storage of cryogens with zero boil-off. The effort is currently in the brassboard level testing phase which will be discussed here.
    Keywords: Spacecraft Propulsion and Power
    Type: M19-7405 , Cold Facts
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2020-01-23
    Description: This presentation provides an overview of a range of perspectives on risk in the development and operation of space systems. It also introduces the concept of risk-based safety and mission assurance.
    Keywords: Quality Assurance and Reliability
    Type: GSFC-E-DAA-TN75623 , NSC Webinar; Jan 15, 2020; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2020-01-23
    Description: No abstract available
    Keywords: Social and Information Sciences (General)
    Type: MSFC-E-DAA-TN76765 , AMS Annual Meeting; Jan 12, 2020 - Jan 16, 2020; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2020-01-23
    Description: No abstract available
    Keywords: Law, Political Science and Space Policy; Space Transportation and Safety
    Type: JSC-E-DAA-TN76975 , IAA Conference on Space Situational Awareness (ICSSA); Jan 14, 2020 - Jan 16, 2020; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2020-01-23
    Description: Favorable indications of massive quantities of water on Mars have initiated studies of potential changes to human Mars missions. Using a technique known as a Rodriguez Well to melt the ice, store the resulting water in a subsurface ice cavity until needed, and then pump water to the surface for use is one potential means to effect these changes. A computer simulation of the Rodriguez Well in a terrestrial environment is one of the engineering tools being used to characterize the performance of this type of well on Mars. An experiment at the NASA Johnson Space Center is gathering data for convective heat transfer and evaporation rates at Mars surface conditions so that this computer simulation can be properly modified to predict performance on Mars. While quantitative results await processing, tests have indicated that a pool of water can be maintained at 1C to 2 C while at Mars surface temperatures and pressures.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-E-DAA-TN74283 , International Conference on Mars Polar Science and Exploration; Jan 13, 2020 - Jan 17, 2020; Tierr del Fuego; Argentina
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2020-01-23
    Description: Harness the power of quantum technologies to assure the availability of UAS communications against disruptions. Make use of quantum computing (e.g. quantum optimization) and quantum communication (e.g. quantum key distribution) to address the availability cybersecurity challenge. Our approach is three-fold: (1) Utilize quantum optimization algorithms to design robust network with routing redundancy that can respond adaptively to dynamically changing real-time environment and disruptions, (2) Utilize quantum optimization algorithms resource allocation for detection, localization, and tracking of mobile communication disruption agents, (3) Utilize quantum key distribution (QKD) to execute secure key sharing in high data rate optical communication and/or anti-jamming protocols for secure RF communication.
    Keywords: Physics of Elementary Particles and Fields; Aircraft Design, Testing and Performance
    Type: GRC-E-DAA-TN74942 , Annual Convergent Aeronautics Solutions (CAS) Showcase; Nov 13, 2019 - Nov 14, 2019; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2020-01-23
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN77000 , AIAA Sonic Boom Prediction Workshop; Jan 04, 2020 - Jan 05, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2020-01-23
    Description: No abstract available
    Keywords: Geosciences (General)
    Type: MSFC-E-DAA-TN76715 , AMS Annual Meeting; Jan 12, 2020 - Jan 16, 2020; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2020-01-23
    Description: Adjoint models are powerful tools that can be used to estimate the impact of observations on a chosen norm for numerical weather prediction forecasts. In this study, the Global Modeling and Assimilation Office (NASA/GMAO) Observing System Simulation Experiment framework is employed to investigate the behavior of the adjoint tool in an environment where the 'true' state of the atmosphere is fully known. This allows for the calculation of adjoint estimates of observation impact for very short forecast times including the zero-hour analysis state. The adjoint calculations using self-analysis verification can also be compared to adjoint calculations using the 'truth' as verification in order to characterize the robustness of adjoint estimations in the operational setting. Results from a experiments exploring various aspects of performance of the adjoint tool will be presented.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN76951 , AMS Annual Meeting; Jan 12, 2020 - Jan 16, 2020; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2020-01-23
    Description: Increasing temperature trends are expected to impact yields of major field crops by affecting various plant processes, such as phenology, growth, and evapotranspiration. However, future projections typically do not consider the effects of agronomic adaptation in farming practices. We use an ensemble of seven Global Gridded Crop Models to quantify the impacts and adaptation potential of field crops under increasing temperature up to 6 K, accounting for model uncertainty. We find that without adaptation, the dominant effect of temperature increase is to shorten the growing period and to reduce grain yields and production. We then test the potential of two agronomic measures to combat warming-induced yield reduction: (i) use of cultivars with adjusted phenology to regain the reference growing period duration and (ii) conversion of rainfed systems to irrigated ones in order to alleviate the negative temperature effects that are mediated by crop evapotranspiration. We find that cultivar adaptation can fully compensate global production losses up to 2 K of temperature increase, with larger potentials in continental and temperate regions. Irrigation could also compensate production losses, but its potential is highest in arid regions, where irrigation expansion would be constrained by water scarcity. Moreover, we discuss that irrigation is not a true adaptation measure but rather an intensification strategy, as it equally increases production under any temperature level. In the tropics, even when introducing both adapted cultivars and irrigation, crop production declines already at moderate warming, making adaptation particularly challenging in these areas.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN76867 , Earth's Future (e-ISSN 2328-4277)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2020-01-23
    Description: No abstract available
    Keywords: Geosciences (General)
    Type: MSFC-E-DAA-TN76754 , AMS Annual Meeting; Jan 12, 2020 - Jan 16, 2020; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2020-01-23
    Description: No abstract available
    Keywords: Physics (General); Aerodynamics
    Type: ARC-E-DAA-TN76890 , AIAA Sonic Boom Prediction Workshop; Jan 04, 2020 - Jan 05, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2020-01-23
    Description: Low power Stirling convertors are being developed at NASA Glenn Research Center to provide future small spacecraft with electrical power by converting heat from one or more Light Weight Radioisotope Heater Units (LWRHU). An initial design converts multiple watts of heat to one watt of electrical power output using a Stirling convertor. A variety of mission concepts have been studied by NASA and the U. S. Department of Energy that would utilize low power Radioisotope Power Systems (RPS) for probes, landers, rovers, and repeaters. These missions would contain science instruments distributed across planetary surfaces or near objects of interest where solar flux is insufficient for using solar cells. Landers could be used to provide data such as, radiation, temperature, pressure, seismic activity, and other surface measurements for planetary science and to inform future mission planners. The studies propose using fractional versions of the General Purpose Heat Source or multiple LWRHUs to heat power conversion technologies for science instruments and communication. Dynamic power systems are capable of higher conversion efficiencies, which could enable equal power using less fuel or more power using equal fuel, when compared to less efficient static power conversion technologies. Providing spacecraft with more power would decrease duty cycling of basic functions and, therefore, increase the quality and abundance of science data. Efforts to develop the concept have focused on maturation of a 1-We convertor and controller design and performance evaluation of an evacuated metal foil insulation. A proof-of-concept 1-We convertor, controller, and evacuated metal foil insulation package have been fabricated and are undergoing characterization testing. The current status, findings, and path forward for the effort are explained in this paper.
