ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (49)
  • PIK Library  (49)
  • AWI Reading room  (49)
Collection
  • Books  (49)
Language
Branch Library
  • 1
    Monograph available for loan
    Monograph available for loan
    Stuttgart [u.a.] : Teubner
    Call number: PIK L 800-11-0371 ; AWI G10-17-17595
    Type of Medium: Monograph available for loan
    Pages: VI, 239 S. : Ill., graph. Darst., Kt.
    ISBN: 3519034387
    Series Statement: Teubner Studienbücher der Geographie
    Language: German
    Note: Inhalt: 1 Zur Entdeckungsgeschichte der Polargebiete. - 1.1 Terra australis - ein vermuteter Südkontinent. - 1.2 Erkundungen der Arktis: Suche nach Passagen. - 1.3 Zur wissenschaftlichen Erkundung der Polargebiete. - 1.4 Deutsche Beiträge zu physisch-geographischer Polarforschung nach 1950. - 2 Abgrenzung und Flächenanteile der Polargebiete. - 2.1 Astronomische Abgrenzung und Beleuchtungsverhältnisse. - 2.2 'Geographische' Abgrenzungsmöglichkeiten gegen die Mittelbreiten. - 2.3 Allgemeine und regionale Flächenanteile der Polargebiete. - 3 Südpolargebiet (Antarktis, Antarktika) 3.1 Physisch-geographische Kennzeichen der heutigen Antarktis (Größenverhältnisse, Lagebeziehungen, Oberflächengestalt). - 3.2 Grundzüge der erdgeschichtlichen Entwicklung. - 3.3 Mineralische Rohstoffe. - 3.4 Zur Vereisungs- und Klimageschichte der Antarktis. - 3.4.1 Regionale Aspekte der Vereisungsgeschichte. - 3.4.2 Antarktische Vereisung und Klimaschwankungen im Quartär. - 3.5 Klimatische Fernwirkungen der Antarktis: Paläoklimatische und aktuelle Prozesse. - 3.5.1 Globale Abkühlung und Aridisierung. - 3.5.2 Mittelmeeraustrocknung und Vereisung der Arktis. - 3.5.3 Eiszeiten - Warmzeiten: Ursache in den Polargebieten? 4 Polarmeere: Meereis; Rolle im globalen Klimageschehen 4.1 Merkmale beider Polarmeere; Eisbildung. - 4.2 Nordpolarmeer: Meeresströme, Zirkulation. - 4.3 Südpolarmeer: Ringstrom, Zirkulation, Polynjas. - 5 Witterung und Klima des Südpolargebiets; klimatische Gliederung. - 5.1 Jahres- und Monatstemperaturen in der Antarktis. - 5.2 Niederschlagshöhe und -verteilung. - 5.3 Antarktische Windsysteme. - 5.4 Klimatische Grobgliederung der Antarktis. - 6 Vergletscherte und periglaziale Antarktis. - 6.1 Aktuelle Vergletscherung, Eisbewegung, Schelfeis. - 6.2 Periglaziale Gebiete: Ost-Antarktis / West-Antarktis. - 6.2.1 Antarktische Flora (kontinentale und maritime Antarktis). - 6.2.2 Insolations- und Frostverwitterung in der Antarktis. - 6.2.3 Biogener Gesteinszersatz. - 6.2.4 Periglaziale Ost-Antarktis. - 6.2.4.1 Physikalisch-chemische Verwitterung und Bodenbildung. - 6.2.4.2 Kennzeichen ost-antarktischer Böden und Zersatzdecken. - 6.2.4.3 Vorzeitliche Formung und rezente geomorphologische Prozesse. - 6.2.5 Maritime West-Antarktis / Antarktische Halbinsel. - 6.2.5.1 Witterung und maritimes Klima der West-Antarktis. - 6.2.5.2 Chemische Verwitterung und Bodenbildung. - 6.2.5.3 Aktuelle geomorphologische Prozesse. - 6.3 Anthropogene Eingriffe in antarktische Lebensräume. - 6.3.1 Ausbeutung mariner Ressourcen. - 6.3.2 Gefährdung durch Stationen und Tourismus. - 7 Das Nordpolargebiet (Arktis) 7.1 Physisch-geographische Kennzeichen und zonale Gliederung. - 7.2 Zur geologischen Entwicklung des Nordpolargebietes. - 7.3 Mineralische und organogene Rohstoffe; Nutzungsprobleme. - 7.4 Zur Vereisungs- und Klimageschichte der Arktis. - 7.4.1 Jungtertiärer Vereisungsbeginn in der Arktis. - 7.4.2 Jungquartäre Vereisung und Deglaziation; Klimawandel und Klimasprünge. - 7.4.3 Isostatische Landhebung: Regionale Befunde aus Kanada und Grönland. - 7.4.4 Holozäne Gletscher- und Klimaschwankungen. - 7.5 Klimatische Grundzüge des Nordpolargebietes. - 7.6 Permafrost: Verbreitung, vertikale Gliederung, Degradation. - 7.6.1 Klimatische Verbreitung, Typisierung, vertikale Gliederung. - 7.6.2 Natürliche Permafrost-Degradation. - 7.6.3 Folgen menschlicher Eingriffe; bautechnische Probleme. - 7.7 Zur aktuellen Vergletscherung des Nordpolargebietes; Vergletscherungstypen. - 7.7.1 Arktisches Inlandeis und Plateauvergletscherungen. - 7.7.2 Formen untergeordneter Vergletscherung: Eisstromnetze, Tal- und Kargletscher. - 8 Periglaziale Arktis. - 8.1 Bodenbildung und Bodentypen in der Arktis. - 8.2 Tundren - Kennzeichen arktischer Vegetation. - 8.3 Geoökologische Aspekte und ökologische Jahreszeiten. - 8.4 Periglaziale geomorphologische Prozesse und Oberflächenformen. - 8.4.1 Denudative und quasi-stationäre Prozesse. - 8.4.1.1 Formen der Materialsortierung und Kryodynamik (Kryoturbation). - 8.4.1.2 Solifluktionsprozesse / Arten der Solifluktion. - 8.4.1.3 Abluation (Abspüldenudation) und Deflation. - 8.4.1.4 Hangentwicklungsprozesse unter periglazialen Bedingungen. - 8.4.1.5 Glossar zu weiteren periglazialgeomorphologischen, hydrologischen und biotischen Formen in arktischen Tundren und Kältewüsten. - 8.4.2 Flüsse und fluviale Formung in Polargebieten. - 8.5 Arktische Völker und Naturraum; Ausbeutung der Meere. - 9 Ausblick: 'Global Change' und 'Klimakatastrophe' in den Polargebieten?. - 10 Literatur. - 11 Sachverzeichnis.
