ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3,294)
  • Articles (OceanRep)  (3,294)
  • 2000-2004  (3,251)
  • 1940-1944  (43)
Collection
  • Other Sources  (3,294)
Years
Year
  • 1
    Publication Date: 2017-01-04
    Description: Tropical South America is one of the three main centres of the global, zonal overturning circulation of the equatorial atmosphere (generally termed the 'Walker' circulation1). Although this area plays a key role in global climate cycles, little is known about South American climate history. Here we describe sediment cores and down-hole logging results of deep drilling in the Salar de Uyuni, on the Bolivian Altiplano, located in the tropical Andes. We demonstrate that during the past 50,000 years the Altiplano underwent important changes in effective moisture at both orbital (20,000-year) and millennial timescales. Long-duration wet periods, such as the Last Glacial Maximum—marked in the drill core by continuous deposition of lacustrine sediments—appear to have occurred in phase with summer insolation maxima produced by the Earth's precessional cycle. Short-duration, millennial events correlate well with North Atlantic cold events, including Heinrich events 1 and 2, as well as the Younger Dryas episode. At both millennial and orbital timescales, cold sea surface temperatures in the high-latitude North Atlantic were coeval with wet conditions in tropical South America, suggesting a common forcing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-04
    Description: Long sediment cores recovered from the deep portions of Lake Titicaca are used to reconstruct the precipitation history of tropical South America for the past 25,000 years. Lake Titicaca was a deep, fresh, and continuously overflowing lake during the last glacial stage, from before 25,000 to 15,000 calibrated years before the present (cal yr B.P.), signifying that during the last glacial maximum (LGM), the Altiplano of Bolivia and Peru and much of the Amazon basin were wetter than today. The LGM in this part of the Andes is dated at 21,000 cal yr B.P., approximately coincident with the global LGM. Maximum aridity and lowest lake level occurred in the early and middle Holocene (8000 to 5500 cal yr B.P.) during a time of low summer insolation. Today, rising levels of Lake Titicaca and wet conditions in Amazonia are correlated with anomalously cold sea-surface temperatures in the northern equatorial Atlantic. Likewise, during the deglacial and Holocene periods, there were several millennial-scale wet phases on the Altiplano and in Amazonia that coincided with anomalously cold periods in the equatorial and high-latitude North Atlantic, such as the Younger Dryas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer
    In:  In: Competition and Coexistence. , ed. by Sommer, U. and Worm, B. Ecological Studies, 161 . Springer, Berlin, Germany, pp. 207-218. ISBN 978-3-642-62800-9
    Publication Date: 2017-01-26
    Description: Modern competition research started with G.E. Hutchinson’s, Homage to Santa Rosalia, and his now-famous question “why are there so many species?” (Hutchinson 1959,1961). This confronted observed species richness with the competitive exclusion principle, a principle that had been derived from theory and from highly artificial experiments. It would always have been easy to point at the “artificial” character of the competitive exclusion principle. Indeed many researchers have refused to deal with Hutchinson’s question because they considered it a pseudo-problem, which arose from a contradiction between overly simplified theory and complicated reality. However, those who took Hutchinson’s challenge seriously have gained fundamental insights into how competition plays out in nature, how species coexist, and how communities function. In this final chapter we attempt to synthesize these insights as they have been presented in this book. We focus on six key topics: - Identification of major trade-off axes (Sect. 8.1) - Confirmation of the “intermediate disturbance hypothesis”, and detection of interactions among competition, resource supply, predation and disturbance in field experiments (Sect. 8.2) - The interplay of space colonization, dispersal and neighborhood competition in sessile communities (Sect. 8.3) - Potential for chaotic, self-generated heterogeneity in communities (Sect. 8.4) - Role of exclusive resources in competition among mobile animals (Sect. 8.5) - Coexistence by slow exclusion (Sect. 8.6)
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  Geological Magazine, 140 (3). pp. 245-252.