    Keywords: Engineering (General)
    Type: NASA/TM-2019-220316 , AIAA–2019–4065 , E-19731 , GRC-E-DAA-TN71841 , International Energy Conversion Engineering Conference; Aug 19, 2019 - Aug 22, 2019; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2020-01-23
    Description: Over 50 years have passed since 2001: A Space Odyssey debuted in April 1968. In the film, Dr. Heywood Floydflies to a large artificial gravity space station orbiting Earth aboard a commercial space plane. He then embarks on acommuter flight to the Moon arriving there 25 hours later. Today, in this the 50th anniversary year of the Apollo 11lunar landing, the images portrayed in 2001 still remain well beyond our capabilities. This paper examines keytechnologies and systems (e.g., in-situ resource utilization, fission power, advanced chemical and nuclearpropulsion), and supporting orbital infrastructure (providing a propellant and cargo transfer function), that could bedeveloped by NASA and industry over the next 30 years allowing the operational capabilities presented in 2001 to beachieved, albeit on a more spartan scale. Lunar-derived propellants (LDPs) will be essential to developing a reusablelunar transportation system that can allow initial outposts to evolve into settlements supporting a variety ofcommercial activities. Deposits of icy regolith discovered at the lunar poles can supply the feedstock material neededto produce liquid oxygen (LO2) and hydrogen (LH2) propellants. On the lunar nearside, near the equator, iron oxiderichvolcanic glass beads from vast pyroclastic deposits, together with mare regolith, can provide the feedstockmaterials to produce lunar-derived LO2 plus other important solar wind implanted (SWI) volatiles, including H2and helium-3. Megawatt-class fission power systems will be essential for providing continuous "24/7" power toprocessing plants, human settlements and commercial enterprises that develop on the Moon and in orbit. Reusablelunar landing vehicles will provide cargo and passenger "orbit-to-surface" access and will also transport LDP to Space Transportation Nodes (STNs) located in lunar polar (LPO) and equatorial orbits (LLO). Reusable space-based,lunar transfer vehicles (LTVs), operating between STNs in low Earth orbit, LLO, and LPO, and able to refuel with LDPs, offer unique mission capabilities including short transit time crewed cargo transports. Even commuter flights similar to that portrayed in 2001 appear possible, allowing 1-way trip times to and from the Moon as short as 24hours. The performance of LTVs using both RL10B-2 chemical rockets, and a variant of the nuclear thermal rocket(NTR), the LO2-Augmented NTR (LANTR), are examined and compared. If only 1% of the LDP obtained from icyregolith, volcanic glass, and SWI volatile deposits were available for use in lunar orbit, such a supply could support routine commuter flights to the Moon for many thousands of years. This paper provides a look ahead at what might be possible in the not too distant future, quantifies the operational characteristics of key in-space and surface technologies and systems, and provides conceptual designs for the various architectural elements discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GRC-E-DAA-TN74391 , International Astronautical Congress; Oct 21, 2019 - Oct 25, 2019; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2020-01-23
    Description: Spatially-resolved observations from the IRIS and SDO/AIA satellites, especially when coupled with realistic 3D RMHD simulations, are a powerful tool for analysis of processes in the solar chromosphere, transition region, and corona. However, the complexity of the data makes understanding the observations and modeling results difficult. In this work, we apply unsupervised clustering algorithms for analysis of observational and synthetic chromospheric Mg II h&k 2796&2803 and transition region C II 1334&1335 line profiles observed by IRIS, and extreme ultraviolet (EUV) emission observed by SDO/AIA, for various types of problems. The synthetic line profiles are computed for simulations of the quiescent solar atmosphere (using the StellarBox and RH1.5 codes). The K-Means clustering algorithm is applied, and the selection of an optimal number of clusters is supported by the average silhouette width technique. We discuss applications of the line profile clustering method to 1) visualization of computational and observational spectroscopic imaging data; 2) understanding of evolutionary trends and behavior patterns of quiet Sun emission and during solar flares; and 3) recognition of heating events and shock waves.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN76510 , AGU Fall Meeting; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2020-01-23
    Description: Some of the most intense thunderstorms on the planet occur in the Hindu Kush Himalaya (HKH) region of South-Central Asia. NASA/SERVIR Applied Sciences Team competitive project to develop capacity of severe thunderstorm monitoring and forecasting tool for HKH. Project Goal: Use [NASA] modeling and remote-sensing assets to build early warning capabilities and facilitate timely disaster response for high impact weather events in the HKH region. Specific objectives: 1. Prototype and transition High-Impact Weather Assessment Toolkit (HIWAT) 2. Jointly develop HIWAT capabilities & training with SERVIRs hub in Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD) 3. Demonstrate capacity in end-user environment 4. Transition HIWAT system to ICIMOD for future maintenance.
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN76785 , AMS Annual Meeting; Jan 12, 2020 - Jan 16, 2020; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2020-01-23
    Description: The dynamical effects of solar magnetoconvection span a wide range spatial and temporal scales that extend from the interior to the corona and from fast turbulent motions to global magnetic activity. To study the solar activity on short temporal scales (from minutes to hours), we use 3D radiative MHD simulations that allow us to investigate complex turbulent interactions that drive various phenomena, such as plasma eruptions, spontaneous formation of magnetic structures, funnel-like structures and magnetic loops in the corona, and others. In particular, we focus on multi-scale processes of energy exchange across layers of the solar interior and atmosphere, which contribute to coronal heating and eruptive dynamics. For modeling global-scale activity, we use a data assimilation approach that has demonstrated great potential for building reliable long-term forecasts of solar activity. In particular, it has been shown that the Ensemble Kalman Filter (EnKF) method applied to the Parker-Kleeorin-Ruzmakin dynamo model is capable of predicting solar activity up to one sunspot cycle ahead in time, as well as estimating the properties of the next cycle a few years before it begins. In this presentation, using the available magnetogram data, we discuss development of the methodology and forecast quality criteria (including forecast uncertainties and sources of errors). We demonstrate the influence of observational limitations on prediction accuracy, and we present the EnKF predictions of the upcoming Solar Cycle (25) based on both the sunspot number series and observed magnetic fields and discuss the uncertainties and potential of the data assimilation approach for modeling and forecasting solar activity.
    Keywords: Solar Physics
    Type: ARC-E-DAA-TN76509 , AGU Fall Meeting; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2020-01-23
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN76637 , AMS Annual Meeting; Jan 12, 2020 - Jan 16, 2020; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2020-01-23
    Description: The Olympic Mountains Experiment and Radar Definition Experiment (OLYMPEX/RADEX) took place Fall 2015 Spring 2016 in Washington, United States. The Advanced Microwave Precipitation Radiometer (AMPR) was flown on NASA ER-2 aircraft during science flights. This poster summarizes advancements in geophysical retrievals using AMPR data from OLYMPEX/RADEX. Calm ocean has low emissivity at microwave frequencies; wind creates foam increases emissivity. Liquid hydrometeors in atmosphere generally yield higher brightness temperature (T(sub b)) due to their higher reflectance. Effect of liquid hydrometeors depends highly on frequency resonance increases with increasing frequency, as does absorption (e.g., due to water vapor). Retrieve cloud liquid water (CLW), water vapor (WV), and 10-m wind speed (WS) using multiple T(sub b).
    Keywords: Geosciences (General)
    Type: MSFC-E-DAA-TN76718 , AMS Annual Meeting; Jan 12, 2020 - Jan 16, 2020; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2020-01-23
    Description: Evolution of large-scale magnetic field structures in the solar photosphere and corona is controlled by motions beneath the visible surface of the Sun. Subsurface plasma flows play a critical role in formation and evolution of active regions and their activity. We analyze subsurface flow maps provided by the local helioseismology pipeline from the Helioseismic and Magnetic Imager (HMI) data on board the Solar Dynamics Observatory, and investigate links between flow characteristics and magnetic activity. The primary goal is to determine flow descriptors, which can improve solar activity forecasts. In particular, by employing machine learning classifiers, we test how the flow helicity and velocity shear descriptors can improve the prediction of initiation of flares and CME eruptions.
