ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-12-16
    Description: Atmospheric circulation is a key driver of climate variability, and the representation of atmospheric circulation modes in regional climate models (RCMs) can enhance the credibility of regional climate projections. This study examines the representation of large‐scale atmospheric circulation modes in Coupled Model Inter‐comparison Project phase 5 RCMs once driven by ERA‐Interim, and by two general circulation models (GCMs). The study region is Western Europe and the circulation modes are classified using the Promax rotated T‐mode principal component analysis. The results indicate that the RCMs can replicate the classified atmospheric modes as obtained from ERA5 reanalysis, though with biases dependent on the data providing the lateral boundary condition and the choice of RCM. When the boundary condition is provided by ERA‐Interim that is more consistent with observations, the simulated map types and the associating time series match well with their counterparts from ERA5. Further, on average, the multi‐model ensemble mean of the analysed RCMs, driven by ERA‐Interim, indicated a slight improvement in the representation of the modes obtained from ERA5. Conversely, when the RCMs are driven by the GCMs that are models without assimilation of observational data, the representation of the atmospheric modes, as obtained from ERA5, is relatively less accurate compared to when the RCMs are driven by ERA‐Interim. This suggests that the biases stem from the GCMs. On average, the representation of the modes was not improved in the multi‐model ensemble mean of the five analysed RCMs driven by either of the GCMs. However, when the best‐performed RCMs were selected on average the ensemble mean indicated a slight improvement. Moreover, the presence of the North Atlantic Oscillation (NAO) in the simulated modes depends also on the lateral boundary conditions. The relationship between the modes and the NAO was replicated only when the RCMs were driven by reanalysis. The results indicate that the forcing model is the main factor in reproducing the atmospheric circulation.
    Keywords: ddc:551.6 ; general circulation model ; large‐scale atmospheric circulation modes ; multi‐model ensemble ; regional climate model ; Western Europe
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-12
    Description: Regional and local wind systems are often complex, particularly near coastal areas with a highly variable orography. Thus, the realistic representation of regional wind systems in weather and climate models is of strong relevance. Here, we evaluate the ability of a 13‐year convection‐permitting climate simulation in reproducing the interaction of several regional summer wind systems over the complex orography in the eastern Mediterranean region. The COSMO‐CLM simulations are driven by hourly ERA‐5 reanalysis and have a spatial resolution of 2.8 and 7.0 km. The simulated near‐surface wind fields are compared with unique very high‐resolution wind observations collected within the “Dead Sea Research Venue” project (DESERVE) and data from the Israel Meteorological Service synop network. The high‐resolution COSMO‐CLM simulations largely reproduce the main characteristics of the regional wind systems (Mediterranean and Dead Sea breeze, slope winds in the Judean Mountains and winds along the Jordan Rift valley), whereas ERA‐5 is only able to represent the Mediterranean Sea breeze. The high‐resolution simulations substantially improve the representation of regional winds, particularly over complex orography. Indeed, the 2.8 km simulation outperforms the 7.0 km run, on 88% of the days. Two mid‐July 2015 case studies show that only the 2.8 simulation can realistically simulate the penetration of the Mediterranean Sea Breeze into the Jordan Rift valley and complex interactions with other wind systems like the Dead Sea breeze. Our results may have profound implications for regional weather and climate prediction since very high‐resolution information seems to be necessary to reproduce the main summertime climatic features in this region. We envisage that such simulations may also be required at other regions with complex orography.
