ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (511)
Collection
  • Articles  (511)
Publisher
Years
Journal
  • 11
    Publication Date: 2021-03-11
    Description: A thermoresponsive system of a nanoemulsion-based gel with favorable characteristics to enhanced oil recovery (EOR) application is presented. A full factorial design study with different formulations of thermosensitive nanoemulsion-based gels was performed to assess the influence of the oil chain length, concentration of polyethylene glycol (PEG 400) and concentration of oil on the rheological behavior of the system. A formulation with low viscosity at room temperature and high viscosity at the temperature of the oil extraction well was presented. Hexane (6-carbon chain), capric acid (10-carbon chain) and isopropyl myristate (17-carbon chain) were used in concentrations of 5%, 10%, 15% and 20% wt%, also varying the concentration of PEG 400 in 0%, 3%, 6% and 9% wt%. The thermosensitive polymer used was a mixture of Pluronic® F-127 and Pluronic® F-68 6:1 wt% at 4.7% concentration. The surfactants used were Tween 80 and Span 80 (HLB = 13) at 20%. The formulation containing 20% isopropyl myristate (IPM) without the addition of PEG 400 showed a better response, with an increase in viscosity of more than 38 times in relation to its viscosity at 25 °C, and the maximum viscosity was reached at 53 °C. This is a promising formulation for EOR technology.
    Print ISSN: 2190-5525
    Electronic ISSN: 2190-5533
    Topics: Chemistry and Pharmacology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-03-09
    Description: Two semi-synthetic clay-based catalysts were prepared. These catalysts were obtained by incorporating lanthanum oxide (Cat1) and chromium oxide (Cat2). They were then tested for catalytic cracking of a heavy petroleum residue (fuel). The two formulations were carried out in the presence of silica to improve their acidity then underwent an acid activation. The catalysts obtained were characterized by various methods (XRD, FTIR, ICP-OES, SEM). The results showed that the incorporation of oxides and the addition of silica improves the structural characteristics of the final products. The support used was a kaolinite rich clay, having a specific surface area of 15.26 m2/g and acidity of 14 meq/g. These values increase, respectively, to 456.14 m2/g and 50 meq/g for Cat1 and to 475.12 m2/g and 57 meq/g for Cat2. The influence of the type of oxide incorporated, the specific surface area, the porosity and the acidity of the catalysts on their catalytic activity was studied. The nature of the oxide used proved to be decisive on the quality of the catalyst. Thus Cat1, prepared with lanthanum oxide, showed the best performance in cracking the petroleum residue achieving a conversion rate of 74.13% compared to 66.53% for cat2.
    Print ISSN: 2190-5525
    Electronic ISSN: 2190-5533
    Topics: Chemistry and Pharmacology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-03-09
    Description: In the present study, high surface area boehmite nanopowder was recovered from aluminum cans waste. The sodium aluminate solution was first prepared by dissolving aluminum cans in NaOH solution and then, H2O2 solution was added to precipitate boehmite. The prepared boehmite was characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and N2 adsorption–desorption techniques. The thermal stability of the boehmite sample was investigated using thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. The feasibility of using the prepared boehmite powder as a new low-cost adsorbent for the treatment of oilfield produced water was investigated. For comparison, commercial activated carbon was used for the treatment of the produced water under the same conditions. The efficiency of both of boehmite and activated carbon in the treatment of produced water was determined by monitoring the values of a number of pollution indicators [i.e. turbidity, sulfides, sulfates, total organic carbon (TOC), total petroleum hydrocarbon (TPH), and chemical oxygen demand (COD)] before and after the treatment. The boehmite powder showed very good efficiency in the treatment of the produced water, which is very close to that of commercial activated carbon under the same conditions. The effect of adsorbent dose, treatment time, and pH of the media on the adsorption efficiency of both of boehmite and activated carbon was examined at room temperature using chemical oxygen demand as a pollution indicator. The maximum capacity for COD reduction was 69.6% for boehmite and 83.5% for activated carbon at 40 g/l adsorbent dosage, pH7, and 24-h contact time. Graphic abstract
    Print ISSN: 2190-5525
    Electronic ISSN: 2190-5533
    Topics: Chemistry and Pharmacology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-03-06
    Description: The nitrogen-containing aromatic compounds found in the petrochemical industry are varied and extend beyond classes such as the anilines, pyrroles and pyridines. Quantification of these nitrogen-containing compounds that may occur in complex mixtures has practical application for quality assurance, process development and the evaluation of conversion processes. Selective detection of nitrogen-containing species in complex mixtures is possible by making use of gas chromatography coupled with a nitrogen phosphorous detector (GC-NPD), which is also called a thermionic detector. Despite the linearity of the NPD response to individual nitrogen-containing compounds, the response factor is different for different compounds and even isomers of the same species. Quantitative analysis using an NPD requires species-specific calibration. The reason for the sensitivity of the NPD to structure is related to the ease of forming the cyano-radical that is ionized to the cyanide anion, which is detected. The operation of the NPD was related to the processes of pyrolysis and subsequent ionization. It was possible to offer plausible explanations for differences in response factors for isomers based on pyrolysis chemistry. Due to this relationship, the NPD response can in the same way be used to provide information of practical relevance beyond its analytical value and a few possible applications were outlined.