    Keywords: Solar Physics
    Type: ARC-E-DAA-TN76508 , AGU Fall Meeting; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2020-01-23
    Description: The shape of the nonlinear relationship between evapotranspiration and soil moisture (the "ET-W relationship") helps control the evolution of soil moisture with time. Together, the shape of the relationship and the magnitude of the soil moisture anomaly at the beginning of a subseasonal forecast help determine whether a given anomaly will still be present at subseasonal leads, allowing it to contribute to skill in subseasonal temperature and precipitation prediction at those leads. In this study we examine subseasonal prediction in the context of soil moisture initialization using a suite of forecasts performed with the NASA GEOS seasonal forecast system. Large soil moisture anomalies are in fact found to be harbingers of increased skill in the subseasonal forecasts. Furthermore, accounting explicitly for the nonlinear shape of the ET-W relationship improves our ability to quantity the increase in forecast reliability associated with soil moisture initialization.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN76878 , AMS Annual Meeting; Jan 12, 2020 - Jan 16, 2020; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2020-01-23
    Description: Recent developments related to deep space exploration and development have raised the question of whether the paradigm shift that many people have been expecting, from space exploration to space development and industrialization, is finally occurring. These recent events include Space Exploration Technologies (SpaceX) announcement that they have been contacted by two wealthy individuals who would like to travel around the Moon within the next two years and a recently reported story of Jeff Bezos proposal to the Trump Administration to offer cargo delivery services to the Lunar surface (Blue Moon) by mid 2020 as part of a public/private partnership with NASA. In addition Bob Bigelow, founder of Bigelow Aerospace, has announced the capability and desire to put a crewed space station in orbit around the Moon in this same 2020 time period. Moon Express has also recently announced that they are fully funded for their attempt to land their robotic probe on the lunar surface at the end of this year, not only to win the Google Lunar XPrize but also to jump start their lunar mining efforts. On the international front the Grand Duchy of Luxembourg has established a 200 million euro fund to invest in space mining companies with the aim of making Luxembourg the European leader in deep space commerce. To date they have made investments in two companies; Deep Space Industries and Planetary Resources both of which were established to prospect and mine near Earth asteroids. Other counties such as India, China, Japan and even Israel are eying this high frontier for deep space commerce. This paper will explore how these developments could help enable this deep space industrialization and jumpstart a thriving deep space economy. The role that NASA and the US government can and should play in this effort and the role of public/private partnerships will also be discussed. Finally, what these developments could lead to over the next 10-15 years will be analysed and the potential size of this deep space economy will be estimated.
    Keywords: Social and Information Sciences (General)
    Type: IAC-17,D3,1,4,x40559 , ARC-E-DAA-TN47153 , Annual International Astronautical Congress (IAC); Sep 25, 2017 - Sep 29, 2017; Adelaide; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2020-01-23
    Description: Earth observations from Synthetic Aperture Radar, or SAR, have yet to be fully leveraged for forest monitoring applications. While SAR sensors are uniquely able to capture components of forest structure over optical imagery, especially in cloud-heavy regions, there is a shortage of freely-available applied training materials and related case studies. With the wealth of available datasets from Sentinel-1 and other missions, such as ALOS-Palsar open historical archive, and in preparation for upcoming opendata policy SAR missions (e.g. NISAR and BIOMASS), the applied forestry community would benefit from increased access to relevant, understandable SAR training materials. This work documents lessons learned and best practices for creating EO capacity building/training materials gleaned from the SAR Handbook project. Strategies for increasing legibility for both print and online applications, illustration and editing guidelines for original and modified figures, and the development of quick-reference guides will be shared. Additionally, the conception and use of companion explainer videos, using cartoon characters and humor to outline relevant SAR concepts will be explored. Preliminary results indicate the SAR Handbook and supplemental project materials are already having an impact in training sessions. Increased uptake of SAR technologies in SERVIR Hub regions, where Hubs are leading follow-on SAR trainings, has also been noted. In addition, a review of download statistics from the SERVIR global website indicates widespread worldwide access. We conclude similar holistic approaches integrating design concepts into future content development would help increase uptake of EO applications by the earth science community.
    Keywords: Social and Information Sciences (General); Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN76053 , AGU Fall Meeting; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2020-01-23
    Description: The NASA Risk Informed Decision Making process is used to assess a trade space of three dimensionally woven thermal protection systems for application to the Mars Sample Return Earth Entry Vehicle. Candidate architectures are assessed based on mission assurance, technical development, cost, and schedule risk. Assessment methodology differed between the architectures, utilizing a four-point quantitative scale for mission assurance and technical development and highly tailored PERT techniques for cost and schedule. Risk results are presented, in addition to a review of RIDM effectiveness for this application.
    Keywords: Administration and Management
    Type: ARC-E-DAA-TN76633 , AIAA Scitech 2020 Forum; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2020-01-23
    Description: This paper discusses a wind tunnel experiment of active gust load alleviation of a flexible wing which took place at University of Washington (UW) in 2019. The experiment performed under a NASA SBIR contract with Scientific Systems Company, Inc (SSCI). The objective of the experiment is to demonstrate active controls of the Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for gust load alleviation and real-time drag optimization. The wind tunnel model is a 8.2% sub-scale Common Research Model (CRM) wing. The wing structure is designed to provide a substantial degree of flexibility to represent that of a modern high-aspect ratio wing. Eight active control surfaces are employed in the VCCTEF. A new gust generator system was designed and installed by UW under a sub-contract with SSCI. The first test entry started in July 2019 and ended in September 2019. During this test entry, many significant issues were found with the hardware and software. The significant issues with the servos prevented the test objective from being completed. A follow-up second test entry in 2020 is being planned. The wing system is being repaired by SSCI. This paper reports on the progress of this experimental effort and the aeroservoelastic (ASE) model validation which was conducted during the test entry.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA 2020-0214 , ARC-E-DAA-TN76417 , AIAA Scitech 2020 Forum; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2020-01-23
    Description: A measurement of planetary occurrence rates based on a planet catalog should be robust against details of how initial detections were classified as planets or false positives. This is accomplished by supplying the catalogs rate of missed planets (completeness) and rate of non-planets incorrectly called planets (reliability). The final Kepler data release (DR25) includes products that can be used with the DR25 planet candidate catalog to correct for completeness and reliability in occurrence rate estimates. This is made possible by the Kepler Robovetter, which algorithmically and uniformly selects planets based on a variety of metrics and thresholds. Completeness, reliability, and occurrence rates potentially depend on these Robovetter thresholds. We study the impact of varying these vetting thresholds using the techniques of Bryson et al. 2019 (arXiv:1906.03575). We explore sets of thresholds that result in more or fewer planets (trading off completeness for reliability), as well as thresholds tuned to pass DR25 false positives identified as possible planets by the Kepler False Positive Working Group. We find that when correcting only for completeness, and not reliability, the resulting occurrence rates have a strong dependence on these threshold sets. For example, the value of SAG13 eta-Earth varies by over a factor of 4 when not corrected for reliability. However, when correcting for both completeness and reliability, occurrence rates using our threshold sets are statistically indistinguishable, with differences being well inside 1-sigma error bars. We present occurrence rates integrated over several period-radius ranges. For example, SAG13 eta-Earth is consistent with 0.127 (+0.094)(-0.054) (from Bryson et al. 2019) for all the Robovetter threshold sets. This result emphasizes the importance of correcting occurrence rates for both completeness and reliability. This suggests that inconsistent completeness and reliability correction may be a significant contributor to the large variation of occurrence rates in recent literature. We plan to make the Robovetter results for our threshold sets available, and encourage the community to use them to examine whether other occurrence rate methods yield similarly robust results.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN75923 , Meeting of the American Astronomical Society; Jan 04, 2020 - Jan 08, 2020; Honolulu; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2020-01-23
