ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-01-24
    Description: Presentation on Advancing Research in Hypersonic Flight at "Emerging Hypersonics Market" Panel at Transportation Research Board
    Keywords: Aeronautics (General)
    Type: HQ-E-DAA-TN76966 , Transportation Research Board; Jan 13, 2020; Washington, D.C.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-24
    Description: In this work we examine a multigrid preconditioning approach in the context of a high- order tensor-product discontinuous-Galerkin spectral-element solver. We couple multigrid ideas together with memory lean and efficient tensor-product preconditioned matrix-free smoothers. Block ILU(0)-preconditioned GMRES smoothers are employed on the coarsest spaces. The performance is evaluated on nonlinear problems arising from unsteady scale- resolving solutions of the Navier-Stokes equations: separated low-Mach unsteady ow over an airfoil from laminar to turbulent ow. A reduction in the number of ne space iterations is observed, which proves the efficiency of the approach in terms of preconditioning the linear systems, however this gain was not reflected in the CPU time. Finally, the preconditioner is successfully applied to problems characterized by stiff source terms such as the set of RANS equations, where the simple tensor product preconditioner fails. Theoretical justification about the findings is reported and future work is outlined.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN76312 , AIAA SciTech 2020; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-01-24
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN76613 , American Meteorological Society (AMS) Annual Meeting; Jan 12, 2020 - Jan 16, 2020; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-01-24
    Description: A multiple shaker placement methodology is developed and tested using a topology optimization technique. Current multiple shaker placement methodology requires optimum accelerometer placement and optimum single-shaker placement techniques. The proposed methodology is tested using a finite element model of the X-59 Low Boom Flight Demonstrator aircraft. The effective independence and the driving point acceleration transfer function (DPATF) methods are used for the accelerometer placement study. In this study, four shakers are used to excite each mode more effectively during the ground vibration test; all the modes of interest thus are separated into four groups. Each shaker takes care of a separate group of modes. Grouping the modes of interest is performed utilizing topology optimization. The number of modes for each group therefore will be automatically decided during grouping. For each group of modes, perform the following two steps to determine optimal location of four shakers: 1) At each accelerometer location, compare the magnitude of DPATF values at natural frequencies, select the minimum value, and make a vector with these minimum values of the DPATF magnitudes for each group; and 2) Select the degrees of freedom corresponding to the maximum value of this vector. The objective function value is the maximum value of the vector with minimum value of the magnitude of the superposed acceleration transfer function. This objective function value is maximized by changing the modes for each group. Forty accelerometers are enough to have good correlation between mode shapes obtained from the reduced order model and the simulated ground vibration test.
    Keywords: Numerical Analysis; Aircraft Design, Testing and Performance
    Type: AFRC-E-DAA-TN73257 , SciTech 2020; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2020-01-24
    Description: The Alpha Jet Atmospheric eXperiment (AJAX) airborne science project based out of NASA Ames Research Center performed eight science flights in coordination with the California Baseline Ozone Transport Study (CABOTS) campaign. Many of these flights included a series of vertical profiles (~ 0-5 km) distributed roughly along either a North/South or East/West transect. Some flights also connected the fixed-location measurements at Visalia (TOPAZ ozone lidar) and Bodega Bay (ozonesondes). AJAX measured ozone, carbon dioxide, methane, water vapor, and 3-D winds on each flight, and those in situ measurements are the basis of the data sets collected here. Trace gas data sets including time and aircraft position have been delivered as comma-separated-value text files. Meteorological data (temperature, pressure and 3-dimensional winds) are provided at 1 Hz in ICARTT-compliant text files.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN77025
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-01-24
