ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3,695)
  • Electrical Engineering, Measurement and Control Technology  (3,695)
Collection
  • Articles  (3,695)
Publisher
Years
Journal
Topic
  • Electrical Engineering, Measurement and Control Technology  (3,695)
  • 11
    Publication Date: 2020-09-08
    Description: In this paper, we consider the joint angle-range estimation in monostatic FDA-MIMO radar. The transmit subarrays are first utilized to expand the range ambiguity, and the maximum likelihood estimation (MLE) algorithm is first proposed to improve the estimation performance. The range ambiguity is a serious problem in monostatic FDA-MIMO radar, which can reduce the detection range of targets. To extend the unambiguous range, we propose to divide the transmitting array into subarrays. Then, within the unambiguous range, the maximum likelihood (ML) algorithm is proposed to estimate the angle and range with high accuracy and high resolution. In the ML algorithm, the joint angle-range estimation problem becomes a high-dimensional search problem; thus, it is computationally expensive. To reduce the computation load, the alternating projection ML (AP-ML) algorithm is proposed by transforming the high-dimensional search into a series of one-dimensional search iteratively. With the proposed AP-ML algorithm, the angle and range are automatically paired. Simulation results show that transmitting subarray can extend the range ambiguity of monostatic FDA-MIMO radar and obtain a lower cramer-rao low bound (CRLB) for range estimation. Moreover, the proposed AP-ML algorithm is superior over the traditional estimation algorithms in terms of the estimation accuracy and resolution.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-09-02
    Description: This paper introduces a 2D angle-of-arrival (AoA) estimator, which has a 6–18 GHz 7-element nonuniformly spaced array (NSA) and a Direct Data Domain- (D3-) based AoA algorithm for a 2D isotropic-element planar array (IEPA). A 2D calibration and data-transformation method is developed to convert the NSA data to the output of the IEPA, so that the NSA-measured data can be used in the D3 algorithm. Using the steering vector (SV) of the IEPA and the results derived from the D3 method, a new 2D AoA searching method is also developed, which offers frequency-independent performance defined by the probability of AoA estimation, when the required estimation accuracy and signal-to-noise ratio (SNR) are given. For the applications of electronic support measures, this paper also presents the use of precalculated SV and data-transformation matrix databases built on preselected frequency points and a 2D-angle grid that is close to uniformly distributed directions. The simulation results show that with good SNR (≥15 dB), the estimator can have 50% probability of AoA estimation with root mean square error (RMSE) less than or equal to 1° using just a few samples from the NSA. Moreover, the study focuses on the applications with low SNR by using more samples from the NSA. Results show that the estimator has 52% and 80% probabilities of AoA estimation with RMSE ≤1° and 5°, respectively, for phase- or frequency-modulated radar pulses, when the SNR is within [−10, 0] dB. The study also shows that the estimator prefers a circular-shaped planar array with a triangular interelement pattern, since it presents more symmetrical characteristics from different azimuth angles.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-08-27
    Description: For the traditional target localization algorithms of frequency diverse array (FDA), there are some problems such as angle and distance coupling in single-frequency receiving FDA mode, large amount of calculation, and weak adaptability. This paper introduces a good learning and predictive method of target localization by using BP neural network on FDA, and FDA-IPSO-BP neural network algorithm is formed. The improved particle swarm optimization (IPSO) algorithm with nonlinear weights is developed to optimize the neural network weights and biases to prevent BP neural network from easily falling into local minimum points. In addition, the decoupling of angle and distance with single frequency increment is well solved. The simulation experiments show that the proposed algorithm has better target localization effect and convergence speed, compared with FDA-BP and FDA-MUSIC algorithms.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-08-25
    Description: Fast factorized backprojection (FFBP) takes advantage of high accuracy of time-domain algorithms while also possessing high efficiency comparable with conventional frequency domain algorithms. When phase errors need to be compensated for high-resolution synthetic aperture radar (SAR) imaging, however, neither polar formatted subimages within FFBP flow nor the final Cartesian image formed by FFBP is suitable for phase gradient autofocus (PGA). This is because these kinds of images are not capable of providing PGA with a clear Fourier transform relationship (FTR) between image domain and range-compressed phase history domain. In this paper, we make some essential modifications to the original FFBP and present a scheme to incorporate overlapped-subaperture frame for an accurate PGA processing. The raw data collected by an airborne high-resolution spotlight SAR are used to demonstrate the performance of this algorithm.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-08-24
    Description: This paper presents two novel UHF RFID near-field reader antennas with uniform vertical electric field distribution. The two antennas have the following common characteristics. First, the radiating parts of the two antennas are simulated and fabricated by the microstrip lines and work using the leakage wave principle of microstrip lines. Second, the end of microstrip lines match the load to form a traveling wave mode of operation, so the two antennas have broadband characteristics. Third, both antennas are fed in a coaxial manner at the center of the antenna. The simulation and measurement results can show that the proposed three-branch antenna and four-branch antenna achieve good impedance matching in the range of 883–960 MHz and 870–960 MHz, respectively, and achieve uniform distribution of the vertical electric field component in a certain area. The reading areas of the three-branch antenna and the four-branch antenna are 70 mm × 70 mm × 90 mm and 100 mm × 100 mm × 120 mm (length × width × height), respectively. Due to the introduction of the ground plate, the antenna gain is low, which meets the design requirements of near-field antennas.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-08-24
