ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2,910)
  • Amino Acid Sequence  (2,910)
Collection
  • Articles  (2,910)
Keywords
Years
  • 1
    Publication Date: 2016-04-16
    Description: The nuclear pore complex (NPC) controls the transport of macromolecules between the nucleus and cytoplasm, but its molecular architecture has thus far remained poorly defined. We biochemically reconstituted NPC core protomers and elucidated the underlying protein-protein interaction network. Flexible linker sequences, rather than interactions between the structured core scaffold nucleoporins, mediate the assembly of the inner ring complex and its attachment to the NPC coat. X-ray crystallographic analysis of these scaffold nucleoporins revealed the molecular details of their interactions with the flexible linker sequences and enabled construction of full-length atomic structures. By docking these structures into the cryoelectron tomographic reconstruction of the intact human NPC and validating their placement with our nucleoporin interactome, we built a composite structure of the NPC symmetric core that contains ~320,000 residues and accounts for ~56 megadaltons of the NPC's structured mass. Our approach provides a paradigm for the structure determination of similarly complex macromolecular assemblies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Daniel H -- Stuwe, Tobias -- Schilbach, Sandra -- Rundlet, Emily J -- Perriches, Thibaud -- Mobbs, George -- Fan, Yanbin -- Thierbach, Karsten -- Huber, Ferdinand M -- Collins, Leslie N -- Davenport, Andrew M -- Jeon, Young E -- Hoelz, Andre -- 5 T32 GM07616/GM/NIGMS NIH HHS/ -- ACB-12002/PHS HHS/ -- AGM-12006/PHS HHS/ -- R01 GM111461/GM/NIGMS NIH HHS/ -- R01-GM111461/GM/NIGMS NIH HHS/ -- T32 GM007616/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 15;352(6283):aaf1015. doi: 10.1126/science.aaf1015. Epub 2016 Apr 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA. ; Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA. hoelz@caltech.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27081075" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Sequence ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Cytoplasm/metabolism ; Electron Microscope Tomography ; Fungal Proteins/chemistry/genetics/metabolism ; Humans ; Molecular Sequence Data ; Nuclear Pore/chemistry/*metabolism/*ultrastructure ; Nuclear Pore Complex Proteins/chemistry/genetics/*metabolism ; *Protein Interaction Maps ; Protein Structure, Tertiary ; Protein Subunits/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-02
    Description: The recent rapid spread of Zika virus and its unexpected linkage to birth defects and an autoimmune neurological syndrome have generated worldwide concern. Zika virus is a flavivirus like the dengue, yellow fever, and West Nile viruses. We present the 3.8 angstrom resolution structure of mature Zika virus, determined by cryo-electron microscopy (cryo-EM). The structure of Zika virus is similar to other known flavivirus structures, except for the ~10 amino acids that surround the Asn(154) glycosylation site in each of the 180 envelope glycoproteins that make up the icosahedral shell. The carbohydrate moiety associated with this residue, which is recognizable in the cryo-EM electron density, may function as an attachment site of the virus to host cells. This region varies not only among Zika virus strains but also in other flaviviruses, which suggests that differences in this region may influence virus transmission and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845755/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845755/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sirohi, Devika -- Chen, Zhenguo -- Sun, Lei -- Klose, Thomas -- Pierson, Theodore C -- Rossmann, Michael G -- Kuhn, Richard J -- R01 AI073755/AI/NIAID NIH HHS/ -- R01 AI076331/AI/NIAID NIH HHS/ -- R01AI073755/AI/NIAID NIH HHS/ -- R01AI076331/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):467-70. doi: 10.1126/science.aaf5316. Epub 2016 Mar 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Markey Center for Structural Biology and Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA. ; Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27033547" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cryoelectron Microscopy ; Glycosylation ; Humans ; Molecular Sequence Data ; Protein Structure, Tertiary ; Viral Envelope Proteins/chemistry/ultrastructure ; Viral Matrix Proteins/chemistry/ultrastructure ; Zika Virus/*chemistry/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-03-26