    Description: In this paper we show that COSMO‐CLM regional climate model simulations at 7.0 (CLM‐7.0) and 2.8km (CLM‐2.8) resolution can realistically reproduce near‐surface regional and local wind systems over the complex orography of the eastern Mediterranean as opposite to coarser resolutions (ERA‐5, 31 km). The Mediterranean and local Dead Sea breezes, slope winds over the Judean Mountains, and winds along the Jordan Rift valley are well represented both climatologically and on individual days. CLM‐2.8 captures the small‐scale variability of the wind field better than CLM‐7.0 particularly near the Dead Sea and on 88% of the days CLM‐2.8 represents wind speed even more realistically than CLM‐7.0. image
    Description: German Helmholtz Association (“Changing Earth” program)
    Description: AXA Research Fund http://dx.doi.org/10.13039/501100001961
    Description: Ministry of Science, Research and Arts
    Description: Helmholtz Association of German Research Centers
    Keywords: ddc:551.6 ; complex orography ; convection permitting ; COSMO‐CLM ; Dead Sea ; eastern Mediterranean ; grid spacing ; regional climate modelling ; sea breeze
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-14
    Description: Climate model simulations typically exhibit a bias, which can be corrected using statistical approaches. In this study, a geostatistical approach for bias correction of daily precipitation at ungauged locations is presented. The method utilizes a double quantile mapping with dry day correction for future periods. The transfer function of the bias correction for the ungauged locations is established using distribution functions estimated by ordinary kriging with anisotropic variograms. The methodology was applied to the daily precipitation simulations of the entire CORDEX‐Africa ensemble for a study region located in the West African Sudanian Savanna. This ensemble consists of 23 regional climate models (RCM) that were run for three different future scenarios (RCP 2.6, RCP 4.5, and RCP 8.5). The evaluation of the approach for a historical 50‐year period (1950–2005) showed that the method can reduce the inherent strong precipitation bias of RCM simulations, thereby reproducing the main climatological features of the observed data. Moreover, the bias correction technique preserves the climate change signal of the uncorrected RCM simulations. However, the ensemble spread is increased due to an overestimation of the rainfall probability of uncorrected RCM simulations. The application of the bias correction method to the future period (2006–2100) revealed that annual precipitation increases for most models in the near (2020–2049) and far future (2070–2099) with a mean increase of up to 165mm⋅a−1 (18%). An analysis of the monthly and daily time series showed a slightly delayed onset and intensification of the rainy season.
    Description: Adapting water management strategies to future precipitation projected by climate models is associated with high uncertainty in sparsely gauged catchments. Kriging was utilized to estimate distribution parameters for ungauged locations in a West African region to perform a bias correction of the CORDEX‐Africa ensemble. The application of the bias correction method revealed higher annual precipitation amounts and an intensifaction of the rainy season but only little change to the onset of the rainy season.
    Description: German Federal Ministry of Education and Research, Bonn (BMBF), West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL)
    Keywords: ddc:551.6 ; bias correction ; climate change ; CORDEX‐Africa ; geostatistical approaches ; precipitation ; quantile mapping ; West Africa
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-14
    Description: Invasive alien species continue to spread and proliferate in waterways worldwide, but environmental drivers of invasion dynamics lack assessment. Knowledge gaps are pervasive in the Global South, where the frequent heavy human‐modification of rivers provides high opportunity for invasion. In southern Africa, the spatio‐temporal ecology of a widespread and high‐impact invasive alien snail, Tarebia granifera, and its management status is understudied. Here, an ecological assessment was conducted at seven sites around Nandoni Reservoir on the Luvuvhu River in South Africa. The distribution and densities of T. granifera were mapped and the potential drivers of population structure were explored. T. granifera was widespread at sites impacted to varying extents due to anthropogenic activity, with densities exceeding 500 individuals per square meter at the most impacted areas. T. granifera predominantly preferred shallow and sandy environments, being significantly associated with sediment (i.e., chlorophyll‐a, Mn, SOC, SOM) and water (i.e., pH, conductivity, TDS) variables. T. granifera seemed to exhibit two recruitment peaks in November and March, identified via size‐based stock assessment. Sediment parameters (i.e., sediment organic matter, sediment organic carbon, manganese) and water chemistry (i.e., pH, total dissolved solids, conductivity) were found to be important in structuring T. granifera populations, with overall snail densities highest during the summer season. We provide important autecological information and insights on the distribution and extent of the spread of T. granifera. This may help in the development of invasive alien snail management action plans within the region, as well as modelling efforts to predict invasion patterns elsewhere based on environmental characteristics.
