ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (95)
  • English  (95)
  • Portuguese
  • Geochemistry  (95)
Collection
  • Books  (95)
Language
  • English  (95)
  • Portuguese
  • German  (26)
Branch Library
  • 1
    Call number: AR 98/21
    Classification:
    Geochemistry
    Language: English
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: S 99.0053(103)
    In: Geologisches Jahrbuch
    Type of Medium: Series available for loan
    Pages: 157 S.
    Series Statement: Geologisches Jahrbuch : Reihe D H. 103
    Classification:
    Geochemistry
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: AR 98/20
    Classification:
    Geochemistry
    Language: English
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Monograph available for loan
    Monograph available for loan
    Cambridge [u.a.] : Cambridge Univ. Press
    Call number: M 97.0297
    Type of Medium: Monograph available for loan
    Pages: vii, 367 S.
    ISBN: 0521239397
    Classification:
    Geochemistry
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge Univ. Press
    Call number: 10/M 08.0431
    Description / Table of Contents: Contents: 1. Isotopes and radioactivity; 2. The principles o radioactive dating; 3. Radiometric dating methods; 4. Dating by cosmogenic isotopes; 5. Uncertainties and results of radiometric dating; 6. Radiogenic isotope geochemistry; 7. Stable isotope geochemistry; 8. Isotope geology and dynamic reservoir analysis
    Type of Medium: Monograph available for loan
    Pages: 512 S.
    ISBN: 0521862280 , 978-0-521-86228-8
    Uniform Title: Géologie isotopique
    Classification:
    Geochemistry
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 97.0491
    In: Reviews in mineralogy
    Description / Table of Contents: Microorganisms cause mineral precipitation and dissolution and control the distribution of elements in diverse environments at and below the surface of the Earth. Conversely, mineralogical and geochemical factors exert important controls on microbial evolution and the structure of microbial communities. This was the rationale for the Short Course on Geomicrobiology presented by the Mineralogical Society of America on October 18 and 19, 1997, at the Alta Peruvian Lodge in Alta, Utah. Minerals have been known and honored since humans realized their essential contributions to the "terra firma" and stone tools thrust our species on the path of cultural evolution. Microbes are the oldest living creatures, probably inhabiting at least a few salubrious environments on the earth as early as 3.8 billion years ago. At this moment in history we are only beginning to appreciate the intimate juxtaposition and interdependence of minerals and microbes. We have been nudged into this position by the realization that our earth is finite, and the recognition of many global environmental problems that minerals and microbes contribute to, both positively and negatively. In addition, our globe may not be the only site in the solar system where 'life' arose, or may persist. What all of these concerns enunciate is that we as scientists only dimly comprehend our own dynamic "terrestrial halls." This short course and volume have been generated with great enthusiasm for grasping as much as possible of the whole panorama of possibilities that involve both the inorganic and biologic realms . Over 3600 mineral species have been defined and their relationships to each other and the environments in which they form have been documented. This vast data base, collected over the past several hundred years and constantly added to and upgraded, is a monument to the research efforts of many geoscientists focused on the inorganic realm. Much of this data has come from investigators intrigued by the novelty, beauty, and versatility of minerals, direct expressions of the chemistry and physics of geologic processes. We are now adding a new dimension to questions of mineral formation, dissolution, and distribution: what were, are, and will be the contributions of microbes to these basic components of the environment. Microbes have also been known for hundreds of years. However, their small size (0.5 to 5 µm in diameter) and the difficulties associated with identifying a species unless it was grown in the laboratory (cultured), precluded thorough analysis. The advent of molecular biology has only recently made it possible to evaluate microbial evolutionary relatedness (phylogeny) and physiological diversity. These techniques are now being applied to study of microbial populations in natural environments. It is becoming very clear that the surface of Earth is populated by far more species of microbes than there are types of minerals. We are now exploring every portion of the globe and finding the relationships under the rubric "geomicrobiology." The ocean deeps are characterized by a diversity of microorganisms, including those associated with manganese nodules. The profusion and concentration of minerals created at ocean ridges and vents matches the variety of microorganisms, large animals, and plants there. The snowy tops of mountain ranges and glaciers of Antarctica harbor not just ice but whole bacterial communities whose cellular types and activities need elucidation. The equatorial jungles and the deserts, with their enormous diversity of ecological niches, further challenge us. The diversity of geographic, geologic, and biologic environments, including some contributed by humans (e.g. mines, air-conditioning equipment), can now also be explored in detail. Modern studies use protocols developed to preserve or measure in situ chemical and physical characteristics. Electron