    Description: Atmospheric Rivers (ARs) are responsible for much of the precipitation along the west coast of the United States. In order to accurately predict AR events in numerical weather prediction, subseasonal and seasonal timescales, it is important to understand the large-scale meteorological influence on extreme AR events.Here, characteristics of ARs that result in an extreme precipitation event are compared to typical ARs on the coast of WashingtonState. In addition to more intense water vapor transport, notable differences in the synoptic forcing are present during extreme precipitation events that are not present during typical AR events.In particular, a negatively tilted low pressure system is positioned to the west in the Gulf of Alaska, alongside an upper level jet streak. Subseasonal and seasonal teleconnection patterns are known to influence the weather in the Pacific Northwest. The Madden JulianOscillation (MJO) is shown to be particularly important in determining the strength of precipitation associated with in AR ont he Washington coast.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN76948
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2020-01-23
    Description: This plan institutes direction across the Gateway Program and the Element Projects to ensure that Cross Program M&S are produced in a manner that (1) generate the artifacts required for NASA-STD-7009 compliance, (2) ensures interoperability of M&S exchanged and integrated across the program and, (3) drives integrated development efforts to provide cross-domain integrated simulation of the Gateway elements, space environment, and operational scenarios. This direction is flowed down via contractual enforcement to prime contractors and includes both the GMS requirements specified in this plan and the NASASTD- 7009 derived requirements necessary for compliance. Grounding principles for management of Gateway Models and Simulations (M&S) are derived from the Columbia Accident Investigation Board (CAIB) report and the Diaz team report, A Renewed Commitment to Excellence. As an outcome of these reports, and in response to Action 4 of the Diaz team report, the NASA Standard for Models and Simulations, NASA-STD-7009 was developed. The standard establishes M&S requirements for development and use activities to ensure proper capture and communication of M&S pedigree and credibility information to Gateway program decision makers. Through the course of the Gateway program life cycle M&S will be heavily relied upon to conduct analysis, test products, support operations activities, enable informed decision making and ultimately to certify the Gateway with an acceptable level of risk to crew and mission. To reduce risk associated with M&S influenced decisions, this plan applies the NASA-STD-7009 requirements to produce the artifacts that support credibility assessments and ensure the information is communicated to program management.
    Keywords: Administration and Management
    Type: GP 11009 , DSG-PLAN-016 , JSC-E-DAA-TN73555
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-01-23
    Description: Global multiconstituent concentration and emission fields obtained from the assimilation of the satellite retrievals of ozone, CO, NO2, HNO3, and SO2 from the Ozone Monitoring Instrument (OMI), Global Ozone Monitoring Experiment 2, Measurements of Pollution in the Troposphere, Microwave Limb Sounder, and Atmospheric Infrared Sounder (AIRS)/OMI are used to understand the processes controlling air pollution during the KoreaUnited States Air Quality (KORUSAQ) campaign. Estimated emissions in South Korea were 0.42 Tg N for NOx and 1.1 Tg CO for CO, which were 40% and 83% higher, respectively, than the a priori bottomup inventories, and increased mean ozone concentration by up to 7.5 1.6 ppbv. The observed boundary layer ozone exceeded 90 ppbv over Seoul under stagnant phases, whereas it was approximately 60 ppbv during dynamical conditions given equivalent emissions. Chemical reanalysis showed that mean ozone concentration was persistently higher over Seoul (75.10 7.6 ppbv) than the broader KORUSAQ domain (70.5 9.2 ppbv) at 700 hPa. Large bias reductions (〉75%) in the free tropospheric OH show that multiplespecies assimilation is critical for balanced tropospheric chemistry analysis and emissions. The assimilation performance was dependent on the particular phase. While the evaluation of data assimilation fields shows an improved agreement with aircraft measurements in ozone (to less than 5 ppbv biases), CO, NO2, SO2, PAN, and OH profiles, lower tropospheric ozone analysis error was largest at stagnant conditions, whereas the model errors were mostly removed by data assimilation under dynamic weather conditions. Assimilation of new AIRS/OMI ozone profiles allowed for additional error reductions, especially under dynamic weather conditions. Our results show the important balance of dynamics and emissions both on pollution and the chemical assimilation system performance.
    Keywords: Environment Pollution
    Type: GSFC-E-DAA-TN70854 , Journal of Geophysical Research-Atmospheres (ISSN 2169-897X); 124; 1; 387-413
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2020-01-22
    Description: These slides and the companion paper describe a exciter placement technique using topology optimization.
    Keywords: Numerical Analysis
    Type: AFRC-E-DAA-TN75542 , SciTech Forum; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2020-01-22
    Description: The X-56A Multi-Utility Technology Testbed (MUTT) is a subscale, fixed-wing aircraft designed for high-risk aeroelastic flight demonstration and research. Structural dynamics ground testing for model validation was especially important for this vehicle because the structural model was directly used in the development of a flight control system with active flutter suppression capabilities. Structural dynamics ground tests of the X-56A MUTT with coupled rigid-body and structural modes provided a unique set of challenges. An overview of the ground vibration test (GVT) and moment of inertia (MOI) test setup and execution is presented. The series of GVTs included the wing by itself attached to a strongback and complete vehicle at two mass conditions: empty and full fuel. Two boundary conditions for the complete-vehicle test were studied: on landing gear and suspended free-free. Pitch MOI tests were performed using a compound pendulum method and repeated with two different pendulum lengths for independent verification. The original soft-support test configuration for the GVT used multiple bungees, resulting in unforeseen coupling interactions between the soft-support bungees and the vehicle structural modes. To resolve this problem, the soft-support test setup underwent multiple iterations. The various GVT configurations and boundary-condition modifications are highlighted and explained. Lessons learned are captured for future consideration when performing structural dynamics testing with similar vehicles.
    Keywords: Research and Support Facilities (Air)
    Type: AFRC-E-DAA-TN73735 , AIAA SciTech Forum 2020; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2020-01-22
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: HQ-E-DAA-TN73359-2 , AIAA SciTech Forum; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2020-01-22
    Description: The interagency Space Science and Technology (S&T) Partnership Forum was established in 2015 with participation from the United States Air Force, the National Aeronautics and Space Administration, and the National Reconnaissance Office. Seeking to leverage synergies and influence agency portfolios with a focus on key pervasive and game-changing technologies, the S&T Partnership Forum successfully identified and prioritized several collaboration topic areas with high potential for future cross-agency work. The S&T Partnership Forum determines the forum strategy, goals, and objectives, as well as the strategies and objectives specific to each collaboration topic area. In November 2018, the Partnership held a public open forum that focused on the topic area of in-space assembly (iSA). This open forum was coordinated to facilitate government and commercial dialogue, collect data, and perform data analysis to identify potential cross-agency collaboration between government and commercial participants for in-space assembly and promising technologies. This paper discusses the analysis performed on the commercially provided data in relation to previously identified government needs, observations on the correlation between technologies and capabilities between government and commercial industry, and recommendations for future government collaborations with commercial industry for iSA.