    Location: A 18 - must be ordered
    Location: AWI Reading room
    Branch Library: PIK Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Montreal [u.a.] : McGill-Queen's Univ. Press
    Call number: PIK N 630-11-0268 ; AWI Bio-17-17112
    Type of Medium: Monograph available for loan
    Pages: XVIII, 361 S. : Ill., graph. Darst., Kt.
    ISBN: 0773512411
    Language: English
    Note: Contents: Figures. - Tables. - Preface. - Illustrations. - 1. Introduction. - 1.1 Background. - 1.2 Scope of the text. - 1.3 World vegetation types. - 1.3.1 Vegetation formations and zones. - 1.3.2 Zonobiomes. - 1.3.3 Exoclimates. - 1.3.4 The Canadian vegetation classification system. - 1.3.5 Ecozones. - 1.3.6 Floristic realms. - 1.3.7 Plant species nomenclature. - 1.4 Soil classification and soil systems. - 1.5 Climatic parameters. - 1.5.1 The role of climate. - 1.5.2 Moisture indices. - 1.5.3 Climate diagrams. - 1.6 Plant strategies. - 1.6.1 Competition. - 1.6.2 Hydrature and moisture regulation. - 1.6.3 Life forms. - 1.6.4 Leaf morphology and adaptation. - 1.7 Biomass and net primary productivity. - 2. Tundra 2.1 Tundra distribution. - 2.2 Climate. - 2.3 Soils. - 2.4 Tundra in North America. - 2.4.1 Ecoclimatic sub-provinces and regions. - 2.4.2 High and mid-Arctic. - 2.4.3 Low Arctic. - 2.5 Tundra in other Northern Hemisphere locations. - 2.5.1 Arctic Tundra. - 2.5.2 Typical Tundra. - 2.5.3 Southern Tundra. - 2.5.4 Tundra on Arctic Islands. - 2.6 Tundea in the Southern Hemisphere. - 2.6.1 The Antarctic Subregion. - 2.6.2 The Sub-Antarctic Subregion. - 2.7 Alpine Tundra. - 2.7.1 Temperate-latitude alpine Tundra. - 2.7.2 Low-latitude (equatorial) alpine Tundra. - 2.8 Primary production and phytomass in Tundra. - 3. Forest-Tundra or Boreal-Tundra Ecotone. - 3.1 Definitions. - 3.2 Distribution. - 3.3 Climate. - 3.4 Soils. - 3.5 Forest-Tundra in Canada. - 3.5.1 Ecoclimatic sub-provinces. - 3.5.2 The shrub subzone (Northern Forest-Tundra). - 3.5.3 The forest subzone (Southern Forest Tundra). - 3.6 Eurasian Forest-Tundra. - 3.7 Primary production and phytomass in forest-Tundra. - 4. Boreal Forest (Taiga) and Mixed Forest Transition. - 4.1 Distribution. - 4.2 Climate. - 4.3 Soils. - 4.4 Boreal forest in North America. - 4.4.1 Open Lichen Woodland. - 4.4.2 Northern Coniferous Forest. - 4.4.3 Mixed-Forest (Boreal-Broadleaf ecotone). - 4.4.4 Mixed-Forest transition to grassland (Northern Mixedwoods). - 4.5 Eurasian Boreal. - 4.5.1 The European Boreal. - 4.5.2 The Siberian Boreal. - 4.5.3 Northwest Pacific Fringe Boreal. - 4.6 Primary production and phytomass in boreal forest. - 5. Prairie (Steppe). - 5.1 Distribution. - 5.2 Climate. - 5.2.1 North America. - 5.2.2 Climate in Eurasia and elsewhere. - 5.3 Soils. - 5.4 Prairie in North America. - 5.4.1 The Canadian Prairie. - 5.4.2 Prairie in the USA. - 5.5. Eurasian Steppe. - 5.6 Southern Hemisphere Grasslands. - 5.6.1 The High Veldt. - 5.6.2 The Pampas/Campos Grasslands. - 5.7 Primary production and biomass. - 6. Cordilleran Environments in Western North America. - 6.1 Canada's Cordilleran ecoclimatic provinces. - 6.1.1 Distribution. - 6.1.2 Climate. - 6.1.3 Soils. - 6.1.4 Pacific Coastal Mesothermal Forest. - 6.1.5 Pacific Coastal Subalpine Forest. - 6.1.6 Cordilleran Forest Region. - 6.1.7 Cordilleran Cold Steppe and Savanna Forst. - 6.1.8 Canadian Cordilleran Subalpine Forest. - 6.1.9 Alpine Tundra and Boreal Forest. - 6.2 The Cordilleran Region in the USA. - 6.2.1 Distribution. - 6.2.2 Northwest Coast Conifer-Hardwood Forests. - 6.2.3 Montane Pine Forests. - 6.2.4 Sagebrush and Grasslands. - 6.2.5 Interior Hemlock-Douglas-Fir-Larch. - 6.2.6 Subalpine Forest. - 6.3 Primary Production and Phytomass. - 7. Temperate Deciduous Forests. - 7.1 Distribution. - 7.2 Climate. - 7.3 Soils. - 7.4 Temperate Deciduous Forest in North America. - 7.4.1 Canada. - 7.4.2 United States of America. - 7.4.3 Southern Mexico and South America. - 7.5 Europe. - 7.5.1 Atlantic Deciduous Forest. - 7.5.2 Central European Deciduous Forest. - 7.5.3 East European Deciduous Forest. - 7.6 Asia. - 7.7 Southern Hemisphere. - 7.8 Primary Production and Phytomass. - 8. Wetlands. - 8.1 Introduction. - 8.2 Climate. - 8.3 Soils. - 8.4 Canadian Wetland Classification. - 8.4.1 Canadian Wetland Classification System. - 8.4.2 Wetland classes. - 8.4.3 Wetland forms and types. - 8.5 Canadian Wetlands. - 8.5.1 Arctic Wetlands. - 8.5.2 Subarctic Wetlands. - 8.5.3 Boreal Wetlands. - 8.5.4 Prairie Wetlands. - 8.5.5 Temperate Wetlands. - 8.5.6 Oceanic Wetlands. - 8.5.7 Mountain Wetlands. - 8.6 Wetlands in the USA. - 8.7 Eurasian Wetlands. - 8.7.1 European Wetlands. - 8.7.2 Asian Wetlands. - 8.8 Central and South American Wetlands. - 8.9 African Wetlands. - 8.10 Austromalesian and Pacific Wetlands. - 8.11 Phytomass and Primary Production. - 9. Conclusion. - Appendix: Biomials and their local names as used in the text. - Bibliography. - Index.
