ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3,433)
  • 2020-2022  (3,433)
  • 2020  (3,433)
  • Water. 2020; 12(1): 134. Published 2020 Jan 01. doi: 10.3390/w12010134.  (1)
  • Water. 2020; 12(1): 137. Published 2020 Jan 01. doi: 10.3390/w12010137.  (1)
  • Water. 2020; 12(1): 138. Published 2020 Jan 01. doi: 10.3390/w12010138.  (1)
  • Water. 2020; 12(1): 139. Published 2020 Jan 01. doi: 10.3390/w12010139.  (1)
  • Water. 2020; 12(1): 140. Published 2020 Jan 01. doi: 10.3390/w12010140.  (1)
  • Water. 2020; 12(1): 141. Published 2020 Jan 02. doi: 10.3390/w12010141.  (1)
  • Water. 2020; 12(1): 142. Published 2020 Jan 02. doi: 10.3390/w12010142.  (1)
  • Water. 2020; 12(1): 143. Published 2020 Jan 02. doi: 10.3390/w12010143.  (1)
  • Water. 2020; 12(1): 144. Published 2020 Jan 02. doi: 10.3390/w12010144.  (1)
  • Water. 2020; 12(1): 145. Published 2020 Jan 02. doi: 10.3390/w12010145.  (1)
  • Water. 2020; 12(1): 146. Published 2020 Jan 03. doi: 10.3390/w12010146.  (1)
  • Water. 2020; 12(1): 147. Published 2020 Jan 03. doi: 10.3390/w12010147.  (1)
  • Water. 2020; 12(1): 148. Published 2020 Jan 03. doi: 10.3390/w12010148.  (1)
  • Water. 2020; 12(1): 149. Published 2020 Jan 03. doi: 10.3390/w12010149.  (1)
  • Water. 2020; 12(1): 150. Published 2020 Jan 03. doi: 10.3390/w12010150.  (1)
  • Water. 2020; 12(1): 151. Published 2020 Jan 03. doi: 10.3390/w12010151.  (1)
  • Water. 2020; 12(1): 152. Published 2020 Jan 04. doi: 10.3390/w12010152.  (1)
  • Water. 2020; 12(1): 153. Published 2020 Jan 04. doi: 10.3390/w12010153.  (1)
  • Water. 2020; 12(1): 154. Published 2020 Jan 04. doi: 10.3390/w12010154.  (1)
  • Water. 2020; 12(1): 155. Published 2020 Jan 04. doi: 10.3390/w12010155.  (1)
  • 125281
Collection
  • Articles  (3,433)
Years
  • 2020-2022  (3,433)
Year
  • 2020  (3,433)
  • 2021  (1,483)
Journal
  • 1
    Publication Date: 2020-12-30
    Description: Pressure fluctuations are a key issue in hydraulic engineering. However, despite the large number of studies on the topic, their role in spatial hydraulic jumps is not yet fully understood. The results herein shed light on the formation of eddies and the derived pressure fluctuations in stilling basins with different expansion ratios. Laboratory tests are conducted in a horizontal rectangular flume with 0.5 m width and 10 m length. The range of approaching Froude numbers spans from 6.4 to 12.5 and the channel expansion ratios are 0.4, 0.6, 0.8, and 1. The effects of approaching flow conditions and expansion ratios are thoroughly analyzed, focusing on the dimensionless standard deviation of pressure fluctuations and extreme pressure fluctuations. The results reveal that these variables show a clear dependence on the Froude number and the distance to the hydraulic jump toe. The maximum values of extreme pressure fluctuations occur in the range 0.609
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-30
    Description: High living standards and a comfortable modern way of life are related to an increased usage of various plastic products, yielding eventually the generation of an increased amount of plastic debris in the environment. A special concern is on microplastics (MPs), recently classified as contaminants of emerging concern (CECs). This review focuses on MPs’ adverse effects on the environment based on their bioactivity. Hence, the main topic covered is MPs’ ecotoxicity on various aquatic (micro)organisms such as bacteria, algae, daphnids, and fish. The cumulative toxic effects caused by MPs and adsorbed organic/inorganic pollutants are presented and critically discussed. Since MPs’ bioactivity, including ecotoxicity, is strongly influenced by their properties (e.g., types, size, shapes), the most common classification of MPs types present in freshwater are provided, along with their main characteristics. The review includes also the sources of MPs discharge in the environment and the currently available characterization methods for monitoring MPs, including identification and quantification, to obtain a broader insight into the complex problem caused by the presence of MPs in the environment.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-30