    Description: Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naive B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. Using deep mutational scanning and multitarget optimization, we developed a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naive B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872700/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872700/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jardine, Joseph G -- Kulp, Daniel W -- Havenar-Daughton, Colin -- Sarkar, Anita -- Briney, Bryan -- Sok, Devin -- Sesterhenn, Fabian -- Ereno-Orbea, June -- Kalyuzhniy, Oleksandr -- Deresa, Isaiah -- Hu, Xiaozhen -- Spencer, Skye -- Jones, Meaghan -- Georgeson, Erik -- Adachi, Yumiko -- Kubitz, Michael -- deCamp, Allan C -- Julien, Jean-Philippe -- Wilson, Ian A -- Burton, Dennis R -- Crotty, Shane -- Schief, William R -- P01 AI094419/AI/NIAID NIH HHS/ -- P01 AI110657/AI/NIAID NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1458-63. doi: 10.1126/science.aad9195.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. ; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Program in Molecular Structure and Function, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Vaccine and Infectious Disease Division, Statistical Center for HIV/AIDS Research and Prevention (SCHARP), Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. ; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Program in Molecular Structure and Function, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada. Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA. ; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA. schief@scripps.edu shane@lji.org. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA. schief@scripps.edu shane@lji.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013733" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/*immunology ; Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/*immunology/isolation & purification ; Antibodies, Neutralizing/chemistry/*immunology/isolation & purification ; Antibody Affinity ; B-Lymphocytes/immunology ; Cell Separation ; Combinatorial Chemistry Techniques ; Epitopes, B-Lymphocyte/chemistry/genetics/*immunology ; Germ Cells/*immunology ; HIV Antibodies/chemistry/*immunology/isolation & purification ; HIV-1/*immunology ; Humans ; Molecular Sequence Data ; Mutation ; Peptide Library ; Precursor Cells, B-Lymphoid/*immunology ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-12
    Description: Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshida, Shosuke -- Hiraga, Kazumi -- Takehana, Toshihiko -- Taniguchi, Ikuo -- Yamaji, Hironao -- Maeda, Yasuhito -- Toyohara, Kiyotsuna -- Miyamoto, Kenji -- Kimura, Yoshiharu -- Oda, Kohei -- New York, N.Y. -- Science. 2016 Mar 11;351(6278):1196-9. doi: 10.1126/science.aad6359.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Applied Biology, Faculty of Textile Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan. Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan. ; Department of Applied Biology, Faculty of Textile Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan. ; Life Science Materials Laboratory, ADEKA, 7-2-34 Higashiogu, Arakawa-ku, Tokyo 116-8553, Japan. ; Department of Polymer Science, Faculty of Textile Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan. ; Ecology-Related Material Group Innovation Research Institute, Teijin, Hinode-cho 2-1, Iwakuni, Yamaguchi 740-8511, Japan. ; Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26965627" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Betaproteobacteria/*enzymology ; Environmental Restoration and Remediation ; Enzymes/classification/genetics/metabolism ; Hydrolysis ; Microbial Consortia ; Molecular Sequence Data ; Phthalic Acids/metabolism ; Phylogeny ; Plastics/*metabolism ; Polyethylene Terephthalates/*metabolism ; Recycling
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-02-26
    Description: T cell-mediated destruction of insulin-producing beta cells in the pancreas causes type 1 diabetes (T1D). CD4 T cell responses play a central role in beta cell destruction, but the identity of the epitopes recognized by pathogenic CD4 T cells remains unknown. We found that diabetes-inducing CD4 T cell clones isolated from nonobese diabetic mice recognize epitopes formed by covalent cross-linking of proinsulin peptides to other peptides present in beta cell secretory granules. These hybrid insulin peptides (HIPs) are antigenic for CD4 T cells and can be detected by mass spectrometry in beta cells. CD4 T cells from the residual pancreatic islets of two organ donors who had T1D also recognize HIPs. Autoreactive T cells targeting hybrid peptides may explain how immune tolerance is broken in T1D.