    Description: Antenna array synthesis is one of the most popular topics in the electromagnetic field. Since achieving a desired antenna radiation pattern is a mathematical problem, in the literature, there are various optimization algorithms applied to the synthesis process of different kinds of antenna arrays. In this study, Multiverse Optimizer (MVO) and modified MVO (MMVO) are used to perform circular antenna array (CAA) synthesis. During the exploration, exploitation, and local search phases of calculation, MVO uses three concepts in cosmology; white hole, black hole, and wormhole. Convergence capability of this nature-inspired algorithm is employed for finding optimum amplitude and position values of CAA elements in order to achieve an array pattern with low maximum sidelobe level (MSL) and minimum circumference. The performance of MVO and MMVO was tested on five design examples of pattern synthesis, and the obtained results were compared with ten different algorithms. The simulation results show that MVO and MMVO provide low MSLs with small circumferences.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-08-20
    Description: The rapid development of high-speed train and Metro communications has provided new challenges for the application of MIMO technologies. Therefore, we propose a three-dimensional (3D) multiple-input multiple-output (MIMO) channel model using leaky coaxial cable (LCX) in a rectangular tunnel. The channel model is based on geometry-based single-bounce (GBSB) channel model and the electric field distribution of LCX in the tunnel environment. The theoretical expressions of channel impulse response (CIR) and space-time correlation function (CF) are also derived and analyzed. The CFs for different model parameters (moving velocity and moving time) and different regions of the tunnel are simulated by Monte Carlo method to verify the theoretical derivation at 1.8 GHz. In the same parametric configuration of nonstationary tunnel scenarios, the time delay of the first minimum value of CFs for LCX-MIMO is 1/5 of the time delay of the minimum value of CFs for dipole antennas MIMO when the train moving velocity is 360 km/h. It is shown that, for MIMO system, the performance of using LCXs is better than using dipole antennas.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-08-20
    Description: This paper presents a new design of a compact, high-gain coplanar waveguide-fed antenna and proposes a multielement approach to attain enhanced characteristics. The proposed method overcomes the simulation and geometrical complexity and achieves optimal performance features. The antenna prototype is carefully designed, and simulation results have been analyzed. The proposed antenna was fabricated on a new WangLing TP-2 laminate with dimensions (0.195λ × 0.163λ × 0.0052λ) at the lowest resonance of 9.78 GHz. The results have been tested and experimentally verified. The antenna model achieved excellent performance including a peak realized gain better than 9.0 dBi, optimal radiation efficiency better than 87.6% over the operating band, and a good relative bandwidth of 11.48% at 10 dB return loss. Symmetrical stable far-field radiation pattern in orthogonal planes and strong distribution of current are observed. Moreover, a comparative analysis with state-of-the-artwork is presented. The measured and simulation result shows a good agreement. The high-performance antenna results reveal that the proposed model is a good contender of military airborne, land, and naval radar applications.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-08-19
    Description: In high-frequency (HF) hybrid sky-surface wave radar, the first-order sea clutter broadening is severe under the action of ionospheric phase disturbance and bistatic angles. In this paper, a cascaded method is described to suppress the spread sea clutter. Firstly, the radar configuration and sea clutter broadening model are introduced based on the newly developed integrated HF sky-surface wave experimental system. In the cascaded processing method, a new ionospheric decontamination method based on general parameterized time-frequency (GPTF) analysis is proposed to estimate or correct the ionospheric phase distortion with large amplitude. Then, the forward-backward linear prediction (FBLP) algorithm is used to suppress the spread sea clutter caused by bistatic angle. Simulation results show that such ionospheric decontamination method based on GPTF is helpful for the large-amplitude ionospheric contamination when the target masking effect happens even after ionospheric phase decontamination. Finally, the proposed method is examined by the measured data. Experimental results indicate that the proposed method can well suppress the broadening sea clutter for HF hybrid sky-surface wave radars.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-08-18
    Description: The performance of wireless optical MIMO system with multiple pulse position modulation (MPPM) over correlated fading channel is investigated. The combined effects of atmospheric attenuation, atmospheric turbulence, and pointing error are taken into consideration. The bit error rate (BER) and the ergodic channel capacity are analyzed by utilizing the Poisson counting model and the exponential correlation model. Moreover, their approximate expressions are derived. The simulation results demonstrate that the pointing error is the most prominent influence factor over weak correlated channel. The performance degradation caused by a high channel correlation coefficient is more than that of pointing error in strong correlated channel. Therefore, the use of pointing, acquisition, and tracking (PAT) system and reasonable arrangement of the number and spacing of antennas at the transceiver are the keys to improve system performance.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...