    Keywords: Space Sciences (General)
    Type: HQ-E-DAA-TN73559-1 , AIAA SciTech Forum; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2020-01-22
    Description: This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world.
    Keywords: Documentation and Information Science
    Type: HQ-E-DAA-TN76545
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2020-01-22
    Description: We are creating a new algorithm that combines observations from MISR and MODIS (both on the NASA Terra spacecraft) to improve atmospheric correction and coverage for ocean color data products. The algorithm utilizes information rich, multi-angle MISR observations for atmospheric correction, applied to MODIS. Our goal is to produce atmospherically corrected Remote Sensing Reflectance from MODIS with enhanced coverage and accuracy, for input to downstream bio-optical ocean parameter retrieval algorithms.An important aspect of this work is the utilization of multi-angle views of the reflected ocean surface sun glint. Usually, such observations are avoided, since the intensity of the glint overwhelms any contribution from the ocean body. However, MISR's multi-angle observations see varying degrees of glint, which means they can be used to better determine aerosol optical properties (Kaufman et al., 2002, Ottaviani et al., 2013), and to identify surface wind speeds that govern the glint pattern. The latter could be utilized to replace the wind speeds taken from ancillary sources that are currently used to conservatively mask potential glint contamination in MODIS observations.To assess this capability, and to identify the appropriate parameterization, we present an analysis using the Generalized Nonlinear Retrieval Analysis (GENRA, Vukicevic et al., 2009) information content assessment. This technique is also easily modified to act as a Bayesian retrieval algorithm, for which initial results are discussed. Finally, we describe the status of integrating MISR data into the processing capabilities of the Ocean Biology Processing Group (OBPG) at NASA, and show the first ocean color vicarious calibration (Franz et al., 2007) of the MISR instrument.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN76862 , AGU Fall Meeting; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2020-01-22
    Description: Gravitational potential data from GRACE are being used to study mass redistribution within and between the atmosphere, hydrosphere, cryosphere, and solid Earth. The GRACE data are made available in a reference frame with its origin at the center of mass of the Earth system (geocenter) while many other geophysical models and data sets refer to a reference frame attached to the Earth's surface. Changes in the offset between these reference frames (geocenter motion) must be accounted for when GRACE data are used to quantify surface mass changes. In this study, we developed a technique for coestimation of geocenter motion and gravitational potential field seamlessly from degree 1 to 90 by simultaneously inverting a set of globallydistributed GPS displacement time series and the temporallyvarying GRACE gravity data. We found that the effect of geocenter motion was evident particularly in the GPS time series of horizontal displacements. Our estimates of geocenter motion are most consistent with the Satellite Laser Ranging (SLR) results within 1 mm in X and Z components and a submillimeter in Y component, when compared to monthly variability averaged over the period of 20032016. The overall magnitude of the degree1 (l = 1) surface mass load is estimated to be ~3 cm in equivalent water height annually migrating southwestward from Europe (DecemberJanuary) to the South Pacific (JuneJuly). Our results also show that dense GPS network data improve water storage recovery in major river basins in the United States and Europe by contributing significantly to the recovery of higherdegree (l ~20) geopotential coefficients.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN76146 , Journal of Geophysical Research: Solid Earth (e-ISSN 2169-9313); 124; 11; 12241-12263
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2020-01-22
    Description: Omics data sharing is crucial to the biological research community, and the last decade or two has seen a huge rise in collaborative analysis systems, databases, and knowledge bases for omics and other systems biology data. We assessed the FAIRness of NASAs GeneLab Data Systems (GLDS) along with four similar kinds of systems in the research omics data domain, using 14 FAIRness metrics. The range of overall FAIRness scores was 6-12 (out of 14), average 10.1, and standard deviation 2.4. The range of Pass ratings for the metrics was 29-79%, Partial Pass 0-21%, and Fail 7-50%. The systems we evaluated performed the best in the areas of data findability and accessibility, and worst in the area of data interoperability. Reusability of metadata, in particular, was frequently not well supported. We relate our experiences implementing semantic integration of omics data from some of the assessed systems for federated querying and retrieval functions, given their shortcomings in data interoperability. Finally, we propose two new principles that Big Data system developers, in particular, should consider for maximizing data accessibility.
    Keywords: Mathematical and Computer Sciences (General)
    Type: ARC-E-DAA-TN58454 , AMIA 2018 Annual Symposium; Nov 03, 2018 - Nov 07, 2018; San Franciso, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2020-01-22
    Description: This presentation reviews voluntary safety reports received by NASA's Aviation Safety Reporting System pertaining to Hazardous Materials.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN74687 , Aviation Safety InfoShare; Oct 30, 2019; Bellevue, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2020-01-22
    Description: TESS launched 18 April 2018 to conduct a two-year, near all-sky survey for at least 50 small, nearby exoplanets for which masses can be ascertained and whose atmospheres can be characterized by ground- and space-based follow-on observations. TESS has completed its survey of the southern hemisphere and begun its survey of the northern hemisphere, identifying 〉1000 candidate exoplanets and unveiling a plethora of exciting non-exoplanet astrophysics results, such as asteroseismology, asteroids, and supernova. The TESS Science Processing Operations Center (SPOC) processes the data downlinked every two weeks to generate a range of data products hosted at the Mikulski Archive for Space Telescopes (MAST). For each sector (~1 month) of observations, the SPOC calibrates the image data for both 30-min Full Frame Images (FFIs) and up to 20,000 pre-selected 2-min target star postage stamps. Data products for the 2-min targets include simple aperture photometry and systematic error-corrected flux time series. The SPOC also conducts searches for transiting exoplanets in the 2-min data for each sector and generates Data Validation time series and associated reports for each transit-like feature identified in the search. Multi-sector searches for exoplanets are conducted periodically to discover longer period planets, including those in the James Webb Continuous Viewing Zone (CVZ), which are observed for up to one year. Starting with Sector 8, scattered light from the Earth and Moon contaminated significant portions of the data in each orbit. We have developed algorithms for automated identification of the scattered light features at the individual target level. Previously, data for all stars on a CCD affected by scattered light were manually excluded. The automated flagging will allow us to retain significantly more data for stars that are not affected by the scattered light even though it is occurring elsewhere on the CCD. We also discuss enhancements to the SPOC pipeline and the newly available FFI light curves. The TESS Mission is funded by NASA's Science Mission Directorate as an Astrophysics Explorer Mission.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN76812 , American Astronomical Society Meeting; Jan 04, 2020 - Jan 08, 2020; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2020-01-22
    Description: A non-iterative load prediction algorithm for strain-gage balances was developed for the NASA Ames Unitary Plan Wind Tunnels that computes balance loads from the electrical outputs of the balance bridges and a set of state variables. A state variable could be, for example, a balance temperature difference or the bellows pressure of a flow-through balance. The algorithm directly uses regression models of the balance loads for the load prediction that were obtained by applying global regression analysis to balance calibration data. This choice greatly simplifies both implementation and use of the load prediction process for complex balance configurations as no load iteration needs to be performed. The regression model of a balance load is constructed by using terms from a total of nine term groups. Four term groups are derived from a Taylor Series expansion of the relationship between the load, gage outputs, and state variables. The remaining five term groups are defined by using absolute values of the gage outputs and state variables. Terms from these groups should only be included in the regression model if calibration data from a balance with known bi-directional outputs is analyzed. It is illustrated in detail how global regression analysis may be applied to obtain the coefficients of the chosen regression model of a load component assuming that no linear or massive near-linear dependencies between the regression model terms exist. Data from the machine calibration of a six-component force balance is used to illustrate both application and accuracy of the non-iterative load prediction process.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN74220 , AIAA SciTech Forum 2020; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2020-01-22