    Description: Alexander von Humboldt‐Stiftung http://dx.doi.org/10.13039/100005156
    Description: National Research Foundation http://dx.doi.org/10.13039/501100001321
    Description: University of Venda http://dx.doi.org/10.13039/501100008976
    Keywords: ddc:577.6 ; aquatic non‐native invasions ; environmental gradients ; Global South ; human‐modified river ; quilted melania ; reservoir
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-07-28
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The Lagrangian representation of fluid flows offers a natural perspective to study many kinds of physical mechanisms. By contrast, the Eulerian representation is more convenient from a diagnostic point of view. This article attempts to combine elements of both worlds by proposing an Eulerian method that allows one to extract Lagrangian information about the atmospheric flow. The method is based on the offline advection of passive tracer fields and includes a relaxation term. The latter device allows one to run the integration in a continuous fashion without the need for reinitialization. As a result one obtains accumulated Lagrangian information, for example, about the recent parcel displacement or the recent parcel‐based diabatic heating, at each point of an Eulerian grid at any time step. The method is implemented with a pseudospectral algorithm suitable for gridded global atmospheric data and compared with the more traditional trajectory method. The method's utility is demonstrated on the basis of a few examples, which relate to cloud formation and the development of temperature anomalies. The examples highlight that the method provides a convenient diagnostic of parcel‐based changes, paving an intuitive way to explore the physical processes involved. Due to its gridpoint‐based nature, the proposed method can be applied to large data sets in a straightforward and computationally efficient manner, suggesting that the method is particularly useful for climatological analyses.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The Lagrangian representation of fluid flows offers the most natural perspective to study many kinds of physical mechanisms; by contrast, the Eulerian representation is more convenient from a diagnostic point of view. This article attempts to combine elements of both worlds by proposing an Eulerian method that allows one to extract Lagrangian information about the atmospheric flow. The method enables one to easily produce a sequence of maps showing accumulated Lagrangian changes. 〈boxed-text position="anchor" id="qj4453-blkfxd-0001" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:00359009:media:qj4453:qj4453-toc-0001"〉 〈/boxed-text〉〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.5 ; air‐parcel approach ; atmospheric fluid dynamics ; atmospheric transport ; Eulerian tracer technique ; Lagrangian analysis ; Lagrangian tracking ; synoptic‐scale meteorology ; trajectories
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-07-21
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Regional assessments of the wind erosion risk are rare and vary due to the methods used and the available data to be included. The adaptation of existing methods has the advantage that the results can be compared directly. We adopted an already successfully applied methodology (ILSWE—applied in East Africa), to investigate the spatiotemporal variability of the wind erosion risk between 2005 and 2019 in Southern Africa. The approach integrates climatic variables, a vegetation index, and soil properties to describe the potential impact of wind erosion at the landscape scale. The annual and seasonal variability is determined by the vegetation cover, whereas droughts and strong El Niño events had only regional effects. We estimated that 8.3% of the study area experiences a moderate to elevated wind erosion risk over the 15‐year period with annual and inter‐annual fluctuations showing a slight upward trend. In general, the desert and drylands in the west have the highest proportion of risk areas, the moist forests in the east are characterized by a very low risk of wind erosion, while the grasslands, shrublands, and croplands in the interior most likely react to changes of climatic conditions. The validation process is based on a comparison with the estimated frequency of dust storms derived from the aerosol optical depth and angstrom exponent and revealed an overall accuracy of 65%. The results of this study identify regions and yearly periods prone to wind erosion to prioritize for further analysis and conservation policies for mitigation and adaptation strategies.〈/p〉
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: German Federal Ministry of Education and Research (BMBF)
    Description: http://www.climatologylab.org/terraclimate
    Description: https://www.isric.org/
    Description: http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12
    Description: https://land.copernicus.eu/global/products/fcover
    Description: https://www.esa-landcover-cci.org/%20
    Description: https://databasin.org/
    Description: https://giovanni.gsfc.nasa.gov/giovanni/
    Keywords: ddc:551.3 ; environmental modelling ; geographic information systems ; ILSWE model ; remote sensing ; temporal variability ; wind erosion
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-07-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Many operational weather services use ensembles of forecasts to generate probabilistic predictions. Computational costs generally limit the size of the ensemble to fewer than 100 members, although the large number of degrees of freedom in the forecast model would suggest that a vastly larger ensemble would be required to represent the forecast probability distribution accurately. In this study, we use a computationally efficient idealised model that replicates key properties of the dynamics and statistics of cumulus convection to identify how the sampling uncertainty of statistical quantities converges with ensemble size. Convergence is quantified by computing the width of the 95% confidence interval of the sampling distribution of random variables, using bootstrapping on the ensemble distributions at individual time and grid points. Using ensemble sizes of up to 100,000 members, it was found that for all computed distribution properties, including mean, variance, skew, kurtosis, and several quantiles, the sampling uncertainty scaled as 