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delong, Thomas -- Wiles, Timothy A -- Baker, Rocky L -- Bradley, Brenda -- Barbour, Gene -- Reisdorph, Richard -- Armstrong, Michael -- Powell, Roger L -- Reisdorph, Nichole -- Kumar, Nitesh -- Elso, Colleen M -- DeNicola, Megan -- Bottino, Rita -- Powers, Alvin C -- Harlan, David M -- Kent, Sally C -- Mannering, Stuart I -- Haskins, Kathryn -- 1K01DK094941/DK/NIDDK NIH HHS/ -- 1R01DK081166/DK/NIDDK NIH HHS/ -- 5U01DK89572/DK/NIDDK NIH HHS/ -- DK104211/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2016 Feb 12;351(6274):711-4. doi: 10.1126/science.aad2791.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA. thomas.delong@ucdenver.edu katie.haskins@ucdenver.edu. ; Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA. ; Pharmaceutical Sciences, University of Colorado School of Medicine, Aurora, CO 80045, USA. ; Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia. ; Department of Medicine, Diabetes Division, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA. ; Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Allegheny Health Network, Pittsburgh, PA, USA. ; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA. VA Tennessee Valley Healthcare System, Nashville, TN, USA. ; Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia. University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria 3065, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912858" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; C-Peptide/chemistry/*immunology ; CD4-Positive T-Lymphocytes/*immunology ; Clone Cells ; Diabetes Mellitus, Experimental/*immunology/pathology ; Diabetes Mellitus, Type 1/*immunology/pathology ; Epitopes/*immunology ; Immune Tolerance ; Insulin-Secreting Cells/*immunology/pathology ; Mice ; Mice, Inbred NOD ; Molecular Sequence Data ; Peptides/chemistry/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-02-26
    Description: With functions that range from cell envelope structure to signal transduction and transport, lipoproteins constitute 2 to 3% of bacterial genomes and play critical roles in bacterial physiology, pathogenicity, and antibiotic resistance. Lipoproteins are synthesized with a signal peptide securing them to the cytoplasmic membrane with the lipoprotein domain in the periplasm or outside the cell. Posttranslational processing requires a signal peptidase II (LspA) that removes the signal peptide. Here, we report the crystal structure of LspA from Pseudomonas aeruginosa complexed with the antimicrobial globomycin at 2.8 angstrom resolution. Mutagenesis studies identify LspA as an aspartyl peptidase. In an example of molecular mimicry, globomycin appears to inhibit by acting as a noncleavable peptide that sterically blocks the active site. This structure should inform rational antibiotic drug discovery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogeley, Lutz -- El Arnaout, Toufic -- Bailey, Jonathan -- Stansfeld, Phillip J -- Boland, Coilin -- Caffrey, Martin -- BB/I019855/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2016 Feb 19;351(6275):876-80. doi: 10.1126/science.aad3747.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland. ; Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK. ; School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland. martin.caffrey@tcd.ie.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912896" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anti-Bacterial Agents/*chemistry/pharmacology ; Aspartic Acid Endopeptidases/*antagonists & inhibitors/*chemistry/genetics ; Bacterial Proteins/*antagonists & inhibitors/*chemistry/genetics ; Catalytic Domain ; Conserved Sequence ; Crystallography, X-Ray ; Mutagenesis ; Peptides/*chemistry/pharmacology ; Protein Conformation ; Protein Processing, Post-Translational ; Pseudomonas aeruginosa/*enzymology ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-02-06
    Description: SH3 and multiple ankyrin repeat domains 3 (SHANK3) haploinsufficiency is causative for the neurological features of Phelan-McDermid syndrome (PMDS), including a high risk of autism spectrum disorder (ASD). We used unbiased, quantitative proteomics to identify changes in the phosphoproteome of Shank3-deficient neurons. Down-regulation of protein kinase B (PKB/Akt)-mammalian target of rapamycin complex 1 (mTORC1) signaling resulted from enhanced phosphorylation and activation of serine/threonine protein phosphatase 2A (PP2A) regulatory subunit, B56beta, due to increased steady-state levels of its kinase, Cdc2-like kinase 2 (CLK2). Pharmacological and genetic activation of Akt or inhibition of CLK2 relieved synaptic deficits in Shank3-deficient and PMDS patient-derived neurons. CLK2 inhibition also restored normal sociability in a Shank3-deficient mouse model. Our study thereby provides a novel mechanistic and potentially therapeutic understanding of deregulated signaling downstream of Shank3 deficiency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bidinosti, Michael -- Botta, Paolo -- Kruttner, Sebastian -- Proenca, Catia C -- Stoehr, Natacha -- Bernhard, Mario -- Fruh, Isabelle -- Mueller, Matthias -- Bonenfant, Debora -- Voshol, Hans -- Carbone, Walter -- Neal, Sarah J -- McTighe, Stephanie M -- Roma, Guglielmo -- Dolmetsch, Ricardo E -- Porter, Jeffrey A -- Caroni, Pico -- Bouwmeester, Tewis -- Luthi, Andreas -- Galimberti, Ivan -- New York, N.Y. -- Science. 