    Description: Thermal Protection System (TPS) modeling requires accurate representation and prediction of the thermomechanical behavior of ablative materials. State-of-the-art TPS materials such as Phenolic Impregnated Carbon Ablator (PICA) have a proven flight record and demonstrate exceptional capabilities for handling extreme aerothermal heating conditions. The constant push for lightweight materials that are flexible in their design and performance, and hence allow for a wide range of mission profiles, has led NASA over the past years to develop its Heatshield for Extreme Entry Environment Technology (HEEET). HEEET is based primarily on a dual layer woven carbon fiber architecture and the technology has successfully been tested in arc-jet facilities. These recent developments have sparked interest in the accurate micro-scale modeling of composite weave architectures, to predict the structural response of macro-scale heatshields upon atmospheric entry. This effort can be extended to incorporate in-depth failure mechanics analyses as a result of local thermal gradients or high-velocity particle impact.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN73345 , Ablation Workshop; Sep 16, 2019 - Sep 17, 2019; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2020-01-22
    Description: No abstract available
    Keywords: Aeronautics (General); Acoustics
    Type: ARC-E-DAA-TN70123 , AIAA Aviation 2019 Forum; Jun 17, 2019 - Jun 21, 2019; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2020-01-22
    Description: In most places extreme high tides undergo a clear seasonal variation. It is well known that semidiurnal tides tend to peak during equinox seasons, and diurnals during solstice seasons. This is a consequence of the solar and lunar declinations, which when large maximize diurnal tides at the expense of semidiurnals. The semiannual range modulation of tidal extremes for a pure semidiurnal tide is determined mainly by the amplitude of the K2 constituent; a pure diurnal is determined mainly by P1. Mixed tidal regimes tend to experience maxima very roughly around the times of solstice, but not always, with the semiannual modulation generally a complicated function of constituent amplitudes and phases. These modulations are here mapped worldwide by analyzing tidal extremes predicted with a global tide model. The known 4.4-year modulation in extreme tides is a consequence of declinational and perigean effects coming in and out of phase. The phase of the 4.4-year modulation is controlled by the phase of the semiannual modulation, irrespective of whether the tide is diurnal, semidiurnal, or mixed.
    Keywords: Oceanography
    Type: GSFC-E-DAA-TN76436 , Journal of Geophysical Research: Oceans (ISSN 2169-9291) (e-ISSN 2169-9291); 124; 8; 5907-5922
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2020-01-22
    Description: Increasing temperatures in aero gas turbines is resulting in oxidation and hot corrosion attack of turbine disks. Since disks are sensitive to low cycle fatigue (LCF), any environmental attack, and especially hot corrosion pitting, can seriously degrade the life of the disk. Application of metallic coatings is one means of protecting disk alloys from this environmental attack. However, the presence of a metallic coating can degrade the LCF life of a disk alloy. Therefore, coatings must be designed which are not only resistant to oxidation and corrosion attack, but do not significantly degrade the LCF life of the alloy.Three different NiCr-Y coating compositions (29, 35.5, 44 wt.% Cr, all with 0.1 wt.% Y) were applied at two thicknesses by Plasma Enhanced Magnetron Sputtering (PEMS) to two similar Ni-based disk alloys. One Ni-35.5Cr-0.1Y coating also received a thin ZrO2 overcoat. The coated samples were also given a short thermal anneal in a low PO2 environment to encourage bonding of the coating and substrate as well as initiating formation of a chromia scale. Without further environmental exposure, the LCF life of coated and uncoated samples was evaluated at 760C in air. The LCF lifetime of all coated samples was less than that of uncoated samples. The LCF life scaled with the Cr content and the high-Cr, thin coating showed the highest LCF life. Pre and post-test characterization of the various coatings, including identification of crack initiation sites, will be presented and the effect of the coating on the LCF life discussed.
    Keywords: Metals and Metallic Materials
    Type: NASA/TM-2019- 220340 , E-19739 , GRC-E-DAA-TN69411
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2020-01-22
    Description: No abstract available
    Keywords: Computer Programming and Software; Nonmetallic Materials
    Type: ARC-E-DAA-TN73349 , Ablation Workshop; Sep 16, 2019 - Sep 17, 2019; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2020-01-22
    Description: The Single-Particle Model (SPM) of Li ion cell is a computationally efficient model for simulating Li ion cell for weak to moderate currents. The model depends n a number of parameters describing the geometry and material properties of a cell components. In order to apply the model to simulating a cell, the best-fit parametric values have to be inferred from a constant discharge data. We report our efforts to determine the best-fit set for 18650 LP batteries. We found that rather than being best-fit by a particular point in the parametric space the data is fit equally well by an ensemble of points clustering about an effective multidimensional manifold in the parametric space. This property of the SPM is known to be shared by a multitude of the so-called "sloppy models" of complex systems, characterized by a few stiff directions in the parametric space, in which the predicted behavior varies significantly, and a number of sloppy directions in which the behavior doesn't change appreciably. Only the stiff parameters combinations are identifiable. Geometrical features of the BFM give insights to possible reduction of the SPM to a model having fewer sloppy parameters. We have constructed a hierarchy of such models. The fully reduced model depends on only stiff effective parameters which are identifiable and can be used for characterization of the battery's state of health.
    Keywords: Systems Analysis and Operations Research
    Type: ARC-E-DAA-TN74559 , NASA Aerospace Battery Workshop; Nov 19, 2019 - Nov 21, 2019; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2020-01-22
    Description: No abstract available
    Keywords: Aircraft Design, Testing and Performance
    Type: AFRC-E-DAA-TN76690 , SciTech Forum; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2020-01-22
    Description: This paper presents a trade study method used to evaluate and down-select from a set of guidance and control (G&C) system designs for a mechanically deployable entry vehicle (DEV). The Pterodactyl project, funded by NASA's Space Technology Mission Directorate (STMD), was prompted by the challenge to develop an effective G&C system for a vehicle without a backshell, which is the case for DEVs. For the DEV, the project assumed a specific aeroshell geometry pertaining to an Adaptable, Deployable, Entry Placement Technology (ADEPT) vehicle, which was successfully developed by STMD prior to this study. The Pterodactyl project designed three different G&C systems for the vehicle's precise entry, which this paper briefly discusses. This paper details the Figures of Merit (FOMs) and metrics used during the course of the project's G&C system assessment. Each G&C configuration was traded against the three FOMs categories: G&C system performance, affordability and life cycle costs, and safety and mission success. The relative importance of the FOMs was determined from the Analytical Hierarchy Process (AHP), which was used to develop weights that were combined with quantitative design metrics and engineering judgement to rank the G&C systems against one another. This systematic method takes into consideration the project's input while simultaneously reducing unintentional judgement bias and ultimately was used to select a single G&C design for the project to continue pursuing in the next prototyping and testing phase.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN69534 , AIAA SciTech Forum; Jan 06, 2020 - Jan 10, 2020; Orlando, Fl; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2020-01-22
    Description: The lightweight structures and unconventional configurations being considered for the next generation of aircraft mean that any effort to predict or control the flight dynamics is impacted by the structural dynamics. One of the most severe forms of coupling between aeroelasticity and flight dynamics is an instability called body freedom flutter. The existing tools often assume a relatively weak effect of structural dynamics on the flight dynamics, and are therefore incapable of modeling strong interactions like body freedom flutter. A method of combining different sources of data traditionally used for aeroelasticity and flight dynamics is described by reconciling many of the differences between these models. By building upon past modeling efforts, a level of familiarity in the approach is achieved. Generally the differences from the traditional approaches are subtle but significant. The traditional frequency domain flutter model in a modal coordinate system is converted to a form consistent with a time domain flight dynamics model. The time domain rational function approximation about a non-inertial coordinate system and the unique constraints for the conversion between the inertial and non-inertial coordinate systems are discussed. A consistent transformation of the states of aeroelastic models to flight dynamics models is derived, which enables the integration of data from higher fidelity computational fluid dynamics models or wind-tunnel testing. The present method of integrating multidisciplinary data was used to create models that compare well with X-56A flight-test data, including conditions past the flutter speed.