    Description: The water distribution castellum at the terminal end of the Pont du Gard aqueduct serving the Roman city of Nemausus in southern France is analyzed for its water engineering design and operation. By the use of modern hydraulic engineering analysis methods applied to analyze the castellum, new aspects of Roman water engineering technology are discovered not previously reported in the archaeological literature. Analysis of the castellum’s 10 basin wall flow distribution pipelines reveals that when a Roman version of modern critical flow theory is utilized in their design, the 10 pipelines optimally transfer water to city precincts at the maximum flow rate possible with a total flow rate closely approximating the input flow rate from the aqueduct. The castellum’s three drainage floor ports serve as additional fine-tuning to precisely match the input aqueduct flow rate to the optimized 10 pipeline output flow rate. The castellum’s many hydraulic engineering features provide a combination of advanced water engineering technology to optimize the performance of the water distribution system while at the same time enhancing the castellum’s aesthetic water display features typical of Roman values. While extensive descriptive archaeological literature exists on Roman achievements related to their water systems both in Rome and its provinces, what is missing is the preliminary engineering knowledge base that underlies many of their water system’s designs. The present paper is designed to provide this missing link by utilizing modern hydraulic engineering methodologies to uncover the basis of Roman civil engineering practice—albeit in Roman formats yet to be discovered.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-30
    Description: Electrosorption is a new emerging technology for micro-polluted water treatment. To gain a more accurate understanding of the mass and charge transfer process of electrosorption, the electrosorption performance of activated carbon fiber (ACF) electrodes with various concentrations was studied. In this paper, quasi-first-order and quasi-second-order dynamic equations, and an intra-particle diffusion equation were used to describe the electrosorption behaviors. It is believed that the electrosorption process is dominated by physical adsorption for ACF material, and the most important rate control steps in this process are intra-diffusion and electromigration steps. Based on the experimental results and modified Donnan model theory, a considerable electrosorption dynamic model which considered the influence of physical adsorption and the intra-diffusion resistance was proposed. This model quantitatively described the salt adsorption and charge storage in the ACF electrode and can fit the experimental data well.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-30
    Description: In Mekong riparian countries, hydropower development provides energy, but also threatens biodiversity, ecosystems, food security, and an unparalleled freshwater fishery. The Sekong, Sesan, and Srepok Rivers (3S Basin) are major tributaries to the Lower Mekong River (LMB), making up 10% of the Mekong watershed but supporting nearly 40% of the fish species of the LMB. Forty-five dams have been built, are under construction, or are planned in the 3S Basin. We completed a meta-analysis of aquatic and riparian environmental losses from current, planned, and proposed hydropower dams in the 3S and LMB using 46 papers and reports from the past three decades. Proposed mainstem Stung Treng and Sambor dams were not included in our analysis because Cambodia recently announced a moratorium on mainstem Mekong River dams. More than 50% of studies evaluated hydrologic change from dam development, 33% quantified sediment alteration, and 30% estimated fish production changes. Freshwater fish diversity, non-fish species, primary production, trophic ecology, and nutrient loading objectives were less commonly studied. We visualized human and environmental tradeoffs of 3S dams from the reviewed papers. Overall, Lower Sesan 2, the proposed Sekong Dam, and planned Lower Srepok 3A and Lower Sesan 3 have considerable environmental impacts. Tradeoff analyses should include environmental objectives by representing organisms, habitats, and ecosystems to quantify environmental costs of dam development and maintain the biodiversity and extraordinary freshwater fishery of the LMB.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-30