    Location: A 18 - must be ordered
    Location: AWI Reading room
    Branch Library: PIK Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: PIK N 455-99-0342 ; AWI A13-00-0146
    Type of Medium: Monograph available for loan
    Pages: 255 Seiten , Illustrationen
    ISBN: 3540658300 , 3-540-65830-0
    Language: German
    Note: Inhaltsverzeichnis 1 Einführung 1.1 Übersicht 1.2 Modernes naturwissenschaftliches Klimaverständnis 1.3 Modelle in der Klimaforschung 2 Klimarelevante Prozesse 2.1 Energie und Strahlung 2.1.1 Strahlung 2.1.2 Wärmetrausporte 15 2.1.3 Transport von Energie im Wasserkreislauf 2.2 Dynamik der Atmosphäre 2.2.1 Erzeugung von Bewegung 2.2.2 Vertikalstruktur der Atmosphäre 2.2.3 Allgemeine Zirkulation 2.2.4 Regionale Strukturen 2.2.5 Turbulenz 2.2.6 Aerosolpartikel 2.2.7 Wolken und Niederschlag 2.3 Zirkulation des Ozeans 2.3.1 Meeresoberflächenströmungen 2.3.2 Tiefenzirkulation 2.3.3 Wellen und Wirbel 2.4 Spurenstoffkreisläufe 2.4.1 Wasserdampf 2.4.2 Kohlendioxid 2.4.3 Methan 2.4.4 Stickstoffverbindungen 2.5 Kryosphäre 3 Natürliche Klimavariabilität 3.1 Jahres- und Tagesgang 3.2 Wetter 3.3 Interannuale Klimaschwankungen 3.3..1 ENSO-Phänomen 3.3.2 Nordatlantische Oszillation 3.3.3 Temperaturentwicklung seit 1900 3.3.4 Die Frage der Sonnenflecken 3.1 Homogenitätsproblematik 3.5 Historische Klimavariationen 3.6 Paläoklimatologie 3.6.1 Vereisungen 3.6.2 Klimarekonstruktion der Kalt- und Warmzeiten 3.6.3 Milanković-Theorie 4 Konzeptionelle Modelle 4.1 Klimazonen 4.2 Ein exemplarisches Energiebilanzmodell 4.2.1 Vereinfachte Bilanzgleichung für Energie 4.2.2 Diskretisierung 4.2.3 Schließung der Gleichung 4.2.4 Berechnungen: Integration 4.3 Physikalisch orientierte Modelle 4.4 Nichtlinearität und Chaos 4.5 Fluktuationen als stochastische Vorgänge 4.6 Wechselwirkungen verschiedener Prozesse 4.6.1 Gedämpftes System mit Störungen 4.6.2 Wirkung von positiven Rückkopplungen 5 Grundlagen von Strömungsmodellen 5.1 Grundgleichungen der Strömungs- und Thermodynamik 5.1.1 Zustandsvariablen 5.1.2 Gesetz der Massenerhaltung 5.1.3 Prinzip der Energieerhaltung 5.1.4 Impulserhaltung 5.1.5 Massenbilanzen für Beimengungen 5.1.6 Zustandsgleichungen 5.1.7 Zusammenfassung 5.2 Diskretisierung 5.2.1 Räumliche Diskretisierung 5.2.2 Zeitliche Diskretisierung 5.3 Parametrisierung und subskalige Prozesse 5.3.1 Schließungsproblem 5.3.2 Beispiel 1: Turbulenz 5.3.3 Beispiel 2: Konvektion und Wolkenbildung 5.3.4 Kritische Übersicht 5.4 Numerische Integration 6 Realitätsnahe Modelle des Klimasystems 6.1 Wettervorhersagemodelle 6.2 Modelle zur Klimasimulation 6.2.1 Methodik von Simulationen 6.2.2 Wechselwirkung von Atmosphäre und Ozean 6.2.3 Klimadrift und Flußkorrektur 6.2.4 Technische Details 6.2.5 Modellierung von Stoffkreisläufen und Biosphäre 6.3 Simulationen von Klimazuständen 6.3.1 Kontrollsimulationen des derzeitigen Klimas 6.3.2 Rekonstruktion von Paläoklimaten 6.3.3 Klimate anderer Planeten 6.3.1 Regionale und lokale Strukturen 6.4 Numerische Experimente mit Modellen 6.1.1 Zielsetzung 6.4.2 Wirksamkeit von Prozessen 6.4.3 Einschwingzeit der Atmosphäre 6.4.4 Sensitivität gegenüber Randbedingungen 6.5 Anwendung zur Klimavorhersage 6.5.1 Prognosen des ENSO-Phänomens 6.5.2 Großskalige Ölbrände in Kuwait 6.6 Beurteilung der Klimamodelle 7 Anthropogene Klimänderung 7.1 Übersicht 7.2 Emissions- und Konzentrations-Szenarien 7.2.1 Szenarien zukünftiger Emissionen 7.2.2 Erwartete Konzentrationen der Treibhausgase 7.3 Klimaszenarien realitätsnaher Modelle 7.3.1 Transiente Szenarienrechnungen 7.3.2 Ergebnisse eines exemplarischen Klima-Szenarios 7.3.3 Problem Kaltstart 7.3.4 2 x CO2-Simulationen 7.3.5 Informationswert von Szenarienrechnungen 7.3.6 Kritische Bewertung der Szenarien 7.4 Nachweis anthropogener Klimabeeinflussung 7.4.1 Zielsetzung 7.4.2 Natürliche Variabilität 7.4.3 Gewichtungsmuster und Nachweisvariable 7.4.4 Nachweis 7.4.5 Beurteilung 7.5 Lokale und regionale Szenarien 7.5.1 Hochaufgelöste Zeitscheibenexperimente 7.5.2 Regionalmodelle 7.5.3 Empirische Modelle 7.5.4 Implikationen 8 Klima und Gesellschaft 8.1 Übersicht 8.2 Historischer Überblick : gesellschaftliche Vorstellungen zum Einfluß von Klima 8.3 Klimafolgenforschung 8.3.1 Grundproblematik 8.3.2 Direkt beeinflußte Systeme 8.3.3 Indirekt beeinflußte Systeme 8.4 Ökonomische Aspekte des Klimawandels 8.4.1 Klimaänderung als Kostenfaktor 8.4.2 Ein zeitabhängiges Sechs-Komponenten-Modell 8.4.3 Beurteilung 8.4.4 Übersicht Klimapolitik 8.5 Vorstellungen von Klimawandel 8.5.1 Problemstellung 8.5.2 Natürliche Variabilität versus Kausalitätsdenken 8.5.3 Die Kempton-Studie 8.5.4 Soziale Interpretationsmechanismen 9 Résumé 10 Anhang 11 Literatur Stichwortverzeichnis
