ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-15
    Description: A limited number of gauging stations, especially for nested catchments, hampers a process understanding of the interaction between streamflow, groundwater and water usage during drought. Non‐commercial measurement devices can help overcome this lack of monitoring, but they need to be thoroughly tested. The Dreisam River in the South‐West of Germany was affected by several hydrological drought events from 2015 to 2020 during which parts of the main stream and tributaries fell dry. Therefore it provided a useful case study area for a flexible longitudinal water quality and quantity monitoring network. Among other measurements the setup employs an image‐based method with QR codes as fiducial marker. In order to assess under which conditions the QR‐code based water level loggers (WLL) deliver data according to scientific standards, we compared its performance to conventional capacitive based WLL. The results from 20 monitoring stations reveal that the riverbed was dry for 〉50% at several locations and even for 〉70% at most severely affected locations during July and August 2020, with the north western parts of the catchment being especially concerned. Highly variable longitudinal drying patterns of the stream reaches emerged from the monitoring. The image‐based method was found valuable for identification and validation of zero level occurrences. Nevertheless, a simple image processing approach (based on an automatic thresholding algorithm) did not compensate for errors due to natural conditions and technical setup. Our findings highlight that the complexity of measurement environments is a major challenge when working with image‐based methods.
    Description: We monitored zero water levels in a meso‐scale catchment with temperate climate by means of image‐based and conventional water level logging techniques. A detailed analysis of the longitudinal drying patterns enables a discussion about hydrological connectivity and the processes influencing the drying.
    Description: Badenova Fund For Innovation
    Description: https://doi.org/10.6094/UNIFR/228702
    Keywords: ddc:551.48 ; hydrological drought ; innovative sensors ; longitudinal connectivity ; stream reaches ; streamflow intermittency ; zero flow
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-15
    Description: Physiological sensitivity of cold‐water corals to ocean change is far less understood than of tropical corals and very little is known about the impacts of ocean acidification and warming on degradative processes of dead coral framework. In a 13‐month laboratory experiment, we examined the interactive effects of gradually increasing temperature and pCO2 levels on survival, growth, and respiration of two prominent color morphotypes (colormorphs) of the framework‐forming cold‐water coral Lophelia pertusa, as well as bioerosion and dissolution of dead framework. Calcification rates tended to increase with warming, showing temperature optima at ~ 14°C (white colormorph) and 10–12°C (orange colormorph) and decreased with increasing pCO2. Net dissolution occurred at aragonite undersaturation (ΩAr 〈 1) at ~ 1000 μatm pCO2. Under combined warming and acidification, the negative effects of acidification on growth were initially mitigated, but at ~ 1600 μatm dissolution prevailed. Respiration rates increased with warming, more strongly in orange corals, while acidification slightly suppressed respiration. Calcification and respiration rates as well as polyp mortality were consistently higher in orange corals. Mortality increased considerably at 14–15°C in both colormorphs. Bioerosion/dissolution of dead framework was not affected by warming alone but was significantly enhanced by acidification. While live corals may cope with intermediate levels of elevated pCO2 and temperature, long‐term impacts beyond levels projected for the end of this century will likely lead to skeletal dissolution and increased mortality. Our findings further suggest that acidification causes accelerated degradation of dead framework even at aragonite saturated conditions, which will eventually compromise the structural integrity of cold‐water coral reefs.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Marine Research in Ireland
    Description: French National Research Agency http://dx.doi.org/10.13039/501100001665
    Keywords: ddc:577.7 ; cold-water corals ; ocean change ; laboratory experiments ; framwork dissolution ; bioerosion
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-14
    Description: The Paris Agreement marks a significant milestone in international climate politics. With its adoption, Parties call for non‐ and sub‐state actors to contribute to the global climate agenda and close the emissions gap left by states. Such a facilitative setting embraces non‐state climate action through joint efforts, synergies, and different modes of collaboration. At the same time, non‐state actors have always played a critical and confrontational role in international climate governance. Based on a systematic literature review, we identify and critically assess the role of non‐state climate action in a facilitative post‐Paris climate governance regime. We thereby highlight three constitutive themes, namely different state‐non‐state relations, competing level of ambition, and a variety of knowledge foundations. We substantiate these themes, derived from an inductive analysis of existing literature, with illustrative examples and propose three paradigmatic non‐state actor roles in post‐Paris climate governance on a continuum between compliance and critique. We thereby highlight four particular threats of a facilitative setting, namely substitution of state action, co‐optation, tokenism, and depoliticization. Future research should not limit itself to an effective integration of NSSAs into a facilitative climate regime, but also engage with the merits of contestation. This article is categorized under: Policy and Governance 〉 Multilevel and Transnational Climate Change Governance
    Description: Three constitutive themes—different state‐non‐state relations, levels of ambition, and knowledge foundations—define the multiple roles non‐ and sub‐state actors can occupy in the post‐Paris climate governance regime. Yet, calls for voluntary, collaborative, and synergetic non‐state climate action in a facilitative post‐Paris climate governance setting run the risk to overshadow fundamental tensions when governing climate change.