    Description: Nowadays, the industry is quite commonly using nanoparticles of titanium dioxide (nTiO2) especially in sunscreens, due to its higher reflective index in comparison to micron size TiO2. Its high demand causes its widespread environmental occurrence, thus damaging the environment. The aquatic ecosystems are the most vulnerable to contamination by nTiO2. Like other engineered nanoparticles, nTiO2 has demonstrated generation of reactive oxygen species (ROS) and reactive halogen species (RHS) in the aquatic environment under UV radiation. This study investigated the toxicity of nTiO2 towards two aquatic indicator organisms, one from freshwater (Daphnia magna) and the other from seawater (Artemia sp.), under simulated solar radiation (SSR). Daphnia magna and Artemia sp. were co-exposed in 16 h SSR and 8 h darkness cycles to different concentrations of nTiO2. The estimated EC50 at 48 h for D. magna was 3.16 mg nTiO2/L, whereas for A. sp. no toxic effects were observed. When we exposed these two organisms simultaneously to 48 h of prolonged SSR using higher nTiO2 concentrations, EC50 values of 7.60 mg/L and 5.59 mg/L nTiO2 for D. magna and A. sp., respectively, were obtained. A complementary bioassay was carried out with A. sp., by exposing this organism to a mixture of nTiO2 and organic UV filters (benzophenone 3 (oxybenzone, BP3), octocrylene (OC), and ethyl 4-aminobenzoate (EtPABA)), and then exposed to SSR. The results suggested that nTiO2 could potentially have negative impacts on these organisms, also this work outlines the different characteristics and interactions that may contribute to the mechanisms of environmental (in salted and freshwater) phototoxicity of nTiO2 and UV radiation, besides their interaction with organic compounds.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Molecular Diversity Preservation International
    Publication Date: 2020-12-30
    Description: The lattice Boltzmann method (LBM) is a highly simplified model for fluid flows using a few limited fictitious particles. It has been developed into a very efficient and flexible alternative numerical method in computational physics, demonstrating its great power and potential for resolving more and more challenging physical problems in science and engineering covering a wide range of disciplines such as physics, chemistry, biology, material science and image analysis. The LBM is implemented through the two routine steps of streaming and collision using the three parameters of the lattice size, particle speed and collision operator. A fundamental question is if the two steps are integral to the method or if the three parameters can be reduced to one for a minimal lattice Boltzmann method. In this paper, it is shown that the collision step can be removed and the standard LBM can be reformulated into a simple macroscopic lattice Boltzmann method (MacLAB). This model relies on macroscopic physical variables only and is completely defined by one basic parameter of the lattice size δx, bringing the LBM into a precise “lattice” Boltzmann method. The viscous effect on flows is naturally embedded through the particle speed, making it an ideal automatic simulator for fluid flows. Three additional advantages compared to the existing LBMs are that: (i) physical variables can directly be retained as the boundary conditions; (ii) much less computational memory is required; and (iii) the model is unconditionally stable. The findings are demonstrated and confirmed with numerical tests including flows that are independent of and dependent on fluid viscosity, 2D and 3D cavity flows and an unsteady Taylor–Green vortex flow. This provides an efficient and powerful model for resolving physical problems in various disciplines of science and engineering.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-12-30
    Description: Using hydraulic modeling techniques (e.g., one-dimensional/two-dimensional (1D/2D) hydraulic modeling, dam break scenarios) for extracting the flood settings is an important aspect of any action plan for dam failure (APDF) and flood mitigation strategy. For example, the flood hydraulic models and dam break scenario generated based on light detection and ranging (LiDAR)-derived digital elevation models (DEMs) and processed in the dedicated geographic information systems (GIS) and hydraulic modeling software (e.g., HEC-RAS—Hydrologic Engineering Center River Analysis System, developed by USACE HEC, Davis, CA, USA) can improve the flood hazard maps in case of potentially embankment dam failure. In this study, we develop a small-scale conceptual approach using 2D HEC-RAS software according to the three embankment dam break