    Location: A 18 - must be ordered
    Location: AWI Reading room
    Branch Library: PIK Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: PIK N 456-03-0125 ; AWI G5-04-0014
    In: International geophysics series, Volume 80
    Type of Medium: Monograph available for loan
    Pages: XXIX, 354 Seiten , Illustrationen
    ISBN: 0126173311 , 0-12-617331-1
    Series Statement: International geophysics series 80
    Language: English
    Note: Contents Prologue Acknowledgments List of Symbols PART I Foundations 1 INTRODUCTION: The Basic Challenge 1.1 The Climate System 1.2 Some Basic Observations 1.3 External Forcing 1.3.1 Astronomical Forcing 1.3.2 Tectonic Forcing 1.4 The Ice-Age Problem 2 TECHNIQUES FOR CLIMATE RECONSTRUCTION 2.1 Historical Methods 2.1.1 Direct Quantitative Measurements 2.1.2 Descriptive Accounts of General Environmental Conditions 2.2 Surficial Biogeologic Proxy Evidence 2.2.1 Annually Layered Life Forms 2.2.2 Surface Geomorphic Evidence 2.3 Conventional Nonisotopic Stratigraphic Analyses of Sedimentary Rock and Ice 2.3.1 Physical Indicators 2.3.2 Paleobiological Indicators (Fossil Faunal Types and Abundances) 2.4 Isotopic Methods 2.4.1 Oxygen Isotopes 2.4.2 Deuterium and Beryllium in Ice Cores 2.4.3 Stable Carbon Isotopes 2.4.4 Strontium and Osmium Isotopes 2.5 Nonisotopic Geochemical Methods 2.5.1 Cadmium Analysis 2.5.2 Greenhouse Gas Analysis of Trapped Air in Ice Cores 2.5.3 Chemical and Biological Constituents and Dust Layers in Ice Cores 2.6 Dating the Proxy Evidence (Geochronometry) 3 A SURVEY OF GLOBAL PALEOCLIMATIC VARIATIONS 3.1 The Phanerozoic Eon (Past 600 My) 3.2 The Cenozoic Era (Past 65 My) 3.3 The Plio-Pleistocene (Past 5 My) 3.4 Variations during the Last Ice Age: IRD Events 3.5 The Last Glacial Maximum (20 ka) 3.6 Postglacial Changes: The Past 20 ky 3.7 The Past 100 Years 3.8 The Generalized Spectrum of Climatic Variance 3.9 A Qualitative Discussion of Causes 4 GENERAL THEORETICAL CONSIDERATIONS 4.1 The Fundamental Equations 4.2 Time Averaging and Stochastic Forcing 4.3 Response Times and Equilibrium 4.4 Spatial Averaging 4.5 Climatic-Mean Mass and Energy Balance Equations 4.5.1 The Water Mass Balance 4.5.2 Energy Balance 5 SPECIAL THEORETICAL CONSIDERATIONS FOR PALEOCLIMATE: Structuring a Dynamical Approach 5.1 A Basic Problem: Noncalculable Levels of Energy and Mass Flow 5.2 An Overall Strategy 5.3 Notational Simplifications for Resolving Total Climate Variability 5.4 A Structured Dynamical Approach 5.5 The External Forcing Function, F 5.5.1 Astronomical/Cosmic Forcing 5.5.2 Tectonic Forcing 6 BASIC CONCEPTS OF DYNAMICAL SYSTEMS ANALYSIS: Prototypical Climatic Applications 6.1 Local (or Internal) Stability 6.2 The Generic Cubic Nonlinearity 6.3 Structural (or External) Stability: Elements of Bifurcation Theory 6.4 Multivariable Systems 6.4.1 The Two-Variable Phase Plane 6.5 A Prototype Two-Variable Model 6.5.1 Sensitivity of Equilibria to Changes in Parameters: Prediction of the Second Kind 6.5.2 Structural Stability 6.6 The Prototype Two-Variable System as a Stochastic-Dynamical System: Effects of Random Forcing 6.6.1 The Stochastic Amplitude 6.6.2 Structural Stochastic Stability 6.7 More Than Two-Variable Systems: Deterministic Chaos PART II Physics of the Separate Domains 7 MODELING THE ATMOSPHERE AND SURFACE STATE AS FAST-RESPONSE COMPONENTS 7.1 The General Circulation Model 7.2 Lower Resolution Models: Statistical-Dynamical Models and the Energy Balance Model 7.2.1 A Zonal-Average SDM 7.2.2 Axially Asymmetric SDMs 7.2.3 The Complete Time-Average State 7.3 Thermodynamic Models 7.3.1 Radiative-Convective Models 7.3.2 Vertically Averaged Models (the EBM) 7.4 The Basic Energy Balance Model 7.5 Equilibria and Dynamical Properties of the Zero-Dimensional (Global Average) EBM 7.6 Stochastic Resonance 7.7 The One-Dimensional (Latitude-Dependent) EBM 7.8 Transitivity Properties of the Atmospheric and Surface Climatic State: Inferences from a GCM 7.9 Closure Relationships Based on GCM Sensitivity Experiments 7.9.1 Surface Temperature Sensitivity 7.10 Formal Feedback Analysis of the Fast-Response Equilibrium State 7.11 Paleoclimatic Simulations 8 THE SLOW-RESPONSE "CONTROL" VARIABLES: An Overview 8.1 The Ice Sheets 8.1.1 Key Variables 8.1.2 Observations 8.2 Greenhouse Gases: Carbon Dioxide 8.3 The Thermohaline Ocean State 8.4 A Three-Dimensional Phase-Space Trajectory 9 GLOBAL DYNAMICS OF THE ICE SHEETS 9.1 Basic Equations and Boundary Conditions 9.2 A Scale Analysis 9.3 The Vertically Integrated Ice-Sheet Model 9.4 The Surface Mass Balance 9.5 Basal Temperature and Melting 9.6 Deformable Basal Regolith 9.7 Ice Streams and Ice Shelves 9.8 Bedrock Depression 9.9 Sea Level Change and the