    Publication Date: 2020-07-31
    Description: Markedly different cooling histories for the hanging- and footwall of theVari detachment on Syros and Tinos islands, Greece, are revealed by zircon and apatite fission-track data. The Vari/Akrotiri unit in the hangingwall cooled slowly at rates of 5–15 ◦CMyr−1 since Late Cretaceous times. Samples from the Cycladic blueschist unit in the footwall of the detachment on Tinos Island have a mean zircon fission-track age of 10.0±1.0 Ma, which together with a published mean apatite fission-track age of 9.4±0.5 Ma indicates rapid cooling at rates of at least ∼60 ◦CMyr−1. We derive a minimum slip rate of ∼6.5 kmMyr−1 and a displacement of 〉∼20 km and propose that the development of the detachment in the thermally softened magmatic arc aided fast displacement. Intra-arc extension accomplished the final ∼6–9 km of exhumation of the Cycladic blueschists from ∼60 km depth. The fast-slipping intra-arc detachments did not cause much exhumation, but were important for regionalscale extension and the formation of the Aegean Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Mineralogical Society of America
    In:  Reviews in Mineralogy and Geochemistry, 43 (1). pp. 579-605.
    Publication Date: 2017-02-22
    Description: The ocean accounts for over 90% of the active pools of carbon on the Earth’s surface, with over 95% of marine carbon in the form of dissolved inorganic carbon (DIC) (Hedges and Keil 1995). Organic carbon dissolved in the ocean, suspended as particles or cells, and accumulating in sediments together constitute the other significant fractions of marine carbon, with organic carbon in the water column similar in quantity to the current atmospheric inventory of carbon dioxide. Isotopic partitioning among various inorganic and organic carbon phases reflects biological, physical and chemical processes, and the resulting fractionations are important tools in the study of modern and ancient carbon cycling. The focus of this review is on the isotopic geochemistry of marine organic carbon. It will begin by setting the stage with the isotopic patterns of DIC in the modern oceans. As will be discussed below, the distribution of inorganic carbon and related nutrient concentrations as well as DIC isotopic compositions are important influences on the quantity and isotopic character of organic carbon produced in marine surface waters. The remainder of the review will discuss isotope fractionation associated with the production and preservation of marine organic carbon. The combination of organic matter composition and 13C content is a potentially powerful approach for addressing the nature and pace of ecological and environmental change both in the modern and ancient ocean. This work reviews biogeochemical processes that generate, transform and ultimately preserve such signatures in marine sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-07-30
    Description: We use data from recently installed broad-band seismographs on the islands of Crete, Gavdos, Santorini, Naxos and Samos in the Hellenic subduction zone to construct receiver function images of the crust and upper mantle from south of Crete into the Aegean Sea. The stations are equipped with STS-2 seismometers and they are operated by GFZ Potsdam, University of Chania and ETH Zürich. Teleseismic earthquakes recorded by these stations at epicentral distances between 35° and 95° have been used to calculate receiver functions. The receiver function method is a routinely used tool to detect crustal and upper-mantle discontinuities beneath a seismic station by isolating the P–S converted waves from the coda of the P wave. Converted P–S energy from the oceanic Moho of the subducted African Plate is clearly observed beneath Gavdos and Crete at a depth ranging from 44 to 69 km. This boundary continues to the north to nearly 100 km depth beneath Santorini island. Because of a lack of data the correlation of this phase is uncertain north of Santorini beneath the Aegean Sea. Moho depths were calculated from primary converted waves and multiply reflected waves between the Moho and the Earth's surface. Beneath southern and eastern Crete the Moho lies between 31 and 34 km depth. Beneath western and northern Crete the Moho is located at 32 and 39 km depth, respectively, and behaves as a reversed crust–mantle velocity contrast, possibly caused by hydration and serpentinization of the forearc mantle peridotite. The Moho beneath Gavdos island located south of Crete in the Libyan Sea is at 26 km depth, indicating that the crust south of the Crete microcontinent is also thinning towards the Mediterranean ridge. This makes it unlikely that part of the crust in Crete consists of accreted sediments transported there during the present-day subduction process which began approximately 15 Ma because the backstop, i.e. the boundary between the current accretionary wedge of the Mediterranean ridge and the Crete microcontinent, is located approximately 100 km south of Gavdos. A seismic boundary at 32 km depth beneath Santorini island probably marks the crustal base of the Crete microcontinent. A shallower seismic interface beneath Santorini at 20–25 km depth may mark the depth of the detachment between the Crete microcontinent and the overlying Aegean subplate. The Moho in the central and northern Aegean, at Naxos and Samos, is observed at 25 and 28 km depth, respectively. Assuming a stretching factor of 1.2–1.3, crustal thickness in the Aegean was 30–35 km at the inception of the extensional regime in the Middle Miocene.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Institut für Polarökologie Kiel
    In:  Mitteilungen zur Kieler Polarforschung, 18 . p. 8.