microscopes allow direct characterization of mineral and biological morphology and internal structures. Spectroscopic techniques permit complimentary chemical analysis, including determination of oxidation states, with very high spatial resolution. Other studies quantitatively measure isotopic abudances. These data serve to distinguish biologically mediated, or biologically controlled formation of the mineral from an abiotic process and mechanism. Each ecological niche requires accurate characterization of the mineralogic and biologic entities in order for us to begin to understand the range of dynamic relationships. We can pose many questions. Is the mineral only a substrate, or is its occurrence and stability impacted by microbiologic activity and metabolic requirements? Which minerals are of microbiological rather than inorganic origin and what are the mechanisms by which organisms dictate the morphology and structure of the solid phase formed? How do organic metabolic products bind metals and change their form and distribution, with implications for metal toxicity and geochemical cycles? How do inorganic reactions such as mineral dissolution and precipitation impact microbial populations through control of their physical and chemical environments? Clearly, new and excitingly research areas exist for all varieties of scientists. Although published by the Mineralogical Society of America, the authors of this volume include microbiologists, molecular biologists, biochemists, biophysicists, bioengineers as well as biomineralogists. Here, they bring together their respective expertise and perspectives to provide disciplinary and interdisciplinary background needed to define and further explore the topic of geomicrobiology. The volume is organized so as to first introduce the nature, diversity, and metabolic impact of microorganisms and the types of solid phases they interact with. This is followed by a discussion of processes that occur at cell surfaces, interfaces between microbes and minerals, and within cells, and the resulting mineral precipitation, dissolution, and changes in aqueous geochemistry. The volume concludes with a discussion of the carbon cycle over geologic time. In detail: Nealson and Stahl acquaint us with the basic properties of prokaryotes, including their size and structure. They define the types and ranges of microorganisms and their metabolisms and describe their impacts on some important biogeochemical cycles. Barns and Nierzwicki-Bauer document the phylogenetic relationships and evolution of microorganisms, begging some fundamental questions that might be now just beyond our grasp: What was the 'last common ancestor'? The physiology, biochemistry and ecology of hyperthermophilic, and the many diverse geologically important microbial species from the lithosphere and hydrosphere, as well as some of the techniques employed, are presented. Banfield and Hamers describe and integrate the processes acting on minerals and at surfaces relevant to microorganisms, examining the factors that control mineralogy, mineral forms, and the stability of phases. Surface properties and reaction rates for dissolution, precipitation, and growth of important classes of minerals are discussed. The possible role of mineral surfaces in formation of prebiotic molecules needed to explain the origin of life is examined. Little, Wagner and Lewandowski describe biofilms, an essential interface between microbes and minerals. They demonstrate that these membranes, with their unique morphological and structural attributes, are sites where much activity related to dissolution and/or formation of minerals takes place. Biology makes it possible to move molecules and elements against a gradient. Many questions regarding the transfer of elements from minerals to microbes at this important heterogeneous interface remain. Fortin, Ferris and Beveridge review surface-mediated mineral development by bacteria. Fresh or oceanic waters, anaerobic or aerobic environments provide discretely different ecologies, bacterial entities, and resulting mineralogies. It is obvious from this presentation that investigators have just scratched the surface of microbial mineralization processes. Bazlinski and Moskowitz review the magnetic biominerals and provide insights into the environmental and biological significance of these few tens of nanometer-sized mineral products. The magnetosome chemistry and biochemistry is probably the best understood of any biologically precipitated mineral. Their formation and unique properties underscore the roles these biomaterials play in the rock magnetic record and in geochemical cycles. Tebo, Ghiorse, van Waasbergen, Siering and Caspi contribute data on the roles of Mnminerals and Mn(II) oxidation in geologic environments. Their chapter encompasses molecular genetic and biochemical investigations. Manganese oxides and oxyhydroxides are notoriously difficult to identify and the crystal chemistry of these phases is a research effort on its own. The prospect of learning how microbes utilize the multiple oxidation states of Mn (2+, 3+ and 4+) as a source of energy sharpens the motivation for interdisciplinary study. Manganese is also known as a cofactor in the production and activation of the enzymes that digest large biomolecules that must be the source of the smaller molecular species and ultimately the building blocks of C, N, 0, H required by all species. How have the mechanisms identified in the bacterial systems been transferred up the phylogenetic tree to plants and humans? This is an expanding and intriguing area for further investigation. DeVrind-de