ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (9,171)
  • Articles (OceanRep)  (9,171)
  • 2015-2019  (9,171)
Collection
  • Other Sources  (9,171)
Source
Years
Year
  • 1
    Publication Date: 2024-04-19
    Description: El Niño events are characterized by surface warming of the tropical Pacific Ocean and weakening of equatorial trade winds that occur every few years. Such conditions are accompanied by changes in atmospheric and oceanic circulation, affecting global climate, marine and terrestrial ecosystems, fisheries and human activities. The alternation of warm El Niño and cold La Niña conditions, referred to as the El Niño–Southern Oscillation (ENSO), represents the strongest year-to-year fluctuation of the global climate system. Here we provide a synopsis of our current understanding of the spatio-temporal complexity of this important climate mode and its influence on the Earth system.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-12
    Description: Bacteria use quorum sensing to orchestrate gene expression programmes that underlie collective behaviours. Quorum sensing relies on the production, release, detection and group-level response to extracellular signalling molecules, which are called autoinducers. Recent work has discovered new autoinducers in Gram-negative bacteria, shown how these molecules are recognized by cognate receptors, revealed new regulatory components that are embedded in canonical signalling circuits and identified novel regulatory network designs. In this Review we examine how, together, these features of quorum sensing signal–response systems combine to control collective behaviours in Gram-negative bacteria and we discuss the implications for host–microbial associations and antibacterial therapy.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-08
    Description: The Lagrangian method-where current location and intensity are determined by tracking the movement of flow along its path-is the oldest technique for measuring the ocean circulation. For centuries, mariners used compilations of ship drift data to map out the location and intensity of surface currents along major shipping routes of the global ocean. In the mid-20th century, technological advances in electronic navigation allowed oceanographers to continuously track freely drifting surface buoys throughout the ice-free oceans and begin to construct basin-scale, and eventually global-scale, maps of the surface circulation. At about the same time, development of acoustic methods to track neutrally buoyant floats below the surface led to important new discoveries regarding the deep circulation. Since then, Lagrangian observing and modeling techniques have been used to explore the structure of the general circulation and its variability throughout the global ocean, but especially in the Atlantic Ocean. In this review, Lagrangian studies that focus on pathways of the upper and lower limbs of the Atlantic Meridional Overturning Circulation (AMOC), both observational and numerical, have been gathered together to illustrate aspects of the AMOC that are uniquely captured by this technique. These include the importance of horizontal recirculation gyres and interior (as opposed to boundary) pathways, the connectivity (or lack thereof) of the AMOC across latitudes, and the role of mesoscale eddies in some regions as the primary AMOC transport mechanism. There remain vast areas of the deep ocean where there are no direct observations of the pathways of the AMOC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-08
    Description: For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-27
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-26
    Description: The Cretaceous with extremely high atmospheric pCO2 is one of the warmest periods in the Phanerozoic, providing an endmember to test climate models. Repeated periods of widespread dysoxic / anoxic conditions (Oceanic Anoxic Events; OAEs) were characterized by enhanced burial of organic matter and different degrees of marine faunal turnovers, that can be seen as extreme equivalents for the already observed trend of expanding Oxygen Minimum Zones (OMZ) in modern oceans caused by anthropogenic climate warming. One of the largest OAEs occurring at the Cenomanian / Turonian boundary is OAE2. This thesis presents results from Core SN°4 drilled in the Tarfaya Basin (SW Morocco). This continuous record spanning the time from the late Albian to early Turonian allowed 1) to reconstruct climatic and paleoceanographic variability during this period in the Tarfaya Basin, 2) to unravel climate processes and biospheric changes during the onset of OAE2 and 3) to study phosphorus dynamics during the Cenomanian and early Turonian.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-26
    Description: The fluctuating energy production of renewable sources implies the necessity of energy storage. For the implementation of gas storage, a knowledge gap regarding gas-specific reactions to be expected in shallow aquifers following a leakage of compressed air, methane, or hydrogen existed. These reactions can change the composition of the groundwater, which potentially leads to conflicts between different ways of utilizing the subsurface. Experiments representing reactive hydrogeological environments characteristic to a shallow aquifer influenced by a gas plume were carried out. The applied experimental approach included flow-through column experiments using a sediment from a shallow aquifer percolated by the groundwater from the same aquifer. The water used to percolate the experimental sediment columns was saturated by the respective gas at partial pressures representing the conditions taking place within a dissolved gas plume in a shallow aquifer after a leakage of compressed air, methane, or hydrogen. Experiments on leakage of compressed air showed pyrite oxidation. The transfer function on reaction kinetics based on the experimental reaction rates for upscaling the results includes a new surface passivation term describing the inhibition of more than 90% of the pyrite reactivity compared to the reactivity expected based on previously published models. Fugitive methane was not oxidized and did not cause detectable changes in the groundwater within one year in the presented flow-through column experiments. This finding acknowledges earlier studies describing no methane oxidation if methane or its electron acceptors are newly introduced into an aquifer. In contrast to methane, elevated concentration of hydrogen immediately triggers a series of redox reactions, which have major effects on groundwater composition. Based on these observations, a descriptive reaction model was developed for further modeling applications.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-25