    Description: The proposed poster will highlight two NASA developed entry technologies that are enablers for Ice Giant Missions. They are: (1) Heat-shield for Extreme Entry Environment Technology (HEEET), and (2) Adaptable, Deployable, Entry, and Placement Technology (ADEPT), a mechanically deployable entry system. HEEET development is complete and is at TRL 6. HEEET is ready for Ice Giant in situ probe missions, and HEEET is an enabler for either direct ballistic entry or entry from Orbit. NASA plans to sustain the HEEET capability as it is needed for Venus, Saturn and higher speed sample return missions in addition to Ice Giant Missions. The emerging recognition among the scientific community that by delivering the probe from orbit will allow for simultaneous in-situ and orbital measurement can be enabled by aerocapture using ADEPT. The drag modulated aerocapture (DMA) with ADEPT is the simplest approach that can deliver an orbiter and probe together and without the significant penalty associated with propulsive insertion. Studies performed by JPL and NASA Ames teams point to this very promising possibility. Numerous DMA with ADEPT studies point to its applicability to small spacecraft missions as well as Ice Giant missions. The poster will present the current state of readiness of HEEET, ADEPT and DMA.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN76382 , Ice Giants Systems; Jan 20, 2020 - Jan 22, 2020; London, England; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-01-24
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN76760 , AMS Annual Meeting; Jan 12, 2020 - Jan 16, 2020; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-01-24
    Description: The highest priority science goals for Ice Giant missions are: 1) Interior structure of the Planet, and 2) Bulk composition that includes isotopes and noble gases. The interaction between the planetary interior and the atmosphere requires sustained global measurements. Noble gas and Isotope measurements require in situ measurement. Drag modulated aerocapture utilizing ADEPT offers more mass delivered to the Ice Giants than with propulsive orbit insertion. The Galileo Probe entered at a hot spot which created interpretation challenges. Juno is providing valuable orbital measurements, but without in situ measurements the story is incomplete. Planetary scientists interested in Ice Giant missions should perform mission design studies with these new Entry System technologies to assess the feasibility within the context of the international collaboration framework. A mission architecture that includes probe(s) along with an orbiting spacecraft can deploy the probes at the desired location while taking simultaneous measurements from orbit to provide invaluable data that can correlate both global and local measurements. Entry System Technologies currently being developed by NASA are poised to enable missions that position the Orbiter & Probes through drag modulated aerocapture (ADEPT), and HEEET enables the Probes to survive the extreme environments encountered for entry into the atmospheric interior.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN77152 , Ice Giants Systems; Jan 20, 2020 - Jan 22, 2020; London, England; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-01-24
    Description: The presentation discusses operational suitability metrics computed from the closed-loop simulations of EO/IR and DAA systems.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN77133 , SC-228 (Minimum Performance Standards for Unmanned Aircraft Systems) Working Group 1 EO/IR Subworking Group; Jan 14, 2020; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-01-24
    Description: This paper determined the feasibility of an adaptive hexapod simulator motion algorithm based on aircraft roll stability. An experiment was conducted that used a transport aircraft model in the Vertical Motion Simulator at NASA Ames Research Center. Eighteen general aviation pilots flew a heading-capture task and a stall task consecutively under four motion configurations: baseline hexapod, adaptive hexapod, optimized hexapod, and full motion. The adaptive motion was more similar to the baseline hexapod motion in the heading-capture task when the aircraft was more stable, and more similar to the optimized hexapod motion in the stall task when the aircraft was more unstable. Pilot motion ratings and task performance in the heading-capture task under the adaptive hexapod motion were more similar to baseline hexapod motion compared to optimized hexapod motion. However, motion ratings and task performance in the stall task under the adaptive motion were not significantly more similar to the optimized hexapod motion compared to baseline hexapod motion. Motion ratings and overall task performance under optimized hexapod motion as opposed to baseline hexapod motion were always more similar to the full motion condition. This paper showed that adaptive motion based on aircraft stability is feasible and can be implemented in a straightforward way. More research is required to test the adaptive motion algorithm in different tasks.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA 2020-2268 , ARC-E-DAA-TN76664 , AIAA Scitech 2020 Forum; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...