2016 Mar 11;351(6278):1199-203. doi: 10.1126/science.aad5487. Epub 2016 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland. ; Friedrich Miescher Institute, Basel, Switzerland. ; Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland. ; Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, USA. ; Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland. ivan.galimberti@novartis.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26847545" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Autism Spectrum Disorder/*drug therapy/enzymology/genetics ; Chromosome Deletion ; Chromosome Disorders/genetics ; Chromosomes, Human, Pair 22/genetics ; Disease Models, Animal ; Down-Regulation ; Gene Knockdown Techniques ; Humans ; Insulin-Like Growth Factor I/metabolism ; Mice ; Molecular Sequence Data ; Multiprotein Complexes/metabolism ; Nerve Tissue Proteins/*genetics ; Neurons/enzymology ; Phosphorylation ; Protein Phosphatase 2/metabolism ; Protein-Serine-Threonine Kinases/*antagonists & inhibitors/metabolism ; Protein-Tyrosine Kinases/*antagonists & inhibitors/metabolism ; Proteomics ; Proto-Oncogene Proteins c-akt/genetics/metabolism ; Rats ; Signal Transduction ; TOR Serine-Threonine Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-01-23
    Description: Mono-ubiquitination of Fancd2 is essential for repairing DNA interstrand cross-links (ICLs), but the underlying mechanisms are unclear. The Fan1 nuclease, also required for ICL repair, is recruited to ICLs by ubiquitinated (Ub) Fancd2. This could in principle explain how Ub-Fancd2 promotes ICL repair, but we show that recruitment of Fan1 by Ub-Fancd2 is dispensable for ICL repair. Instead, Fan1 recruitment--and activity--restrains DNA replication fork progression and prevents chromosome abnormalities from occurring when DNA replication forks stall, even in the absence of ICLs. Accordingly, Fan1 nuclease-defective knockin mice are cancer-prone. Moreover, we show that a Fan1 variant in high-risk pancreatic cancers abolishes recruitment by Ub-Fancd2 and causes genetic instability without affecting ICL repair. Therefore, Fan1 recruitment enables processing of stalled forks that is essential for genome stability and health.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770513/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770513/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lachaud, Christophe -- Moreno, Alberto -- Marchesi, Francesco -- Toth, Rachel -- Blow, J Julian -- Rouse, John -- WT096598MA/Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2016 Feb 19;351(6275):846-9. doi: 10.1126/science.aad5634. Epub 2016 Jan 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, Scotland, UK. ; Centre for Gene Regulation and Expression, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, Scotland, UK. ; School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK. ; Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, Scotland, UK. j.rouse@dundee.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26797144" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Chromosome Aberrations ; DNA Repair ; *DNA Replication ; Endodeoxyribonucleases/genetics/*metabolism ; Fanconi Anemia Complementation Group D2 Protein/genetics/*metabolism ; Female ; Gene Knock-In Techniques ; Genetic Predisposition to Disease ; Genomic Instability/*genetics ; Liver Neoplasms/genetics/pathology ; Lung Neoplasms/genetics/pathology ; Lymphoma/genetics/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Pancreatic Neoplasms/*genetics ; *Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-12-19