Ice Sheets: The Depression-Calving Hypothesis 9.10 Paleoclimatic Applications of the Vertically Integrated Model 9.11 A Global Dynamical Equation for Ice Mass 10 DYNAMICS OF ATMOSPHERIC CO2 10.1 The Air-Sea Flux, Q↑ 10.1.1 Qualitative Analysis of the Factors Affecting Q↑ 10.1.2 Mathematical Formulation of the Ocean Carbon Balance 10.1.3 A Parameterization for Q↑ 10.2 Terrestrial Organic Carbon Exchange, W↑G 10.2.1 Sea Level Change Effects 10.2.2 Thermal Effects 10.2.3 Ice Cover Effects 10.2.4 Long-Term Terrestrial Organic Burial, W↓G 10.2.5 The Global Mass Balance of Organic Carbon 10.3 Outgassing Processes, V↑ 10.4 Rock Weathering Downdraw, W↓ 10.5 A Global Dynamical Equation for Atmospheric CO2 10.6 Modeling the Tectonically Forced CO2 Variations, µˆ : Long-Term Rock Processes 10.6.1 The Long-Term Oceanic Carbon Balance 10.6.2 The GEOCARB Model 10.7 Overview of the Full Global Carbon Cycle 11 SIMPLIFIED DYNAMICS OF THE THERMOHALINE OCEAN STATE 11.1 General Equations 11.1.1 Boundary Conditions 11.2 A Prototype Four-Box Ocean Model 11.3 The Wind-Driven, Local-Convective, and Baroclinic Eddy Circulations 11.3.1 The Wind-Driven Circulation: Gyres and Upwelling 11.3.2 Local Convective Overturnings and Baroclinic Eddy Circulations 11.4 The Two-Box Thermohaline Circulation Model: Possible Bimodality of the Ocean State 11.4.1 The Two-Box System 11.4.2 A Simple Model of the TH Circulation 11.4.3 Meridional Fluxes 11.4.4 Dynamical Analysis of the Two-Box Model 11.5 Integral Equations for the Deep Ocean State 11.5.1 The Deep Ocean Temperature 11.5.2 The Deep Ocean Salinity 11.6 Global Dynamical Equations for the Thermohaline State: θ and Sφ PART III Unified Dynamical Theory 12 THE COUPLED FAST- AND SLOW-RESPONSE VARIABLES AS A GLOBAL DYNAMICAL SYSTEM: Outline of a Theory of Paleoclimatic Variation 12.1 The Unified Model: A Paleoclimate Dynamics Model 12.2 Feedback-Loop Representation 12.3 Elimination of the Fast-Response Variables: The Center Manifold 12.4 Sources of Instability: The Dissipative Rate Constants 12.5 Formal Separation into Tectonic Equilibrium and Departure Equations 13 FORCED EVOLUTION OF THE TECTONIC-MEAN CLIMATIC STATE 13.1 Effects of Changing Solar Luminosity and Rotation Rate 13.1.1 Solar Luminosity (S) 13.1.2 Rotation Rate (Ω) 13.2 General Effects of Changing Land-Ocean Distribution and Topography (h) 13.3 Effects of Long-Term Variations of Volcanic and Cosmic Dust and Bolides 13.4 Multimillion-Year Evolution of CO2 13.4.1 The GEOCARB Solution 13.4.2 First-Order Response of Global Ice Mass and Deep Ocean Temperature to Tectonic CO2 Variations 13.5 Possible Role of Salinity-Driven Instability of the Tectonic-Mean State 13.6 Snapshot Atmospheric and Surficial Equilibrium Responses to Prescribed y-Fields Using GCMs 14 THE LATE CENOZOIC ICE-AGE DEPARTURES: An Overview of Previous Ideas and Models 14.1 General Review: Forced vs. Free Models 14.1.1 Models in Which Earth-Orbital Forcing Is Necessary 14.1.2 Instability-Driven (Auto-oscillatory) Models 14.1.3 Hierarchical Classification in Terms of Increasing Physical Complexity 14.2 Forced Ice-Line Models (Box 1, Fig. 14-1) 14.3 Ice-Sheet Inertia Models 14.3.1 The Simplest Forms (Box 2) 14.3.2 More Physically Based Ice-Sheet Models: First Applications 14.3.3 Direct Bedrock Effects (Box 3) 14.3.4 Bedrock-Calving Effects (Box 4) 14.3.5 Basal Meltwater and Sliding (Box 5) 14.3.6 Ice Streams and Ice Shelf Effects 14.3.7 Continental Ice-Sheet Movement (Box 6) 14.3.8 Three-Dimensional (λ, φ, hI) Ice-Sheet Models 14.4 The Need for Enhancement of the Coupled Ice-Sheet/Atmospheric Climate Models 14.5 Ice-Sheet Variables Coupled with Additional Slow-Response Variables 14.5.1 Regolith Mass, mr (Box 7) 14.5.2 The Deep Ocean Te
    Location: A 18 - must be ordered
    Location: AWI Reading room
    Branch Library: PIK Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Monograph available for loan
    Monograph available for loan
    Cambridge [u.a.] : Univ. Press
    Associated volumes
    Call number: PIK N 456-93-0053 ; AWI A7-92-0493 ; MOP 47817
    In: Cambridge atmospheric and space science series
    Type of Medium: Monograph available for loan
    Pages: XVIII, 316 S. ; Abb. ; 24 cm
    ISBN: 0521380529
    Series Statement: Cambridge atmospheric and space science series
    Location: A 18 - must be ordered
    Location: AWI Reading room
    Location: MOP - must be ordered
    Branch Library: PIK Library
    Branch Library: AWI Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Monograph available for loan
    Monograph available for loan
    San Diego [u.a.] : Acad. Press
    Associated volumes
    Call number: PIK N 455-00-0200 ; PIK N 455-92-0599 ; AWI A6-92-0277 ; PIK N 455-00-0523
