ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (372)
Collection
  • Articles  (372)
Years
Journal
Topic
  • 11
    Publication Date: 2021-10-21
    Description: Protein hydrogels represent ideal materials for advanced cell culture applications, including 3D-cultivation of even fastidious cells. Key properties of fully functional and, at the same time, economically successful cell culture materials are excellent biocompatibility and advanced fabrication processes allowing their easy production even on a large scale based on affordable compounds. Chemical crosslinking of bovine serum albumin (BSA) with N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC) in a water-in-oil emulsion with isoparaffinic oil as the continuous phase and sorbitan monooleate as surfactant generates micro-meter-scale spherical particles. They allow a significant simplification of an indispensable and laborious step in traditional cell culture workflows. This cell passaging (or splitting) to fresh culture vessels/flasks conventionally requires harsh trypsinization, which can be omitted by using the “trans-ferry-beads” presented here. When added to different pre-cultivated adherent cell lines, the beads are efficiently boarded by cells as passengers and can be easily transferred afterward for the embarkment of novel flasks. After this procedure, cells are perfectly viable and show normal growth behavior. Thus, the trans-ferry-beads not only may become extremely affordable as a final product but also may generally replace trypsinization in conventional cell culture, thereby opening new routes for the establishment of optimized and resource-efficient workflows in biological and medical cell culture laboratories.
    Electronic ISSN: 2310-2861
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-10-21
    Description: Tea and coffee are popular beverages. Both are also used in topical applications, such as ultraviolet (UV) protection, anti-aging, and wound healing. However, the impact of tea and coffee extract on skin cells is minimally explored. This study investigated the direct exposure of tea and coffee extract on skin cells using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. It was found that direct exposure of tea and coffee to skin cells can be toxic at a high dose on prolonged exposure (72 h). Therefore, it was hypothesized that a formulation providing a controlled release of tea and coffee could improve their skin compatibility. Thermally cross-linked poly(acrylic acid) hydrogels loaded with tea and coffee extracts (with and without milk) were formulated and optimized. The release profiles of these hydrogels were studied at varying loading efficiency. Milk addition with tea extract retarded the tea extract release from hydrogel while minimally affecting the coffee release. This effect was due to the molecular interaction of tea with milk components, showing changes in size, zeta potential, and polydispersity index. The release study best fitted the Korsmeyer–Peppas release model. Skin cells exposed to tea or coffee-loaded hydrogel showed normal skin cell morphology under fluorescence microscopic analysis. In conclusion, the hydrogels controlled the tea and coffee release and showed biocompatibility with skin cells. It can potentially be used for skin applications.
    Electronic ISSN: 2310-2861
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-10-21
    Description: Chitosan-pectin hydrogels were prepared, and their rheological properties were assessed in order to select the best system to develop scaffolds by 3D printing. Hydrogels showed a weak gel behavior with shear thinning flow properties, caused by the physical interactions formed between both polysaccharides, as observed by FTIR analysis. Since systems with high concentration of pectin showed aggregations, the system composed of 2 wt% chitosan and 2 wt% pectin (CHI2PEC2) was selected for 3D printing. 3D printed scaffolds showed good shape accuracy, and SEM and XRD analyses revealed a homogeneous and amorphous structure. Moreover, scaffolds were stable and kept their shape and size after a cycle of compression sweeps. Their integrity was also maintained after immersion in PBS at 37 °C, showing a high swelling capacity, suitable for exudate absorption in wound healing applications.