scenarios, LiDAR data (0.5 m spatial resolution), and 2D hydraulic modeling for the Başeu multi-reservoir system which belongs to the Başeu River (NE Romania) including R1—Cal Alb reservoir, R2—Movileni reservoirs, R3—Tătărăşeni reservoirs, R4—Negreni reservoirs, and R5—Hăneşti reservoirs. In order to test the flood control capacity of the Bașeu multi-reservoir system, the Cal Alb (R1) dam break scenario (piping failure) was taken into account. Three 2D stream flow modeling configurations based on R1 inflow rate with a 1% (100 year), 0.5% (500 year), and 0.1% (1000 year) recurrence interval and the water volume which can be accumulated with that specific inflow rate (1% = 10.19 × 106 m3; 0.5% = 12.39 × 106 m3; 0.1% = 17.35 × 106 m3) were computed. The potential flood wave impact was achieved on the basis of different flood severity maps (e.g., flood extent, flood depth, flood velocity, flood hazard) generated for each recurrence interval scenario and highlighted within the built-up area of 27 settlements (S1–S27) located downstream of R1. The results showed that the multi-reservoir system of Bașeu River has an important role in flood mitigation and contributes to the APDF in the context of climate change and the intensification of hydrological hazard manifestation in northeastern Romania.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-12-30
    Description: Trace element biogeochemistry from soils to rivers is important for toxicity to aquatic ecosystems. The objective of this study was to determine whether trace element exports in contrasting watersheds are controlled by their abundance in soil, current land uses in the watershed, or geologic processes. Upland soils and river water samples were collected throughout the Deerfield watershed in southern Vermont and western Massachusetts and in the Quinebaug and Shetucket watersheds of eastern Connecticut. Soil concentrations were only an important predictor for dissolved Fe export, but no other trace element. Soil pH was not correlated with normalized dissolved exports of trace elements, but DOC was correlated with normalized dissolved Pb and Ni exports. The limited spatial and depth of soil sampling may have contributed to the poor correlation. Surprisingly, linear regressions and principal component analysis showed that human development was associated with higher soil trace metal concentrations but not significantly correlated with dissolved trace elements export. Instead, forest abundance was a strong predictor for lower Cu, Pb, and Zn soil concentrations and lower As, Fe, Ni and Pb dissolved exports across the watersheds. Dissolved exports of Al, K, and Si suggest that enhanced mineral dissolution in the montane watersheds was likely an important factor for matching or exceeding normalized pollutant trace element exports in more urbanized watersheds. Further studies are needed to evaluate subsurface/hyporheic controls as well as soil–surface water interface to quantify exchange and transport.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-12-30
    Description: Roller compacted concrete (RCC) dams own a large number of horizontal construction layers, which can easily lead to weak joints among layers and generate interlayer joints with different scales to reduce the dam bearing capacity. In this study, extended finite element method (XFEM) is used to simulate crack propagation, the finite element description is first taken on the strong discontinuity. Subsequently, the displacement function of the crack-tip in the quadrilateral element and the geometric determination method of the crack-tip strengthening region are established. Afterwards, the discrete form of the governing equation is derived and the XFEM increment discretization method of the cohesive crack with the crack-tip reinforcement is proposed using the virtual node method to represent the discontinuity of the fracture element. These methods are validated through simulating mixed-mode cracking of one-sided notched asymmetric four-point bending beam. Eventually, the proposed methods are applied to RCC gravity dam to study the development rule and propagation path of the interlayer joints, so as to evaluate the effect of different lengths of the interlayer joints on the dam structural performance. The estimated critical values of dam deformation are helpful to prevent the dam failure during long term operation.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...