    Keywords: Aircraft Stability and Control
    Type: AFRC-E-DAA-TN75452 , AIAA SciTech Forum 2020; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2020-01-22
    Description: The Aqueous, QUick-charging battery Integration For Electric flight Research project is explained and the major subsystems are described, including nano-electric fluid, rim-driven motors, and integration concepts. The nano-electric fluid concept is a new type of aqueous flow battery that could reduce or retire the fire and explosion hazards of conventional batteries and fuel cells. The nano-electric fluid itself could enable energy storage and increased available energy per fuel weight ratios. The rim-driven motor is being developed to improve propulsion system safety and stability and to reduce noise. The rim-driven motor concept could enable motors that are more efficient both electrically and aerodynamically. The Energy Economy of the project concept is presented as a potential renewable or green energy sustainment for utilizing in-place infrastructure. The nano-electric fluid energy charge-use-recharge cycle is presented using renewable energy input from solar, wind, and hydroelectricity. Powered aircraft operations are presented, and the logistics of the new nano-electric fluid technology are explored. Powered aircraft operations topics include weight and balance, fueling, recharging, safety, and derivative considerations.
    Keywords: Aircraft Propulsion and Power
    Type: AFRC-E-DAA-TN74097 , SciTech Forum; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2020-01-22
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN76158 , AGU Fall Meeting; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2020-01-22
    Description: Most of the commonly discussed solar coronal jets are of the type consisting of a single spire extending approximately vertically from near the solar surface into the corona. Recent research of a substantial number of events shows that eruption of a miniature filament (minifilament) drives at least many such single-spire jets, and concurrently generates a miniflare at the eruption site. A different type of coronal jet, identified in X-ray images during the Yohkoh era, are two-sided-loop jets, which extend from a central excitation location in opposite directions, along two opposite low-lying coronal loops that are more-or-less horizontal to the surface. We observe such a two-sided-loop jet from the edge of active region (AR) 12473, using data from Hinode XRT and EIS, and SDO AIA and HMI. Similar to single-spire jets, this two-sided-loop jet results from eruption of a minifilament, which accelerates to over 140 km/s before abruptly stopping upon striking overlying nearlyhorizontal magnetic field at 30,000 km altitude and producing the two-sided-loop jet via interchange reconnection. Analysis of EIS raster scans show that a hot brightening, consistent with a small flare, develops in the aftermath of the eruption, and that Doppler motions (40 km/s) occur near the jet-formation region. As with many single-spire jets, the trigger of the eruption here is apparently magnetic flux cancelation, which occurs at a rate of 410^18 Mx/hr, comparable to the rate observed in some single-spire AR jets. This example of a two-sided jet, along with numerous examples of single-spire jets, supports that essentially all coronal jets result from eruptions of minifiaments, and frequently the eruption of the minifilment is triggered by magnetic flux cancelation. (Details are in Sterling et al. 2019, ApJ, 871, 220.)
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN75820 , Meeting of the American Astronomical Society (AAS 2019); Jun 09, 2019 - Jun 13, 2019; St. Louis, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2020-01-22
    Description: Recent studies of human-scale missions to Mars have included a wide trade space of vehicle configurations and control schemes. Some configurations fly at a low angle of attack with a low L/D, while others fly at a high angle of attack with a mid L/D. Some use bank angle control, while others use direct force control, where the angle of attack and sideslip angle are independently modulated. This paper compares three potential vehicle configurations: a low-L/D vehicle using direct force control, a low-L/D vehicle using bank control, and a mid-L/D vehicle using bank control. The reference mission is aerocapture at Mars into a highly elliptical, 1-sol orbit. The trajectories are integrated in three degrees of freedom. All three cases utilize numeric predictor-corrector guidance and emulate control system responses with rate and acceleration limits. The configurations are compared using a Monte Carlo analysis. The robustness of each configuration to increased dispersions is also compared.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-E-DAA-TN75425 , 2019 SciTech Forum ; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2020-01-22
    Description: The scientific balloon program at NASA offers an exciting and open area of opportunity for testing new technologies and for conducting meaningful experimentation at a fraction of the cost of a space mission. This paper outlines a simple thermal model developed and employed for the Primordial Inflation Polarization ExplorER (PIPER). The sub-orbital environment that PIPER operates in hosts an interesting mix of atmospheric and space thermal challenges. The work done was to mitigate thermal loads and passively cool the payload's exterior mounted electronics at an altitude of 36.6 km. This was done by characterizing the thermal environment and then designing solutions for the heat loads through a combined radiation and conduction passive cooling radiator system thermal model. Despite the simplicity and subsequent limitations of the model, as well as some unexpected payload operational events, the model produced results between 0.31% and 11.8% difference between the predicted values and measured average temperatures. From these results, the model was able to successfully provide estimates for the electronics temperatures. Additional flights will be needed to eliminate unknowns encountered in this flight in order to further refine the model for higher accuracy.
    Keywords: Engineering (General)
    Type: GSFC-E-DAA-TN76082 , AIAA SciTech Forum; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2020-01-22
    Description: The NASA Risk Informed Decision Making process is used to assess a trade space of three dimensionally woven thermal protection systems for application to the Mars Sample Return Earth Entry Vehicle. Candidate architectures are assessed based on mission assurance, technical development, cost, and schedule risk. Assessment methodology differed between the architectures, utilizing a four-point quantitative scale for mission assurance and technical development and highly tailored PERT techniques for cost and schedule. Risk results are presented, in addition to a review of RIDM effectiveness for this application.
    Keywords: Quality Assurance and Reliability
    Type: ARC-E-DAA-TN69484 , AIAA SciTech Forum; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2020-01-22
    Description: No abstract available
    Keywords: Engineering (General)
    Type: ARC-E-DAA-TN3666 , International Educational Robotics Congress; Jun 29, 2011; Bogota; Colombia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2020-01-22
    Description: The purpose of this study is to evaluate the development of thermal gradients throughout thick (1") carbon fiber composites and determine the effect of internal temperature distribution during cure on the observed mechanical properties in those composites. Composites up to 1.5" thick (56 plies) were fabricated with T700S/TC380 braided prepreg from Tencate following a modified vacuum bag layup procedure to include embedded thermocouples within the plies of the composite. Composite panels were cured in a programmable oven with thermocouple reading embedded throughout the panel thickness. Maximum temperature gradients measured between regions of the composite did not exceed 10 degrees C for any given composite thickness. The most significant temperature variation was measured between the mid-thickness plies and the tool-side surface plies. Although through thickness temperature variation during cure was small, a measureable variation in coupon glass transition temperature was recorded between the tool side plies and the remainder of the part, prior to post cure. Thermal and mechanical behavior of coupons taken from segments through the thickness of the part were comparable following a post-cure cycle.