    Publication Date: 2017-03-28
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Institut für Polarökologie Kiel
    In:  Mitteilungen zur Kieler Polarforschung, 18 . p. 7.
    Publication Date: 2017-03-28
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Volcanology and Geothermal Research, 137 (4). pp. 285-310.
    Publication Date: 2020-07-17
    Description: Santorini, Greece is a major explosive volcano. The Santorini volcanic complex is composed of two active volcanoes—Nea Kameni and Mt. Columbo. Holocene eruptions have generated a variety of processes and deposits and eruption mechanisms pose significant hazards of various types. It has been recognized that, for major European volcanoes, few studies have focused on the social aspects of volcanic activity and little work has been conducted on public perceptions of hazard, risk and vulnerability. Such assessments are an important element of establishing public education programmes and developing volcano disaster management plans. We investigate perceptions of volcanic hazards on Santorini. We find that most residents know that Nea Kameni is active, but only 60% know that Mt. Columbo is active. Forty percent of residents fear that negative impacts on tourism will have the greatest effect on their community. In the event of an eruption, 43% of residents would try to evacuate the island by plane/ferry. Residents aged N50 have retained a memory of the effects of the last eruption at the island, whereas younger residents have no such knowledge. We find that dignitaries and municipal officers (those responsible for planning and managing disaster response) are informed about the history, hazards and effects of the volcanoes. However, there is no bemergency planQ for the island and there is confusion between various departments (Civil Defense, Fire, Police, etc.) about the emergency decision-making process. The resident population of Santorini is at high risk from the hazards associated with a future eruption.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 106 (B3). pp. 3977-3997.
    Publication Date: 2019-04-08
    Description: The morphology and structure of the submarine flanks of the Canary Islands were mapped using the GLORIA long-range side-scan sonar system, bathymetric multibeam systems, and sediment echosounders. Twelve young (〈2 Ma) giant landslides have been identified on the submarine flanks of the Canary Islands up to now. Older landslide events are long buried under a thick sediment cover due to high sedimentation rates around the Canary Islands. Most slides were found on the flanks of the youngest and most active islands of La Palma, El Hierro, and Tenerife, but young giant landslides were also identified on the flanks of the older (15–20 Ma) but still active eastern islands. Large-scale mass wasting is an important process during all periods of major magmatic activity. The long-lived volcanic constructive history of the islands of the Canary Archipelago is balanced by a correspondingly long history of destruction, resulting in a higher landslide frequency for the Canary Islands compared to the Hawaiian Islands, where giant landslides only occur late in the period of active shield growth. The lower stability of the flanks of the Canaries is probably due to the much steeper slopes of the islands, a result of the abundance of highly evolved intrusive and extrusive rocks. Another reason for the enhanced slope instability is the abundance of pyroclastic deposits on Canary Islands resulting from frequent explosive eruptions due to the elevated volatile contents in the highly alkalic magmas. Dike-induced rifting is most likely the main trigger mechanism for destabilization of the flanks. Flank collapses are a major geological hazard for the Canary Islands due to the sector collapses themselves as well as triggering of tsunamis. In at least one case, a giant lateral blast occurred when an active magmatic or hydrothermal system became unroofed during flank collapse.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...