〈mml:math id="jats-math-1" display="inline" overflow="scroll"〉〈mml:msup〉〈mml:mrow〉〈mml:mi〉n〈/mml:mi〉〈/mml:mrow〉〈mml:mrow〉〈mml:mo form="prefix"〉−〈/mml:mo〉〈mml:mn〉1〈/mml:mn〉〈mml:mo stretchy="false"〉/〈/mml:mo〉〈mml:mn〉2〈/mml:mn〉〈/mml:mrow〉〈/mml:msup〉〈/mml:math〉 for sufficiently large ensemble size 〈mml:math id="jats-math-2" display="inline" overflow="scroll"〉〈mml:mrow〉〈mml:mi〉n〈/mml:mi〉〈/mml:mrow〉〈/mml:math〉. This behaviour is expected from the Central Limit Theorem, which further predicts that the magnitude of the uncertainty depends on the distribution shape, with a large uncertainty for statistics that depend on rare events. This prediction was also confirmed, with the additional observation that such statistics also required larger ensemble sizes before entering the asymptotic regime. By considering two methods for evaluating asymptotic behaviour in small ensembles, we show that the large‐〈mml:math id="jats-math-3" display="inline" overflow="scroll"〉〈mml:mrow〉〈mml:mi〉n〈/mml:mi〉〈/mml:mrow〉〈/mml:math〉 theory can be applied usefully for some forecast quantities even for the ensemble sizes in operational use today.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉An idealised ensemble that replicates key properties of the dynamics and statistics of cumulus convection is used to identify how sampling uncertainty of statistical quantities converges with ensemble size. A universal asymptotic scaling for this convergence was found, which was dependent on the statistic and the distribution shape, with largest uncertainty for statistics that depend on rare events. This is demonstrated in the figure below for a Gaussian distributed model variable, where the sampling uncertainty (y‐axis) for 5 quantiles (red lines) indicates that after a certain ensemble size, it begins converging asymptotically (grey lines), and the more extreme the quantile, the more members it requires for this to be the case. 〈boxed-text position="anchor" id="qj4410-blkfxd-0001" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:00359009:media:qj4410:qj4410-toc-0001"〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Klaus Tschira Stiftung http://dx.doi.org/10.13039/501100007316
    Keywords: ddc:551.6 ; asymptotic convergence ; distributions ; ensembles ; idealised model ; sampling uncertainty ; weather prediction
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-07-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Local ensemble transform Kalman filters (LETKFs) allow explicit calculation of the Kalman gain, and by this the contribution of individual observations to the analysis field. Though this is a known feature, the information on the analysis contribution of individual observations (partial analysis increment) has not been used as systematic diagnostic up to now despite providing valuable information. In this study, we demonstrate three potential applications based on partial analysis increments in the regional modelling system of Deutscher Wetterdienst and propose their use for optimising LETKF data assimilation systems, in particular with respect to satellite data assimilation and localisation. While exact calculation of partial analysis increments would require saving the large, five‐dimensional ensemble weight matrix in the analysis step, it is possible to compute an approximation from standard LETKF output. We calculate the Kalman gain based on ensemble analysis perturbations, which is an approximation in the case of localisation. However, this only introduces minor errors, as the localisation function changes very gradually among nearby grid points. On the other hand, the influence of observations always depends on the presence of other observations and settings for the observation error and for localisation. However, the influence of observations behaves approximately linearly, meaning that the assimilation of other observations primarily decreases the magnitude of the influence, but it does not change the overall structure of the partial analysis increments. This means that the calculation of partial analysis increments can be used as an efficient diagnostic to investigate the three‐dimensional influence of observations in the assimilation system. Furthermore, the diagnostic can be used to detect whether the influence of additional experimental observations is in accordance with other observations without conducting computationally expensive single‐observation experiments. Last but not least, the calculation can be used to approximate the influence an observation would have when applying different assimilation settings.〈/p〉
    Keywords: ddc:551.5 ; analysis influence ; convective‐scale ; ensemble data assimilation ; localisation ; NWP ; satellite data assimilation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-07-25
    Description: Long believed to be insignificant, melt activity on the Northeast Greenland Ice Stream (NEGIS) has increased in recent years. Summertime Arctic clouds have the potential to strongly affect surface melt processes by regulating the amount of radiation received at the surface. However, the cloud effect over Greenland is spatially and temporally variable and high‐resolution information on the northeast is absent. This study aims at exploring the potential of a high‐resolution configuration of the polar‐optimized Weather Research & Forecasting Model (PWRF) in simulating cloud properties in the area of the Nioghalvfjerdsfjorden Glacier (79 N Glacier). Subsequently, the model simulations are employed to investigate the impact of Arctic clouds on the surface energy budget and on surface melting during the extensive melt event at the end of July 2019. Compared to automatic weather station (AWS) measurements and remote‐sensing data (Sentinel‐2A and the Moderate Resolution Imaging Spectroradiometer, MODIS), PWRF simulates cloud properties with sufficient accuracy. It appears that peak melt was caused by an increase in solar radiation and sensible heat flux (SHF) in response to a blocking anticyclone and foehn winds in the absence of clouds. Cloud warming over high‐albedo surfaces helped to precondition the surface and prolonged the melting as the anticyclone abated. The results are sensitive to the surface albedo and suggest spatiotemporal differences in the cloud effect as snow and ice properties change over the course of the melting season. This demonstrates the importance of including high‐resolution information on clouds in analyses of ice sheet dynamics.