Jong and de Vrind address silicate and carbonate deposition by algae (eukaryotic photosynthetic microorganisms). This chapter documents the mechanisms of biomineralization of diatoms and coccoliths. These abundant aquatic organisms are responsible for huge volumes of siliceous sediments and calcium carbonate deposits world wide. The implications of algal biomineralization for climatic variation throughout much of the Earth's history may be quite significant. Stone leads us though a quantitative approach to evaluating reactions between organic molecules and cations. He considers available extracellular organic ligands and the roles these play in uptake of metals. He documents the basic chemical speciation and complexation for several elements, making metal to metal comparisons. Remaining challenges involve coordinating the organic and inorganic results of biologic activity. Following the discussion of biomineralization and interactions between organic compounds and cations, Silver discusses the strategies microorganisms have evolved to deal with toxic metal concentrations in solution. Beyond the fundamental biological significance, this has important implications for understanding microbial populations in contaminated environments. The impact on the geochemical form (speciation) and distribution of elements is also discussed. Nordstrom and Southam summarize sulfide mineral oxidation and dissolution kinetics and devote considerable effort to describing the specific contributions of microorganisms, mostly bacteria. Despite the vast amount of accumulated information, many unanswered questions remain. Barker, Welch and Banfield address weathering of silicate minerals. This topic encompasses not only mineralogy but geomorphology, microbiology, and geochemistry. The necessary interdisciplinary mode of these investigations is highlighted by discussion of the role(s) of bacterial nutrition, groundwater chemistry, and biochemistry. There are obvious implications for hazardous waste storage, a currently daunting and politicized topic that requires predictions over thousands to millions of years. Finally, Des Marais treats the long term evolution of the carbon cycle, adopting a biogeochemical view. He discusses the sources, sinks and the transfer of the element over geologic time. Consideration of such a basic series of questions relating to the partitioning of carbon necessitate interdisciplinary crossovers. It is a fitting conclusion to a dialogue in progress.
    Type of Medium: Monograph available for loan
    Pages: 448 S.
    ISBN: 0-939950-45-6 , 978-0-939950-45-4
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 35
    Classification:
    Geochemistry
    Language: English
    Note: Chapter 1. Microorganisms and Biogeochemical Cycles: What Can We Learn from Layered Microbial Communities by Kenneth H. Nealson and David A. Stahl, p. 5 - 34 Chapter 2. Microbial Diversity in Modern Subsurface, Ocean, Surface Environments by Susan M. Barns and Sandra Nierzwicki-Bauer, p. 35 - 80 Chapter 3. Processes at Minerals and Surfaces with Relevance to Microorganisms and Prebiotic Synthesis by Jillian F. Banfield and Robert J. Hamers, p. 81 - 122 Chapter 4. Spatial Relationships between Bacteria and Mineral Surfaces by Brenda J. Little, Patrica A. Wagner, and Zbigniew Lewandowski, p. 123 - 160 Chapter 5. Surface-mediated Mineral Development by Bacteria by D. Fortin, F.G. Ferris, and T.J. Beveridge, p. 161 - 180 Chapter 6. Microbial Biomineralization of Magnetic Iron Minerals: Microbiology, Magnetism and Environmental Significance by Dennis A. Bazylinksi and Bruce M. Moskowitz, p. 181 - 224 Chapter 7. Bacterially-Mediated Mineral Formation: Insights into Manganese(II) Oxidation from Molecular Genetic and Biochemical Studies by Bradley M. Tebo, William C. Ghiorse, Lorraine G. van Waasbergen, Patricia L. Siering, and Ron Caspi, p. 225 - 266 Chapter 8. Algal Deposition of Carbonates and Silicates by Elisabeth W. de Vrind-de Jong and Johannes P. M. de Vrind, p. 267 - 308 Chapter 9. Reactions of Extracellular Organic Ligands with Dissolved Metal Ions and Mineral Surfaces by Alan T. Stone, p. 309 - 344 Chapter 10. The Bacterial View of the Periodic Table: Specific Functions for All Elements by Simon Silver, p. 345 - 360 Chapter 11. Geomicrobiology of Sulfide Mineral Oxidation by D. Kirk Nordstrom and Gordon Southam, p. 361 - 390 Chapter 12. Biogeochemical Weathering of Silicate Minerals by William W. Barker, Susan A. Welch, and Jillian F. Banfield, p. 391 - 428 Chapter 13. Long-term Evolution of the Biogeochemical Carbon Cycle by David J. Des Marais, p. 429 - 448
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Monograph available for loan
    Monograph available for loan
    New York [u.a.] : Wiley & Sons
    Call number: M 10.0049 ; 10/M 98.0156
    Description / Table of Contents: Content: Partial table of contents: Hydrothermal Mineral Deposits: What We Do and Don Know (B. Skinner). Magmas and Hydrothermal Fluids (C. Burnham). Thermal Aspects of Ore Formation (L. Cathles). Oxygen and Hydrogen Isotope Relationships in Hydrothermal Mineral Deposits (H. Taylor). Hydrothermal Alteration and Its Relationship to Ore Fluid Composition (M. Reed). Sulfide Ore Mineral Stabilities, Morphologies, and Intergrowth Textures (D. Vaughan & J. Craig). Gangue Mineral Transport and Deposition (J. Rimstidt). Fluid Inclusion Studies of Hydrothermal Ore Deposits (E. Roedder & R. Bodnar). Geothermal Systems and Mercury Deposits (H. Barnes & T. Seward). Submarine Hydrothermal Systems and Deposits (S. Scott). Ore-Forming Brines in Active Continental Rifts (M. McKibben & L. Hardie). Appendix. Index.