    Print ISSN: 2190-5525
    Electronic ISSN: 2190-5533
    Topics: Chemistry and Pharmacology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-03-02
    Description: Catalysts to produce the important petrochemicals like benzene, toluene, and xylene (BTX) from refinery feedstocks, like light cycle oil (LCO) are reviewed here by covering published papers using model mixtures and real feeds. Model compounds experiments like tetralin and naphthalene derivatives provided a 53–55% total BTX yield. Higher yields were never attained due to the inevitable gas formation and other C9+-alkylbenzenes formed. For tetralin, the best catalysts are those conformed by Ni, CoMo, NiMo, or NiSn over zeolite H-Beta. For naphthalene derivatives, the best catalysts were those conformed by W and NiW over zeolite H-Beta silylated. Real feeds produced a total BTX yield of up to 35% at the best experimental conditions. Higher yields were never reached due to the presence of other types of hydrocarbons in the feed which can compete for the catalytic sites. The best catalysts were those conformed by Mo, CoMo, or NiMo over zeolite H-Beta. Some improvements were obtained by adding ZSM-5 to the support or in mixtures with other catalysts.
    Print ISSN: 2190-5525
    Electronic ISSN: 2190-5533
    Topics: Chemistry and Pharmacology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-02-04
    Description: γ-Al2O3 was synthesized by the Sol–gel method, Ni (NO3)2 was placed in the pores by the impregnation method, and Ni-γ-Al2O3 was obtained by pyrolysis in a hydrogen stream in a CVD device. By the method of chemical vapors phase deposition (CVD) on Ni-Al2O3 catalytic converter with decomposition of methane in the natural gas produced carbon nanotubes (CNT) (Chunduri et al. in Mater Express 4(3):235–241, 2014; Zhou et al. in Appl Catal B 208:44–59, 2017). The catalytic activity of the catalysts in methane decomposition was examined from 650 °C to 900 °C by the method of chemical vapors phase deposition (CVD), the yield of CNTs tends to increase with the growth at the ratio of natural gas supply to hydrogen. The specific surface increases with an increase of nickel content and can reach 265.5 m2/g for a sample of 2% Ni-A12O3 at 850 °C. Growth at the temperature of methane decomposition leads to reduction in its specific surface. It has been established that the use of the Ni-Cu/γ-Al2O3 catalytic system, in which copper acts as a stabilizing additive, makes it possible to double the maximum yield of the carbon product during the decomposition of natural gas.