    Electronic ISSN: 2310-2861
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-10-18
    Description: After entering in water, Fe3+ is enriched in the human body and along the food chain, causing chronic poisoning and irreversible harm to human health. In order to solve this problem, we synthesized citric acid POSS (CAP) from aminopropyl POSS (OAP) and citric acid. Then, we synthesized fluorescent hydrogels (CAP-agarose hydrogel, CAHG) with CAP and agarose. The luminescence mechanism of CAP was investigated by theoretical calculation. CAP plays a dual role in composite hydrogels: one is to give the gels good fluorescence properties and detect Fe3+; the second is that the surface of CAP has a large content of carbonyl and amide groups, so it can coordinate with Fe3+ to enhance the adsorption properties of hydrogels. The experimental results show that the lowest Fe3+ concentration that CAHG can detect is 5 μmol/L, and the adsorption capacity for Fe3+ is about 26.75 mg/g. In a certain range, the fluorescence intensity of CAHG had an exponential relation with Fe3+ concentration, which is expected to be applied to fluorescence sensors. Even at a lower concentration, CAHG can effectively remove Fe3+ from the solution. The prepared fluorescent hydrogel has great potential in the field of fluorescent probes, fluorescent sensors, and ion adsorption. Besides, CAHG can be used as photothermal material after adsorbing Fe3+, allowing for material recycling and reducing material waste.
    Electronic ISSN: 2310-2861
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-10-17
    Description: Hydrogels have been widely used in many fields including biomedicine and water treatment. Significant achievements have been made in these fields due to the extraordinary properties of hydrogels, such as facile processability and tissue similarity. However, based on the in-depth study of the microstructures of hydrogels, as a result of the enhancement of biomedical requirements in drug delivery, cell encapsulation, cartilage regeneration, and other aspects, it is challenge for conventional homogeneous hydrogels to simultaneously meet different needs. Fortunately, heterogeneous multilayer hydrogels have emerged and become an important branch of hydrogels research. In this review, their main preparation processes and mechanisms as well as their composites from different resources and methods, are introduced. Moreover, the more recent achievements and potential applications are also highlighted, and their future development prospects are clarified and briefly discussed.
    Electronic ISSN: 2310-2861
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-10-15
    Description: Porous aerogel materials have advantages of a low density, low thermal conductivity and high porosity, and they have broad application prospects in heat insulation and building energy conservation. However, aerogel materials usually exhibit poor mechanical properties. Single-component aerogels are less likely to possess a good thermal stability and mechanical properties. It is necessary to prepare multiple-composite aerogels by reinforcement to meet practical application needs. In this experiment, a simple preparation method for polyvinyl alcohol (PVA)–graphene (GA)–nanocellulose (CNF) ternary composite aerogels was proposed. This is also the first time to prepare ternary composite aerogels by mixing graphene, nanocellulose and polyvinyl alcohol. A GA–CNF hydrogel was prepared by a one-step hydrothermal method, and soaked in PVA solution for 48 h to obtain a PVA–GA–CNF hydrogel. PVA–GA–CNF aerogels were prepared by freeze drying. The ternary composite aerogel has advantages of excellent mechanical properties, a low thermal conductivity and an improved thermal stability, because strong hydrogen bonds form between the PVA, GA and CNF. The composite aerogels were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffractometry, Brunauer–Emmett–Teller analysis, dynamic thermal analysis, thermogravimetry and thermal constant analysis to characterize the properties of the ternary composite aerogels. The lightweight, low-density and porous PVA–GA–CNF composite aerogels withstood 628 times their mass. The thermal conductivity of the composite aerogels was 0.044 ± 0.005 W/mK at room temperature and 0.045 ± 0.005 W/mK at 70 °C. This solid, low thermal conductivity and good thermal stability PVA–GA–CNF ternary composite aerogel has potential application in thermal insulation.