    Type of Medium: Monograph available for loan
    Pages: xx, 972 S.
    Edition: 3rd ed.
    ISBN: 047157144X
    Classification:
    Geochemistry
    Language: English
    Location: Upper compact magazine
    Location: Reading room
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Monograph available for loan
    Monograph available for loan
    Chichester : Wiley
    Associated volumes
    Call number: 17/M 99.0009
    In: Chemical analysis
    Type of Medium: Monograph available for loan
    Pages: IX, 514 S.
    ISBN: 0471974161
    ISSN: 415,00
    Series Statement: Chemical analysis 145
    Classification:
    Geochemistry
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Monograph available for loan
    Monograph available for loan
    New York : Eldigio Press
    Call number: M 92.1221
    Type of Medium: Monograph available for loan
    Pages: 291 S.
    Edition: 2nd printing
    Classification:
    Geochemistry
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Series available for loan
    Series available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 03.0180
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Exactly 100 years before the publication of this volume, the first paper which calculated the half-life for the newly discovered radioactive substance U-X (now called 234Th), was published. Now, in this volume, the editors Bernard Bourdon, Gideon Henderson, Craig Lundstrom and Simon Turner have integrated a group of contributors who update our knowledge of U-series geochemistry, offer an opportunity for non-specialists to understand its basic principles, and give us a view of the future of this active field of research. In this volume, for the first time, all the methods for determining the uranium and thorium decay chain nuclides in Earth materials are discussed. It was prepared in advance of a two-day short course (April 3-4, 2003) on U-series geochemistry, jointly sponsored by GS and MSA and presented in Paris, France prior to the joint EGS/AGU/EUG meeting in Nice. The discovery of the 238U decay chain, of course, started with the seminal work of Marie Curie in identifying and separating 226Ra. Through the work of the Curies and others, all the members of the 238U decay chain were identified. An important milestone for geochronometrists was the discovery of 230Th (called Ionium) by Bertram Boltwood, the Yale scientist who also made the first age determinations on minerals using the U-Pb dating method (Boltwood in 1906 established the antiquity of rocks and even identified a mineral from Sri Lanka-then Ceylon as having an age of 2.1 billion years!) The application of the 238U decay chain to the dating of deep sea sediments was by Piggott and Urry in 1942 using the "Ionium" method of dating. Actually they measured 222Ra (itself through 222Rn) assuming secular equilibrium had been established between 230Th and 226Ra. Although 230Th was measured in deep sea sediments by Picciotto and Gilvain in 1954 using photographic emulsions, it was not until alpha spectrometry was developed in the late 1950's that 20Th was routinely measured in marine deposits. Alpha spectrometry and gamma spectrometry became the work horses for the study of the uranium and thorium decay chains in a variety of Earth materials. These ranged from 222Rn and its daughters in the atmosphere, to the uranium decay chain nuclides in the oceanic water column, and volcanic rocks and many other systems in which either chronometry or element partitioning, were explored. Much of what we learned about the 238U, 235U and 232Th decay chain nuclides as chronometers and process indicators we owe to these seminal studies based on the measurement of radioactivity. The discovery that mass spectrometry would soon usurp many of the tasks performed by radioactive counting was in itself serendipitous. It came about because a fundamental issue in cosmochemistry was at stake. Although variation in 235U/238U had been reported for meteorites the results were easily discredited as due to analytical difficulties. One set of results, however, was published by a credible laboratory long involved in quality measurements of high mass isotopes such as the lead isotopes. The purported discovery of 235U/238U variations in meteorites, if true, would have consequences in defining the early history of the formation of the elements and the development of inhomogeneity of uranium isotopes in the accumulation of the protoplanetary materials of the