    Print ISSN: 2190-5525
    Electronic ISSN: 2190-5533
    Topics: Chemistry and Pharmacology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-11-22
    Description: Transhydrogenation of pentane (P) and 1,5-hexadiene (1,5HD) and pentane and 2,4-hexadiene (2,4HD) was studied over a CrOx/alumina catalyst at 523–773 K. Thermodynamic stability differences between the conjugated (2,4-hexadiene) and non-conjugated (1,5-hexadiene) isomers indicated that transhydrogenation was favoured between pentane and 1,5-hexadiene but not pentane and 2,4-hexadiene (+ ve ∆G). At 773 K a significantly enhanced alkene yield was observed for the P/1,5HD system, clearly showing the effect of transhydrogenation. The yield of alkenes was ~ 50% and included alkylated and isomerized alkenes. Alkylation and isomerization were significant reactions under reaction conditions. Pentane was shown to affect the chemistry of 1,5HD and vice versa with the conversion of pentane significantly enhanced at all reaction temperatures, indicating a molecular interaction between the reactants even when transhydrogenation was not obvious. In contrast, no effect on the conversion of pentane was observed when the co-feed was 2,4HD. An unexpected effect of pentane on 2,4HD conversion was observed, with all reactions of cis-2,4-hexadiene (including alkylation and isomerization) being completely inhibited at low reaction temperatures (573 K and 523 K) by the presence of pentane, suggesting that pentane competes for the same sites as cis-2,4-hexadiene. Transhydrogenation activity between pentane and 1,5-hexadiene was less obvious at the lower reaction temperature, which appeared to be a kinetic effect. Direct hydrogenation of 1,5-hexadiene revealed that 1,5HD sampled the same hydrogen population for hydrogenation and transhydrogenation. Comparisons of transhydrogenation of 1-hexyne, 1,5-hexadiene, and 2,4-hexadiene with pentane have revealed significant differences in the adsorption and reaction chemistry of the three isomers.
    Print ISSN: 2190-5525
    Electronic ISSN: 2190-5533
    Topics: Chemistry and Pharmacology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-11-16
    Description: The article is dedicated to the development of processes for (oligo)alkylation of petroleum fractions rich in aromatic hydrocarbons, with α-olefins (hexene-1, octene-1, decene-1) in the presence of ionic-liquid catalytic systems and the study of the properties of the products obtained. Alkylation reactions were carried out in the presence of chloroaluminate ionic liquids; for the first time a (nano)metal-polymer composite (NMPC) was used in the catalytic system as a modifier, and zinc chloride (ZnCl2) was used in the catalytic system as a component and the results were compared. It has been shown that these ionic liquid catalytic systems (ILCS) are suitable for (oligo)alkylation reactions and the use of these additives in their composition will lead to efficient alkylation. The products obtained were analyzed by IR-, NMR- spectroscopy, fluorescent indicator adsorption methods, and size exclusion chromatography. It was shown that these petroleum fractions rich in aromatic hydrocarbons can be used as alkylation components, and depending on the composition of the ILCS, it is possible to regulate the molecular, thermophysical and other characteristics of the products obtained based on them. The alkylated products obtained have been tested as plasticizing additives in polyolefin composites.
    Print ISSN: 2190-5525
    Electronic ISSN: 2190-5533
    Topics: Chemistry and Pharmacology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-11-05
    Description: A heterogeneous spent soda effluent generated from Tunisian petroleum refineries has been filtrated and separated in four solid fractions with a particle diameter of 160 to 100, 100 to 40, 40 to 16 and 16 to 10 µm and the fifth one with diameters 
    Print ISSN: 2190-5525
    Electronic ISSN: 2190-5533
    Topics: Chemistry and Pharmacology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-11-03
    Description: Abstract A new biomass-based carbonaceous adsorbent has been developed from Pongamia pinnata and its effect upon nickel modification- and adsorption-coupled ultrasonication was investigated. Adsorption experiment of the model oil constituting 50 ppm dibenzothiophene in cyclohexane showed the maximum capacity as 8.11, 13.36, and 17.15 mg·g−1 for the commercial carbon DARCO, virgin bio-adsorbent PP, and nickel-modified adsorbent Ni@PP, respectively, with the time required for attaining equilibrium being the fastest in Ni@PP (120 min). The significant effect of ultrasonication was in attaining faster kinetics where ~ 96–98% removal was achieved in only 30 min. Also, the developed adsorbents had a very good specific surface area of 915 and 677 m2·g−1, respectively, for PP and Ni@PP. Investigation of the effect of higher initial sulfur concentration (200 ppm) indicated the significance of Ni modification, where a very high capacity of 66.18 mg·g−1 for Ni@PP was attained against 30.90 mg·g−1 for PP and 13.18 mg·g−1 for DARCO. Ni@ PP was also effective for the simultaneous removal of more refractory sulfur fractions from multicomponent model fuel systems and exhibited good regeneration ability till the fourth cycles or more. Cost estimation showed that the developed adsorbents are relatively ten times cheaper than commercial carbon, while the fixed-bed study indicated a breakthrough time of 250 min and 270 min for PP and Ni@PP, respectively. Graphic abstract
    Print ISSN: 2190-5525
    Electronic ISSN: 2190-5533
    Topics: Chemistry and Pharmacology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...