    Description: German Federal Ministry for Education and Research http://dx.doi.org/10.13039/501100002347
    Description: https://doi.org/10.5065/EM0T-1D34
    Description: https://cds.climate.copernicus.eu/cdsapp/#!/search?type=dataset
    Description: https://ladsweb.modaps.eosdis.nasa.gov/search/
    Keywords: ddc:551.5 ; cloud properties ; cloud radiative effect ; Northeast Greenland Ice Stream ; regional climate modeling ; surface energy balance ; surface melt ; surface energy balance ; surface melt
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-07-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉For both the meso‐ and synoptic scales, reduced mathematical models give insight into their dynamical behaviour. For the mesoscale, the weak temperature gradient approximation is one of several approaches, while for the synoptic scale the quasigeostrophic theory is well established. However, the way these two scales interact with each other is usually not included in such reduced models, thereby limiting our current perception of flow‐dependent predictability and upscale error growth. Here, we address the scale interactions explicitly by developing a two‐scale asymptotic model for the meso‐ and synoptic scales with two coupled sets of equations for the meso‐ and synoptic scales respectively. The mesoscale equations follow a weak temperature gradient balance and the synoptic‐scale equations align with quasigeostrophic theory. Importantly, the equation sets are coupled via scale‐interaction terms: eddy correlations of mesoscale variables impact the synoptic potential vorticity tendency and synoptic variables force the mesoscale vorticity (for instance due to tilting of synoptic‐scale wind shear). Furthermore, different diabatic heating rates—representing the effect of precipitation—define different flow characteristics. With weak mesoscale heating relatable to precipitation rates of 〈mml:math id="jats-math-1" display="inline" overflow="scroll"〉〈mml:mrow〉〈mml:mi〉𝒪〈/mml:mi〉〈mml:mo stretchy="false"〉(〈/mml:mo〉〈mml:mn〉6〈/mml:mn〉〈mml:mspace width="0.3em"/〉〈mml:mtext〉mm〈/mml:mtext〉〈mml:mo〉·〈/mml:mo〉〈mml:msup〉〈mml:mrow〉〈mml:mi mathvariant="normal"〉h〈/mml:mi〉〈/mml:mrow〉〈mml:mrow〉〈mml:mo form="prefix"〉−〈/mml:mo〉〈mml:mn〉1〈/mml:mn〉〈/mml:mrow〉〈/mml:msup〉〈mml:mo stretchy="false"〉)〈/mml:mo〉〈/mml:mrow〉〈/mml:math〉, the mesoscale dynamics resembles two‐dimensional incompressible vorticity dynamics and the upscale impact of the mesoscale on the synoptic scale is only of a dynamical nature. With a strong mesosocale heating relatable to precipitation rates of 〈mml:math id="jats-math-2" display="inline" overflow="scroll"〉〈mml:mrow〉〈mml:mi〉𝒪〈/mml:mi〉〈mml:mo stretchy="false"〉(〈/mml:mo〉〈mml:mn〉60〈/mml:mn〉〈mml:mspace width="0.3em"/〉〈mml:mtext〉mm〈/mml:mtext〉〈mml:mo〉·〈/mml:mo〉〈mml:msup〉〈mml:mrow〉〈mml:mi mathvariant="normal"〉h〈/mml:mi〉〈/mml:mrow〉〈mml:mrow〉〈mml:mo form="prefix"〉−〈/mml:mo〉〈mml:mn〉1〈/mml:mn〉〈/mml:mrow〉〈/mml:msup〉〈mml:mo stretchy="false"〉)〈/mml:mo〉〈/mml:mrow〉〈/mml:math〉, divergent motions and three‐dimensional effects become relevant for the mesoscale dynamics and the upscale impact also includes thermodynamical effects.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉We develop a two‐scale asymptotic model for the meso‐ and synoptic scales following a weak temperature gradient balance and quasigeostrophic theory, but with explicit scale interactions and dependent on the mesoscale diabatic heating. With weak mesoscale heating, the mesoscale dynamics resembles 2D incompressible vorticity dynamics and the upscale impact on the synoptic scale is only of a dynamical nature. With strong mesoscale heating, divergent motions and 3D effects become relevant for the mesoscale and the upscale impact also includes thermodynamical effects. 〈boxed-text position="anchor" id="qj4456-blkfxd-0001" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:00359009:media:qj4456:qj4456-toc-0001"〉
    Description: German Research Foundation (DFG)
    Keywords: ddc:551.5 ; asymptotics ; atmospheric dynamics ; mesoscale ; multiscale scale interactions ; quasigeostrophic ; synoptic scale
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...