    Description: Svenska Forskningsrådet Formas http://dx.doi.org/10.13039/501100001862
    Description: Deutsche Forschungsgemeinschaft (DFG)
    Keywords: ddc:341.7 ; climate change governance ; contestation ; environmental politics ; non‐state actors ; Paris Agreement ; transformation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-12-05
    Description: Computational methods, in particular text‐as‐data or Natural Language Processing (NLP) approaches, have become popular to study climate change communication as a global and large‐scale phenomenon. Scholars have discussed opportunities and challenges of these methods for climate change communication, with some proponents and critics taking strong positions, either embracing the potential of computational methods or critically questioning their value. Mirroring developments in the broader social scientific debate, we aim to bring both sides together by proposing a reflexive, integrative approach for computational research on climate change communication: We reflect on strengths (e.g., making data big and small, nowcasting observations) and weaknesses (e.g., introducing empiricist epistemologies, ignoring biases) of computational approaches. Moreover, we also provide concrete and constructive guidance on when and how to integrate (or not integrate) these methods based on theoretical considerations. We thereby understand computational methods as part of an ever‐increasing, diverse toolbox for analyzing climate change communication.
    Keywords: ddc:304.28 ; big data ; climate change communication ; computational methods ; news media ; social media
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-07-21
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The countless kettle holes in the Late Pleistocene landscapes of Northern Europe are hotspots for biodiversity and biogeochemical processes. As a rule, they are hydraulically connected to the shallow groundwater system. The rapid, intensive turnover of carbon, nutrients and pollutants in the kettle holes therefore has a major impact on the quality of the shallow groundwater downstream. As a result of high‐evapotranspiration rates from their riparian vegetation or strong storm events, the process of downstream groundwater flow may stagnate and reverse back towards the kettle hole, making interactions between the groundwater and kettle hole more complex. Furthermore, the highly heterogeneous soil landscape in the catchment contributes to this complexity. Therefore, the present study aims to enhance our understanding of this complicated interaction. To this end, 24 model variants were integrated into HydroGeoSphere, capturing a wide range of uncertainties in quantifying the extent and timing of groundwater flow reversal between a kettle hole and the adjacent aquifer. The findings revealed that the groundwater flow reversal lasted between 1 month and 19 years at most and occurred in a distance of more than 140 m downstream of the kettle hole. Our results demonstrated that the groundwater flow reversal arises especially often in areas where the shallow aquifer possesses low‐hydraulic conductivity. There may also be a recurrent circulating flow between the groundwater and kettle hole, resulting in solute turnover within the kettle hole. This holds particularly true in dry periods with medium to low‐water levels within the kettle hole and a negative water balance. However, shallow groundwater flow reversals are not necessarily a consequence of seasonal effects. In this respect, the properties of the local shallow aquifer by far outweigh the effect of the kettle hole location in the regional flow regime.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Frequency of the direction of water flow from a kettle hole towards the aquifer and its reversal for different aquifer sediments on a vertically cross section through the water body and the surrounding aquifer.〈boxed-text position="anchor" content-type="graphic" id="hyp14890-blkfxd-0001" xml:lang="en"〉 〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:08856087:media:hyp14890:hyp14890-toc-0001"〉
    Description: https://open-research-data.zalf.de/default.aspx
    Keywords: ddc:551.49 ; groundwater flow reversal ; HydroGeoSphere ; kettle hole ; numerical experiment ; surface–groundwater interaction
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-07-21
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Freshwater biodiversity, from fish to frogs and microbes to macrophytes, provides a vast array of services to people. Mounting concerns focus on the accelerating pace of biodiversity loss and declining ecological function within freshwater ecosystems that continue to threaten these natural benefits. Here, we catalog nine fundamental ecosystem services that the biotic components of indigenous freshwater biodiversity provide to people, organized into three categories: material (food; health and genetic resources; material goods), non‐material (culture; education and science; recreation), and regulating (catchment integrity; climate regulation; water purification and nutrient cycling). If freshwater biodiversity is protected, conserved, and restored in an integrated manner, as well as more broadly appreciated by humanity, it will continue to contribute to human well‐being and our sustainable future via this wide range of services and associated nature‐based solutions to our sustainable future.〈/p〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉
    Description: María de Maeztu excellence accreditation 2018‐2022
    Description: Ministerio de Ciencia e Innovación (MCIN) http://dx.doi.org/10.13039/501100004837
    Description: Leibniz Competition: Freshwater Megafauna Futures
    Description: CGIAR Initiative on NEXUS Gains
    Keywords: ddc:333.9 ; ecosystem services ; freshwater biodiversity ; freshwater ecosystems ; freshwater life
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-07-19
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The genesis of floods in large river basins often is complex. Streamflow originating from precipitation and snowmelt and different tributaries can superimpose and cause high water levels, threatening cities and communities along the riverbanks. For better understanding the mechanisms (origin and composition) of flood events in large and complex basins, we capture and share the story behind major historic and projected streamflow peaks in the Rhine River basin. Our analysis is based on hydrological simulations with the mesoscale Hydrological Model forced with both meteorological observations and an ensemble of climate projections. The spatio‐temporal analysis of the flood events includes the assessment and mapping of antecedent liquid precipitation, snow cover changes, generated and routed runoff, areal extents of events, and the above‐average runoff from major sub‐basins up to 10 days before a streamflow peak. We introduce and assess the analytical setup by presenting the flood genesis of the two well‐known Rhine floods that occurred in January 1995 and May 1999. We share our extensive collection of event‐based Rhine River flood genesis, which can be used in‐ and outside the scientific community to explore the complexity and diversity of historic and projected flood genesis in the Rhine basin. An interactive web‐based viewer provides easy access to all major historic and projected streamflow peaks at four locations along the Rhine. The comparison of peak flow genesis depending on different warming levels elucidates the role of changes in snow cover and precipitation characteristics in the (pre‐)Alps for flood hazards along the entire channel of the Rhine. Furthermore, our results suggest a positive correlation between flood magnitudes and areal extents of an event. Further hydro‐climatological research is required to improve the understanding of the climatic impact on the Rhine and beyond.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The genesis of riverine floods in large river basins often is complex. Streamflow originating from precipitation and snowmelt and different tributaries can superimpose and cause high water levels threatening cities and communities along the riverbanks. In this study, we capture and share the story behind major historic and projected streamflow peaks in the large and complex basin of the Rhine River.〈boxed-text position="anchor" content-type="graphic" id="hyp14918-blkfxd-0001" xml:lang="en"〉 〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:08856087:media:hyp14918:hyp14918-toc-0001"〉
    Description: https://doi.org/10.5281/zenodo.3239055
    Description: https://github.com/ERottler/rhine-flood-genesis
    Description: http://natriskchange.ad.umwelt.uni-potsdam.de:3838/rhine-flood-genesis
    Description: https://b2share.eudat.eu/records/72d7a4f5d38043d1a137228b39c7ecc3
    Keywords: ddc:551.46 ; climate change ; flood composition ; flood genesis ; mHM ; model simulations ; quantile extent ; Rhine River ; spatio‐temporal analysis ; web‐based dashboard
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-01-27
    Description: Interactions between phytoplankton species shape their physiological and evolutionary responses. Yet, studies addressing the evolutionary responses of phytoplankton in changing environments often lack an explicit element of biotic interactions. Here, we ask (1) how the presence of a locally adapted phytoplankton species will affect an invading phytoplankton species' evolutionary response to a physiologically challenging environment; (2) whether this response is conserved across environments varying in quality; and (3) which traits are associated with being a successful invader under climate change scenarios. In a conceptual first step to disentangle these broad questions, we experimentally evolved populations of fresh‐ and seawater phytoplankton in a novel salinity (the freshwater green algae Chlamydomonas in salt water, and the marine Ostreococcus in freshwater), either as mono‐cultures (colonizers) or as co‐cultures (invaders: invading a novel salinity occupied by a resident species, for example, Chlamydomonas invading salt water occupied by resident Ostreococcus) for 200 generations. We superimposed a temperature treatment (control (22°C), mild warming (26°C), drastic warming (32°C), and fluctuating (22°C/32°C) warming) as a representative aspect of climate change with the potential to ameliorate or deteriorate existing environmental conditions. Invaders had systematically lower extinction rates and evolved overall higher growth rates, as well as broader salinity and temperature preferences than colonizers. The invading species' evolutionary responses differed from those of colonizers in a replicable way across environments of differing quality. The evolution of small cell size and high reactive oxygen species tolerance may explain the invaders' higher fitness under the scenarios tested here.