    Description: Voltage-gated sodium (Nav) channels propagate action potentials in excitable cells. Accordingly, Nav channels are therapeutic targets for many cardiovascular and neurological disorders. Selective inhibitors have been challenging to design because the nine mammalian Nav channel isoforms share high sequence identity and remain recalcitrant to high-resolution structural studies. Targeting the human Nav1.7 channel involved in pain perception, we present a protein-engineering strategy that has allowed us to determine crystal structures of a novel receptor site in complex with isoform-selective antagonists. GX-936 and related inhibitors bind to the activated state of voltage-sensor domain IV (VSD4), where their anionic aryl sulfonamide warhead engages the fourth arginine gating charge on the S4 helix. By opposing VSD4 deactivation, these compounds inhibit Nav1.7 through a voltage-sensor trapping mechanism, likely by stabilizing inactivated states of the channel. Residues from the S2 and S3 helices are key determinants of isoform selectivity, and bound phospholipids implicate the membrane as a modulator of channel function and pharmacology. Our results help to elucidate the molecular basis of voltage sensing and establish structural blueprints to design selective Nav channel antagonists.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahuja, Shivani -- Mukund, Susmith -- Deng, Lunbin -- Khakh, Kuldip -- Chang, Elaine -- Ho, Hoangdung -- Shriver, Stephanie -- Young, Clint -- Lin, Sophia -- Johnson, J P Jr -- Wu, Ping -- Li, Jun -- Coons, Mary -- Tam, Christine -- Brillantes, Bobby -- Sampang, Honorio -- Mortara, Kyle -- Bowman, Krista K -- Clark, Kevin R -- Estevez, Alberto -- Xie, Zhiwei -- Verschoof, Henry -- Grimwood, Michael -- Dehnhardt, Christoph -- Andrez, Jean-Christophe -- Focken, Thilo -- Sutherlin, Daniel P -- Safina, Brian S -- Starovasnik, Melissa A -- Ortwine, Daniel F -- Franke, Yvonne -- Cohen, Charles J -- Hackos, David H -- Koth, Christopher M -- Payandeh, Jian -- New York, N.Y. -- Science. 2015 Dec 18;350(6267):aac5464. doi: 10.1126/science.aac5464.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA. ; Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA. ; Department of Biology, Xenon Pharmaceuticals Inc., Burnaby, British Columbia, V5G 4W8, Canada. ; Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA 94080, USA. ; Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA. ; Department of Chemistry, Xenon Pharmaceuticals Inc., Burnaby, British Columbia, V5G 4W8, Canada. ; Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA. hackos.david@gene.com koth.christopher@gene.com payandeh.jian@gene.com. ; Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA. hackos.david@gene.com koth.christopher@gene.com payandeh.jian@gene.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26680203" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Membrane/chemistry ; Crystallization/methods ; Crystallography, X-Ray ; DNA Mutational Analysis ; Humans ; Models, Molecular ; Molecular Sequence Data ; NAV1.7 Voltage-Gated Sodium Channel/*chemistry/genetics ; Pain Perception/drug effects ; Protein Engineering ; Protein Isoforms/antagonists & inhibitors/chemistry ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sodium Channel Blockers/*chemistry/*pharmacology ; Sulfonamides/*chemistry/*pharmacology ; Thiadiazoles/*chemistry/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-12-19
    Description: The voltage-gated calcium channel Ca(v)1.1 is engaged in the excitation-contraction coupling of skeletal muscles. The Ca(v)1.1 complex consists of the pore-forming subunit alpha1 and auxiliary subunits alpha2delta, beta, and gamma. We report the structure of the rabbit Ca(v)1.1 complex determined by single-particle cryo-electron microscopy. The four homologous repeats of the alpha1 subunit are arranged clockwise in the extracellular view. The gamma subunit, whose structure resembles claudins, interacts with the voltage-sensing domain of repeat IV (VSD(IV)), whereas the cytosolic beta subunit is located adjacent to VSD(II) of alpha1. The alpha2 subunit interacts with the extracellular loops of repeats I to III through its VWA and Cache1 domains. The structure reveals the architecture of a prototypical eukaryotic Ca(v) channel and provides a framework for understanding the function and disease mechanisms of Ca(v) and Na(v) channels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Jianping -- Yan, Zhen -- Li, Zhangqiang -- Yan, Chuangye -- Lu, Shan -- Dong, Mengqiu -- Yan, Nieng -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Dec 18;350(6267):aad2395. doi: 10.1126/science.aad2395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China. ; National Institute of Biological Sciences, Beijing 102206, China. ; State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China. nyan@tsinghua.edu.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26680202" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium Channels, L-Type/*chemistry/genetics/isolation & purification ; Cell Membrane/chemistry ; Cryoelectron Microscopy ; Molecular Sequence Data ; Muscle, Skeletal/chemistry ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/isolation & purification ; Rabbits
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...