    In: International geophysics series
    Type of Medium: Monograph available for loan
    Pages: X, 511 S. , Ill., graph. Darst.
    Edition: 3rd ed.
    ISBN: 012354355X
    Series Statement: International geophysics series 48
    Note: Contents: Preface. - 1. Introduction. - 1.1 The atmospheric continuum. - 1.2 Physical dimensions and units. - 1.3 Scale analysis. - 1.4 The fundamental forces. - 1.5 Nininertial reference frames and "apparent" forces. - 1.6 Structure of the static atmosphere. - Problems. - Suggested references. - 2. The basic conservation laws. - 2.1 Total differentiation. - 2.2 The vectorial form of the momentum equation in rotating coordinates. - 2.3 The component equations in spherical coodinates. - 2.4 Scale analysis of the equations of motion. - 2.5 The continuity equation. - 2.6 The thermodynamic energy equation. - 2.7 Thermodynamics of the dry atmosphere. - Problems. - Suggested references. - 3. Elementary applications of the basic equations. - Chapter 3 Elementary Applications of the Basic Equations. - 3.1 The Basic Equations in Isobaric Coordinates. - 3.2 Balanced Flow. - 3.3 Trajectories and Streamlines. - 3.4 The Thermal Wind. - 3.5 Vertical Motion. - 3. 6 Surface Pressure Tendency. - Problems. - 4 Circulation and Vorticity. - 4.1 The Circulation Theorem. - 4.2 Vorticity. - 4.3 Potential Vorticity. - 4.4 The Vorticity Equation. - 4.5 The Barotropic (Rossby) Potential Vorticity Equation. - 4.6 The Baroclinic (Ertel) Potential Vorticity Equation. - Problems. - Suggested References. - 5 The Planetary Boundary Layer. - 5.1 Atmospheric Turbulence. - 5.2 Turbulent Kinetic Energy. - 5.3 Planetary Boundary Layer Momentum Equations. - 5.4 Secondary Circulations and Spin-Down. - Problems. - Suggested References. - 6 Synoptic-Scale Motions 1: Quasi-geostrophic Analysis. - 6.1 The Observed Structure of Extratropical CircuIations. - 6.2 The Quasi-geostrophic Approximation. - 6.3 Quasi-geostrophic Prediction. - 6.4 Diagnosis of Vertical Motion. - 6.5 Idealized Model of a Baroclinic Disturbance. - Problems. - Suggested References. - 7 Atmospheric Oscillations: Linear Perturbation Theory. - 7.1 The Perturbation Method. - 7.2 Properties of Waves. - 7.3 Simple Wave Types. - 7.4 Internal Gravity (Buoyancy) Waves. - 7.5 Inertio-gravity Waves. - 7.6 Adjustment to Geostrophic Balance. - 7.7 Rossby Waves. - Problems. - Suggested References. - 8 Synoptic-Scale Motions II: Baroclinic Instability. - 8.1 Hydrodynamic Instability. - 8.2 Baroclinic Instability: A Two-Layer Model. - 8.3 The Energetics of Baroclinic Waves. - 8.4 Baroclinic Instability of a Continuously Stratified Atmosphere. - Problems. - Suggested References. - 9 Mesoscale Circulations. - 9.1 Energy Sources for Mesoscale Circulations. - 9.2 Fronts and Frontogenesis. - 9.3 Symmetric Instability. - 9.4 Mountain Waves. - 9.5 Cumulus Convection. - 9.6 Convective Storms. - 9.7 Hurricanes. - Problems. - Suggested References. - 10 The General Circulation. - 10.1 The Nature of the Problem. - 10.2 The Zonally Averaged Circulation. - 10.3 The Angular Momentum Budget. - 10.4 The Lorenz Energy Cycle. - 10.5 Longitudinally Dependent Time-Averaged Flow. - 10.6 Low-Frequency Variability. - 10.7 Laboratory Simulation of the General Circulation. - 10.8 Numerical Simulation of the General Circulation. - Problems. - Suggested References. - 11 Tropical Dynamics. - 11.1 The Observed Structure of Large-Scale Tropical Circulations. - 11.2 Scale Analysis of Large-Scale Tropical Motions. - 11.3 Condensation Heating. - 11.4 Equatorial Wave Theory. - 11.5 Steady Forced Equatorial Motions. - Problems. - Suggested References. - 12 Middle Atmosphere Dynamics. - 12.1 Structure and Circulation of the Middle Atmosphere. - 12.2 The Zonal Mean Circulation of the Middle Atmosphere. - 12.3 Venically Propagating Planetary Waves. - 12.4 Sudden Stratospheric Warmings. - 12.5 Waves in the Equatorial Stratosphere. - 12.6 The Quasi-biennial Oscillation. - 12.7 The Ozone Layer. - Problems. - Suggested References. - 13 Numerical Modeling and Prediction. - 13.1 Historical Background. - 13.2 Filtering Meteorological Noise. - 13.3 The Finite Difference Method. - 13.4 The Barotropic Vonicity Equation in Finite Differences. - 13.5 The Spectral Method. - 13.6 Primitive Equation Models. - 13.7 Data Assimilation. - 13.8 Predictability. - Problems. - Suggested References. - Appendix A Useful Constants and Parameters. - Appendix B List of Symbols. - Appendix C Vector Analysis. - Appendix D Equivalent Potential Temperature. - Appendix E Standard Atmosphere Data. - ANSWERS TO SELECTED PROBLEMS. - BIBLIOGRAPHY. - INDEX. - INTERNATIONAL GEOPHYSICS SERIES
    Location: A 18 - must be ordered