    Description: British Ecological Society http://dx.doi.org/10.13039/501100000409
    Description: https://doi.org/10.5281/zenodo.6884040
    Keywords: ddc:577.7 ; phytoplankton ; salinity change ; biotic interaction
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    John Wiley & Sons, Inc. | Hoboken, USA
    Publication Date: 2023-01-27
    Description: Since the early 2000s, proposals to deliberately modify the Earth's climate have gained political traction as a controversial last resort measure against dangerous global warming. The article provides a ‘longue durée’ picture of such climate engineering proposals. It traces their historical trajectory from the late 1950s to their most recent arrival on mainstream climate policy agendas. This perspective suggests that the history of climate engineering unfolds not only along historically specific modes of understanding climatic change. It also corresponds to changing alliances between climate science and the state. By bringing together historical scholarship with contributions from sociology and science policy studies, the article sheds new light on the rise of climate engineering proposals. It recontextualizes these proposals within the bigger history of the political cultivation of climate science. This perspective highlights how deeply entwined efforts to understand and efforts to govern climatic change have always been. This article is categorized under: Climate, History, Society, Culture 〉 Ideas and Knowledge The Social Status of Climate Change Knowledge 〉 Sociology/Anthropology of Climate Knowledge The Social Status of Climate Change Knowledge 〉 Knowledge and Practice
    Description: A traveler at the end of the world peeks beyond the limits of the Earth, reaching for the unknown skies. Wood Carving by Unknown Artist in Flammarion, C. (1888). L'atmosphère: Météorologie Populaire. Hachette.
    Description: German University of Administrative Sciences, Speyer (Germany)
    Keywords: ddc:304.25 ; climate change ; climate engineering ; geoengineering ; scientific expertise ; weather modification ; climate science
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-01-27
    Description: River estuaries are characterized by mixing processes between freshwater discharge and marine water masses. Since the first are depleted in heavier stable isotopes compared with the marine realm, estuaries often show a linear correlation between salinity and water stable isotopes (δ18O and δ2H values). In this study, we evaluated spatial and seasonal isotope dynamics along three estuarine lagoon transects, located at the northern German Baltic Sea coast. The data show strong seasonality of isotope values, even at locations located furthest from the river mouths. They further reveal a positive and linear salinity‐isotope correlation in spring, but ‐in two of the three studied transects‐ hyperbolic and partially reverse correlations in summers. We conclude that additional hydrological processes partially overprint the two‐phase mixing correlation during summers: aside from the isotope seasonality of the riverine inflows, the shallow inner lagoons in the studied estuaries are influenced by evaporation processes. In contrast the estuarine outflow regions are under impact of significant salinity and isotope fluctuations of the Baltic Sea. Deciphering those processes is crucial for the understanding of water isotope and salinity dynamics. This is also of relevance in context of ecological studies, for example, when interpreting oxygen and hydrogen isotope data in aquatic organisms that depend on ambient estuarine waters.
    Description: Spatial and seasonal water isotope dynamics were evaluated along three estuarine lagoon transects at the German Baltic Sea coast. Data reveal a positive and linear salinity‐isotope correlation in spring, but partially reverse correlations in summers. The results show that evaporation processes in the shallow inner lagoons and varying Baltic Sea influence in the outer estuary regions are able to overprint the two‐phase mixing correlation between riverine and marine water masses.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.1594/PANGAEA.937990
    Keywords: ddc:551 ; δ2H ; δ18O ; Baltic Sea ; bodden ; Rügen ; salinity ; Schlei ; Zingst
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...