Solar System. Clearly the result was too important to escape the scrutiny of falsification implicit in the way we do science. The Lunatic Asylum at Caltech under the leadership of Jerry Wasserburg took on that task. Jerry Wasserburg and Jim Chen clearly established the constancy and Earth-likeness of 235U/238U in the samplable universe. In the hands of another member of the Lunatic Asylum, Larry Edwards, the methodology was transformed into a tool for the study of the 238U decay chain in marine systems. Thus the mass spectrometric techniques developed provided an approach to measuring the U and Th isotopes in geological materials as well as cosmic materials with the same refinement and accommodation for small sample size. Soon after this discovery the harnessing of the technique to the measurement of all the U isotopes and all the Th isotopes with great precision immediately opened up the entire field of uranium and thorium decay chain studies. This area of study was formerly the poaching ground for radioactive measurements alone but now became part of the wonderful world of mass spectrometric measurements. (The same transformation took place for radiocarbon from the various radioactive counting schemes to 'accelerator mass spectrometry.) No Earth material was protected from this assault. The refinement of dating corals, analyzing volcanic rocks for partitioning and chronometer studies and extensions far and wide into ground waters and ocean bottom dwelling organisms has been the consequence of this innovation. Although Ra isotopes, 210Pb and 210Po remain an active pursuit of those doing radioactive measurements, many of these nuclides have also become subject to the mass spectrometric approach. In this volume, for the first time, all the methods for determining the uranium and thorium decay chain nuclides in Earth materials are discussed. The range of problems solvable with this approach is remarkable-a fitting, tribute to the Curies and the early workers who discovered them for us to use.
    Type of Medium: Series available for loan
    Pages: xx, 656 S.
    ISBN: 0-939950-64-2 , 978-0-939950-64-5
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 52
    Classification:
    Geochemistry
    Language: English
    Note: Chapter 1. Introduction to U-series Geochemistry by Bernard Bourdon, Simon Turner, Gideon M. Henderson and Craig C. Lundstrom, p. 1 - 22 Chapter 2. Techniques for Measuring Uranium-series Nuclides: 1992-2002 by Steven J. Goldstein and Claudine H. Stirling, p. 23 - 58 Chapter 3. Mineral-Melt Partitioning of Uranium, Thorium and Their Daughters by Jonathan Blundy and Bernard Wood, p. 59 - 124 Chapter 4. Timescales of Magma Chamber Processes and Dating of Young Volcanic Rocks by Michel Condomines, Pierre-Jean Gauthier, and Olgeir Sigmarsson, p. 125 - 174 Chapter 5. Uranium-series Disequilibria in Mid-ocean Ridge Basalts: Observations and Models of Basalt Genesis by Craig C. Lundstrom, p. 175 - 214 Chapter 6. U-series Constraints on Intraplate Basaltic Magmatism by Bernard Bourdon and Kenneth W. W. Sims, p. 215 - 254 Chapter 7. Insights into Magma Genesis at Convergent Margins from U-series Isotopes by Simon Turner, Bernard Bourdon and Jim Gill, p. 255 - 316 Chapter 8. The Behavior of U- and Th-series Nuclides in Groundwater by Donald Porcelli and Peter W. Swarzenski, p. 317 - 362 Chapter 9. Uranium-series Dating of Marine and Lacustrine Carbonates by R. L. Edwards, C. D. Gallup, and H. Cheng, p. 363 - 406 Chapter 10. Uranium-series Chronology and Environmental Applications of Speleothems by David A. Richards and Jeffrey A. Dorale, p. 407 - 460 Chapter 11. Short-lived U/Th Series Radionuclides in the Ocean: Tracers for Scavenging Rates, Export Fluxes and Particle Dynamics by J. K. Cochran and P. Masquè, p. 461 - 492 Chapter 12. The U-series Toolbox for Paleoceanography by Gideon M. Henderson and Robert F. Anderson, p. 493 - 532 Chapter 13. U-Th-Ra Fractionation During Weathering and River Transport by F. Chabaux, J. Riotte and O. Dequincey, p. 533 - 576 Chapter 14. The Behavior of U- and Th-series Nuclides in the Estuarine Environment by Peter W. Swarzenski, Donald Porcelli, Per S. Andersson and Joseph M. Smoakv, p. 577 - 606 Chapter 15. U-series Dating and Human Evolution by A. W. G. Pike and P. B. Pettitt, p. 607 - 630 Chapter 16. Mathematical-Statistical Treatment of Data and Errors for 230Th/U Geochronology by K. R. Ludwig, p. 631 - 656
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...