    Electronic ISSN: 2310-2861
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-10-15
    Description: For decades, the study of tissue-engineered skeletal muscle has been driven by a clinical need to treat neuromuscular diseases and volumetric muscle loss. The in vitro fabrication of muscle offers the opportunity to test drug-and cell-based therapies, to study disease processes, and to perhaps, one day, serve as a muscle graft for reconstructive surgery. This study developed a biofabrication technique to engineer muscle for research and clinical applications. A bioprinting protocol was established to deliver primary mouse myoblasts in a gelatin methacryloyl (GelMA) bioink, which was implanted in an in vivo chamber in a nude rat model. For the first time, this work demonstrated the phenomenon of myoblast migration through the bioprinted GelMA scaffold with cells spontaneously forming fibers on the surface of the material. This enabled advanced maturation and facilitated the connection between incoming vessels and nerve axons in vivo without the hindrance of a scaffold material. Immunohistochemistry revealed the hallmarks of tissue maturity with sarcomeric striations and peripherally placed nuclei in the organized bundles of muscle fibers. Such engineered muscle autografts could, with further structural development, eventually be used for surgical reconstructive purposes while the methodology presented here specifically has wide applications for in vitro and in vivo neuromuscular function and disease modelling.
    Electronic ISSN: 2310-2861
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-10-14
    Description: Responsive polymeric hydrogels have found wide application in the clinic as injectable, biocompatible, and biodegradable materials capable of controlled release of therapeutics. In this article, we introduce a thermoresponsive polymer hydrogel bearing covalent disulfide bonds. The cold aqueous polymer solution forms a hydrogel upon heating to physiological temperatures and undergoes slow degradation by hydrolytic cleavage of ester bonds. The disulfide functionality allows for immediate reductive cleavage of the redox-sensitive bond embedded within the polymer structure, affording the option of instantaneous hydrogel collapse. Poly (ethylene glycol)-b-poly (lactic acid)-S-S-poly (lactic acid)-b-poly (ethylene glycol) (PEG-PLA-SS-PLA-PEG) copolymer was synthesized by grafting PEG to PLA-SS-PLA via urethane linkages. The aqueous solution of the resultant copolymer was a free-flowing solution at ambient temperatures and formed a hydrogel above 32 °C. The immediate collapsibility of the hydrogel was displayed via reaction with NaBH4 as a relatively strong reducing agent, yet stability was displayed even in glutathione solution, in which the polymer degraded slowly by hydrolytic degradation. The polymeric hydrogel is capable of either long-term or immediate degradation and thus represents an attractive candidate as a biocompatible material for the controlled release of drugs.
    Electronic ISSN: 2310-2861
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-09-18
    Description: Polyelectrolyte gels are an important class of polymer gels and a versatile platform with charged polymer networks with ionisable groups. They have drawn significant recent attention as a class of smart material and have demonstrated potential for a variety of applications. This review begins with the fundamentals of polyelectrolyte gels, which encompass various classifications (i.e., origin, charge, shape) and crucial aspects (ionic conductivity and stimuli responsiveness). It further centralises recent developments of polyelectrolyte gels, emphasising their synthesis, structure–property relationships and responsive properties. Sequentially, this review demonstrates how polyelectrolyte gels’ flourishing properties create attractiveness to a range of applications including tissue engineering, drug delivery, actuators and bioelectronics. Finally, the review outlines the indisputable appeal, further improvements and emerging trends in polyelectrolyte gels.
    Electronic ISSN: 2310-2861
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-09-18
    Description: Engineering drug delivery systems (DDS) aim to release bioactive cargo to a specific site within the human body safely and efficiently. Hydrogels have been used as delivery matrices in different studies due to their biocompatibility, biodegradability, and versatility in biomedical purposes. Microparticles have also been used as drug delivery systems for similar reasons. The combination of microparticles and hydrogels in a composite system has been the topic of many research works. These composite systems can be injected in loco as DDS. The hydrogel will serve as a barrier to protect the particles and retard the release of any bioactive cargo within the particles. Additionally, these systems allow different release profiles, where different loads can be released sequentially, thus allowing a synergistic treatment. The reported advantages from several studies of these systems can be of great use in biomedicine for the development of more effective DDS. This review will focus on in situ injectable microparticles in hydrogel composite DDS for biomedical purposes, where a compilation of different studies will be analysed and reported herein.
    Electronic ISSN: 2310-2861
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...