    Keywords: Composite Materials
    Type: GRC-E-DAA-TN70457 , Polymer Composites and High Performance Materials; Jul 21, 2019 - Jul 29, 2019; Rohnert Park, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2020-01-22
    Description: No abstract available
    Keywords: Aeronautics (General); Astronautics (General)
    Type: ARC-E-DAA-TN75301 , NP-2019-10-02-ARC
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2020-01-22
    Description: The purpose of this talk is to provide an undergraduate student audience with basic information about the sleep and circadian challenges that astronauts and pilots face. Dr. Flynn-Evans will begin by highlighting how NASA works. She will next cover basic information about sleep, circadian rhythms, and performance, including how sleep works on earth. She will explain how people have circadian rhythms of different lengths and how the circadian clock has to be re-set each day. She will also describe how jet-lag works as an example of what happens during circadian misalignment. Dr. Flynn-Evans will describe how modest circadian misalignment affects airline pilots during short-haul flights. She will also describe how sleep is different in space and will highlight the challenges that astronauts face in low-earth orbit. She will discuss how astronauts have a shorter sleep duration in space relative to on the ground and how their schedules can shift due to operational constraints. She will also describe how these issues affect alertness and performance. She will then discuss how sleep and scheduling may be different on a long-duration mission to Mars. She will discuss the differences in light and day length on earth and mars and illustrate how those differences pose significant challenges to sleep and circadian rhythms.
    Keywords: Behavioral Sciences
    Type: ARC-E-DAA-TN76706
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2020-01-22
    Description: Deep neural networks are used increasingly for perception and decision-making in UAVs. For example, they can be used to recognize objects from images and decide what actions the vehicle should take. While deep neural networks can perform very well at complex tasks, their decisions may be unintuitive to a human operator. When a human disagrees with a neural network prediction, due to the black box nature of deep neural networks, it can be unclear whether the system knows something the human does not or whether the system is malfunctioning. This uncertainty is problematic when it comes to ensuring safety. As a result, it is important to develop technologies for explaining neural network decisions for trust and safety. This paper explores a modification to the deep neural network classification layer to produce both a predicted label and an explanation to support its prediction. Specifically, at test time, we replace the final output layer of the neural network classifier by a k-nearest neighbor classifier. The nearest neighbor classifier produces 1) a predicted label through voting and 2) the nearest neighbors involved in the prediction, which represent the most similar examples from the training dataset. Because prediction and explanation are derived from the same underlying process, this approach guarantees that the explanations are always relevant to the predictions. We demonstrate the approach on a convolutional neural network for a UAV image classification task. We perform experiments using a forest trail image dataset and show empirically that the hybrid classifier can produce intuitive explanations without loss of predictive performance compared to the original neural network. We also show how the approach can be used to help identify potential issues in the network and training process.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: ARC-E-DAA-TN76279 , SciTech Forum; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2020-01-22
    Description: No abstract available
    Keywords: Aircraft Design, Testing and Performance
    Type: GRC-E-DAA-TN74511 , Propulsion and Power Technical Meeting; Oct 29, 2019 - Oct 30, 2019; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2020-01-22
    Description: The Community Coordinated Modeling Center has been leading communitywide space science and space weather model validation projects for many years. These efforts have been broadened and extended via the newly launched International Forum for Space Weather Modeling Capabilities Assessment (https://ccmc.gsfc.nasa.gov/assessment/). Its objective is to track space weather models' progress and performance over time, a capability that is critically needed in space weather operations and different user communities in general. The Space Radiation and Plasma Effects Working Team of the afore mentioned International Forum works on one of the many focused evaluation topics and deals with five different subtopics (https://ccmc.gsfc.nasa.gov/assessment/topics/radiationall.php) and varieties of particle populations: Surface Charging from tens of eV to 50keV electrons and internal charging due to energetic electrons from hundreds keV to several MeVs. Single event effects from solar energetic particles and galactic cosmic rays (several MeV to TeV), total dose due to accumulation of doses from electrons (〉100 keV) and protons (〉1 MeV) in a broad energy range, and radiation effects from solar energetic particles and galactic cosmic rays at aviation altitudes. A unique aspect of the Space Radiation and Plasma Effects focus area is that it bridges the space environments, engineering, and user communities. The intent of the paper is to provide an overview of the current status and to suggest a guide for how to best validate space environment models for operational/engineering use, which includes selection of essential space environment and effect quantities and appropriate metrics.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN76523 , Space Weather (ISSN 1539-4956) (e-ISSN 1542-7390); 17; 10; 1384-1403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2020-01-22
    Description: Exposure of chip MnO2 tantalum capacitors to humid environments might result in increased ESR, leakage currents, and first turn-on failures. However, there is a lack of literature data on the effect of moisture on reverse bias behavior of the parts. The presence of moisture can also result in pop-corning when a high water vapor pressure develops when moisture absorbed in pores of tantalum slugs vaporizes instantly during soldering process resulting in damage to capacitors. A study of kinetics of moisture ingress to and release from active elements of capacitors would allow a better understanding of degradation mechanisms and is important for preventing failures. In this work, a technique for investigation of moisture sorption and desorption in solid chip tantalum capacitors that employs tantalum slugs as a humidity sensor have been developed and kinetics of the process analyzed for different types of capacitors at temperatures from room to 125 C. A model that relates diffusion characteristics of polymer cases and size of the slugs to characteristic times of moisture sorption has been developed. A strong effect of moisture on long-term degradation of reverse bias currents in MnO2 cathode capacitors has been demonstrated and physical mechanisms discussed.
    Keywords: Quality Assurance and Reliability
    Type: GSFC-E-DAA-TN52362 , GSFC-E-DAA-TN46141 , US-Japan Seminar on Dielectric and Piezoelectric Ceramics; Nov 05, 2017 - Nov 08, 2017; Santa Fe, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2020-01-22
    Description: A number of low-mass millisecond pulsar (MSP) binaries in their rotation-powered state exhibit double-peaked X-ray orbital modulation centered at inferior pulsar conjunction. This state, which has been known to persist for years, has recently been interpreted as emission from a shock that enshrouds the pulsar. However, the pressure balance for such a configuration is a crucial unresolved issue. We consider two scenarios for pressure balance: a companion magnetosphere and stellar mass loss with gas dominance. It is found that the magnetospheric scenario requires several kilogauss poloidal fields for isobaric surfaces to enshroud the MSP, as well as for the magnetosphere to remain stable if there is significant mass loss. For the gas-dominated scenario, it is necessary that the companion wind loses angular momentum prolifically as an advection- or heating-dominated flow. Thermal bremsstrahlung cooling in the flow may be observable as a UV to soft X-ray component independent of orbital phase if the mass rate is high. We formulate the general requirements for shock stability against gravitational influences in the pulsar rotation-powered state for the gas-dominated scenario. We explore stabilizing mechanisms, principally irradiation feedback, which anticipates correlated shock emission and companion variability and predicts F(sub )/F(sub X) is approximately less than 14 for the ratio of pulsar magnetospheric -ray to total shock soft-to-hard X-ray fluxes. This stability criterion implies an unbroken extension of X-ray power-law emission to hundreds of keV for some systems. We explore observational discriminants between the gas-dominated and magnetospheric scenarios, motivating contemporaneous radio through -ray monitoring of these systems.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN67095 , Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 869; 2; 120
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...