    Description: Thermal methods are of increased relevance in the field of microplastics (MP) analysis. The presented method improvements emphasize the potential of pyrolysis gas-chromatography mass-spectrometry (Py-GCMS) methods for mass-related MP quantification in environmental samples. A previously established Curie-Point (CP)-pyrolyzer is compared to a micro furnace (MF) pyrolyzer of higher sample capacity. The two Py-GCMS systems are examined in terms of calibration aspects like dynamic range, linearity, process standard deviation and overall sensitivity. Here, MF-PyGCMS provided advantages. Depending on the samples and their residual organic matrix content, the related pyrolysis products may interact with relevant indicator ions of interesting polymers. This can hamper or even impede any calibration and quantification of MP in the given sample. An internal standard mixture added just before the pyrolysis process (ISTD py ) mimics these interactions to a certain extent. Based on selected peak ratios, ISTD py offers a possible quantification option in those cases. The application in selected environmental samples (sea salt, surface water and muddy sediment) after adequate preconcentration illustrates the capability and sensitivity of MF-Py-GCMS for MP-quantification regarding the encountered concentrations (ppt–ppm).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-22
    Description: Carbonate buildups and mounds are impressive biogenic structures throughout Earth history. In the recent NE Atlantic, cold-water coral (CWC) reefs form giant carbonate mounds of up to 300 m of elevation. The expansion of these coral carbonate mounds is paced by climatic changes during the past 2.7 Myr. Environmental control on their development is directly linked to controls on its main constructors, the reef-building CWCs. Seawater density has been identified as one of the main controlling parameter of CWC growth in the NE Atlantic. One possibility is the formation of a pycnocline above the carbonate mounds, which is increasing the hydrodynamic regime, supporting elevated food supply, and possibly facilitating the distribution of coral larvae. The potential to reconstruct past seawater densities from stable oxygen isotopes of benthic foraminifera has been further developed: a regional equation gives reliable results for three different settings, peak interglacials (e.g., Holocene), peak glacials (e.g., Last Glacial Maximum), and intermediate setting (between the two extremes). Seawater densities are reconstructed for two different NE Atlantic CWC carbonate mounds in the Porcupine Seabight indicating that the development of carbonate mounds is predominantly found at a seawater density range between 27.3 and 27.7 kg m−3 (σΘ notation). Comparable to recent conditions, we interpret the reconstructed density range as a pycnocline serving as boundary layer, on which currents develop, carrying nutrition and possibly coral larvae. The close correlation of CWC reef growth with reconstructed seawater densities through the Pleistocene highlights the importance of pycnoclines and intermediate water mass dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-22
    Description: Highlights • Re-organization of the West Pacific Warm Pool at ~ 1.7 – 1.35 Ma. • West Pacific Warm Pool and South Pacific Convergence Zone located further to the NE prior to ~ 1.5 Ma. • High amplitude variations at thermocline and deep thermocline depths after ~ 1.5 Ma. • West Pacific Warm Pool thermocline dynamics linked to southern-sourced mode waters. Abstract The internal development of the tropical West Pacific Warm Pool and its interaction with high latitude ocean regions on geological timescales is only poorly constrained. Based on two newly recovered sediment cores from the southeastern margin of the West Pacific Warm Pool (northern and southern Manihiki Plateau), we provide new aspects on the dynamically interacting ocean circulation at surface, subsurface, thermocline, and deep thermocline levels during the Pleistocene (~ 2.5–0.5 Ma). Notably, the variability of thermocline and deep thermocline (~ 150–400 m water depth) foraminiferal Mg/Ca-based temperatures with up to ~ 6 °C amplitude variations exceeds those at shallower depths (down to ~ 120 m) with only ~ 2–3 °C temperature variations. A major gradual reorganization of the West Pacific Warm Pool oceanography occurred during the transitional time period of ~ 1.7–1.35 Ma. Prior to ~ 1.7 Ma, pronounced meridional and latitudinal gradients in sea-surface to subsurface ocean properties point to the eastward displacement of the West Pacific Warm Pool boundaries, with the South Pacific Convergence Zone being shifted further northeastward across Manihiki Plateau. Simultaneously, the low amplitude variations of thermocline and deep thermocline temperatures refer to an overall deep and stable thermocline. The meridional and zonal gradients in sea-surface and subsurface ocean properties within the West Pacific Warm Pool reveal a pronounced change after 1.5 Ma, leading to a more southward position of the warm South Pacific Convergence Zone between ~ 1.35–0.9 Ma and ~ 0.75–0.5 Ma. Synchronous to the changes in the upper ocean, the deeper water masses experienced high amplitude variations in temperature, most prominently since ~ 1.5 Ma. This and the dynamically changing thermocline were most likely associated to the impact of southern-sourced mode waters, which might have developed coincidently with the emergence of the East Pacific Cold Tongue and high latitude sea-surface cooling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...