    Location: A 18 - must be ordered
    Location: AWI Reading room
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Branch Library: PIK Library
    Branch Library: AWI Library
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: PIK M 311-01-0581 ; AWI A13-00-0040
    Description / Table of Contents: The author describes the stochastic (probabilistic) approach to the study of changes in the climate system. Climatic data and theoretical considerations suggest that a large part of climatic variation/variability has a random nature and can be analyzed using the theory of stochastic processes. This work summarizes the results of processing existing records of climatic parameters as well as appropriate theories: from the theory of random processes (based on the results of Kolmogorov and Yaglom) and Hasselmann's "stochastic climate model theory" to recently obtained results.
    Type of Medium: Monograph available for loan
    Pages: XIII, 282 Seiten , Illustrationen
    ISBN: 354066310X , 3-540-66310-X
    Language: English
    Note: Contents Introduction 1 Climatic System: Data, Processes, Scales, and Deterministic Models 1.1 Main Components of the Climate System 1.1.1 "Thick" Subsystems 1.1.2 "Thin" Subsystems 1.1.3 Local and Discrete Objects 1.2 Climate Processes 1.2.1 Overview of Climate Processes 1.2.2 External Climate Mechanisms 1.2.3 Internal Mechanisms of Climatie Variations 1.2.4 Transfer-Accumulation Processes 1.3 Scales of Climatic Variability 1.3.1 Spatial Scales 1.3.2 Temporal Scales 1.4 Deterministic Climate Models 1.4.1 General Circulation Models and Coupled Models 1.4.2 Other Types of Climate Models 1.5 Observational Basis for Stochastic Climate Theory 1.5.1 Data on Variability of "Thick" Climatic Subsystems 1.5.1.1 Near-Surface Air Temperature 1.5.1.2 Other Atmospheric Variables 1.5.1.3 Sea Surface Temperature 1.5.1.4 Sea Level 1.5.1.5 lce Sheets 1.5.2 Data on Variables of Thin Earth Covers 1.5.2.1 Snow Cover 1.5.2.2 Sea lce 1.5.2.3 Vegetation Cover 1.5.3 Data on Discrete and Local Climatic Objects 1.5.3.1 River Runoff 1.5.3.2 Lakes 1.5.3.3 Mountain Glaciers 1.5.4 Conclusions on Observational Data 2 Theoretical Foundations of the Stochastic Approach to Climate Variability Studies 2.1 Basic Ideas and Principles of the Stochastic Climate Theory 2.1.1 Mathematical Models and Natural Processes 2.1.2 A Climatic Variable as a Random Variable 2.1.3 Evolution of a Climatic Variable as a Random Function 2.1.4 Stationarity of Climatic Processes 2.2 Introduction to the Theory of Random Functions with Emphasis on Climate Variability 2.2.1 Moments, Mean Value, Correlation Function 2.2.2 The Ergodicity of Climate Variability 2.2.3 Examples of Stationary Random Sequences 2.2.3.1 Uncorrelated Random Variables 2.2.3.2 Moving Averages 2.2.4 Spectral Representation of the Random Process 2.2.5 Climatic Meanings of the Spectral Distribution Function 2.2.6 Spectral Representation of Stationary Sequences 2.2.7 The Markov Sequence 2.2.8 The Discrete Wiener Process 2.2.9 Other Types of Random Functions 2.2.9.1 Autoregressive Models 2.2.9.2 Seasonal Models 2.2.9.3 Threshold Models 2.3 Estimation of Model Parameters 2.3.1 Theoretical Models and the Practice of Model Identification 2.3.2 Informational Approach to the Identification of Stochastic Models 2.3.3 Maximum Entropy Method and Autoregressive Models 2.3.4 Model Identification and Estimation of Model Parameters 2.3.5 An Example ofModel Identification and Parameter Estimation 2.3.6 Frequency Truncation Method of Normalized Spectral Estimates 2.3.7 Other Methods of Time Series Processing 2.3.7.1 Conventional Methods. Moving Average and ARMA models 2.3.7.2 "Deterministic Chaos". Other Methods of Nonlinear Analysis 2.4 Physical Basis of the Stochastic Climate Theory 2.4.1 Atmospheric Forcing ofthe Climate System 2.4.1.1 Observational Evidence 2.4.1.2 Atmospheric Model Results 2.4.1.3 Simple Nonlinear Model as Analog of Atmospheric Forcing 2.4.2 Hasselmann's Stochastic Climate Models 2.4.2.1 Hypothesis on Weather-Climate Two-Scale Separation 2.4.2.2 Classification of Climate Models 2.4.2.3 Analogies with Turbulent Fluid, Brownian Motion, and Other Physical Processes. The Central Limit Theorem 2.4.2.4 Spectra and Correlation Functions of the Stochastic Climate Models. Models Without Feedback 2.4.2.5 Models with Feedback 3 Stochastic Models of Recent Climatic Changes 3.1 Changes in Thick Climatic Subsystems 3.1.1 Local Changes 3.1.1.1 Analysis of Observational Data 3.1.1.2 Local Stochastic Dynamical Models 3.1.2 Regional, Spatially Averaged, and Two-Dimensional Patterns 3.1.2.1 20 Stochastic Patterns of Observational Data 3.1.2.2 Stochastic Dynamical Regional Models 3.1.2.3 Stochastic Models of ENSO Events 3.1.3 Globally Averaged Climate Variables 3.1.3.1 Global Water Mass Exchange. Global Mean Sea Level 3.1.3.2 Global Temperatures 3.1.3.3 "Minus Two" Law of Climatic Variability 3.1.3.4 Stochastic Dynamical Models of Global Temperatures 3.1.3.5 Local-Global Polarization Phenomenon 3.2 Variabilities of Thin Climatic Subsystems 3.2.1 Analyzed Oata 3.2.1.1 37 GHz Polarization Oifference and Related Data 3.2.1.2 Snow and Sea lce Remotely Sensed Data 3.2.1.3 Related Satellite-Based and Conventional Data on Global Air and Sea Temperatures 3.2.2 Comparison of Results for Remotely Sensed and Conventional Data 3.2.2.1 Comparison of Results on Local Scales 3.2.2.2 Globally Averaged 37 GHz Polarization Difference Data. Concentration of Carbon Dioxide in the Atmosphere 3.2.3 Results of Stochastic Analysis of Local and Regional Hydrological Changes 3.2.3.1 Results of 37 GHz PD Data Analysis for Floodable Areas 3.2.3.2 Results for 37 GHz PD Data on Vegetation Cover in Different Natural Zones 3.2.4 Results of Analysis of Global Changes in Hydrological and Related Parameters 3.2.5 Modeling the Dynamics of Thin Subsystems 3.2.6 Local-Global Polarization Phenomenon and Thin Climatic Subsystems 3.2.7 Discussion on the Global Climatic Subsystems 3.3 Changes in Local and Discrete Climatic Objects 3.3.1 Rivers and River Runoff 3.3.2 Mountain Glaciers 4 Stochastic Models for Glacial Cycles 4.1 Stochastic Analysis of Reconstructed Data on Glacial Cycles 4.1.1 Existing Paleoreconstructed Time Series 4.1.2 Results of Stochastic Analysis of the Last Deglaciation Period, 0 - 18 ka B.P. 4.1.3 Analysis of 200 - 300 ka Time Series 4.1.4 Longer Time Series. Features of Cyclicity 4.1.5 High Resolution Paleorecords 4.2 Zero-Dimensional Model of Glacial Cycles 4.2.1 Hypotheses, Assumptions, and Equations 4.2.2 Results of Numerical Experiments 4.3 Two-Dimensional Stochastic Dynamical Model of Glacial Cycles 4.3.1 Mathematical Model, Parameters, and Experiments 4.3.1.1 Computational Area 4.3.1.2 Equations and Parameters of the Model 4.3.1.3 Numerical Experiments 4.3.2 Results 4.3.2.1 Experiments Without External Forcing 4.3.2.2 Experiments With External Forcing. Globally Averaged Results 4.3.2.3 Zonally Averaged Results 4.3.2.4 Regional Results Conclusion References Index
    Location: A 18 - must be ordered
    Location: AWI Reading room
    Branch Library: PIK Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: AWI A5-00-0057 ; PIK N 454-97-0305
    Type of Medium: Monograph available for loan
    Pages: XVII, 429 Seiten , Illustrationen
    ISBN: 0792343298
    Series Statement: The Geo-Journal Library 38
    Language: English
    Note: CONTENTS Preface List of Contributors Introduction 1. Predicting the Hydrological Effects of Climate Change / J.A.A. Jones Section I Sensitivity of the Global Hydrosphere Section Summary 2. An Introduction to Global Water Dynamics / I. Kayane 3. Modelling the Biospheric Aspects of the Hydrological Cycle: Upscaling Processes and Downscaling Weather Data / B. Bass, N. Akkur, J. Russo and J. Zack 4. Trends in Historical Steamflow Records / F.H.S. Chiew and T.A. McMahon Section II Regional Implications of Global Warming Section Summary 5. Hydrology of Northern North America under Global Warming / M.-K. Woo 6. Current Evidence on the Likely Impact of Global Warming on Hydrological Regimes in Europe / J.A.A. Jones 7. The Impact of Climatic Warming on Hydrological Regimes in China: An Overview / L. Changming and F. Guobin Section. Ill Precipitation Change and Variability Section Summary 8. The Influence of Topography, Season and Circulation on Spatial Patterns of Daily Precipitation / P.J. Robinson 9. Use of Artificial Neural Networks in Precipitation Forecasting / H.-T. Kung, L.Yu. Lin and S. Malasri 10. Generation of Sequences of Air Temperature and Precipitation for Estimation of the Hydrological Cycle in Changing Climatic Conditions in Poland / M. Gutry-Korycka and P. Werner 11. Some Aspects of Climatic Fluctuation at Four Stations on the Tibetan Plateau during the Last 40 Years / M. Yoshino 12. The Influences of the North Atlantic Oscillation, the El Niiio/Southern Oscillation and the Quasi-Biennial Oscillation on Winter Precipitation in Ireland / S. Daultrey Section IV Impacts on Snow, Ice and Meltwaters Section Summary 13. Runoff Formation and Discharge Modelling of a Glacierized Basin in the Tianshan Mountains / K. Ersi, S. Yafeng, A. Ohmura and H. Lang 14. Impact of Future Climate Change on Glacier Runoff and the Possibilities for Artificially Increasing Melt Water Runoff in the Aral Sea Basin / A.N. Krenke and G.N. Kravchenko 15. Glaciers and Snowcover in Central Asia as Indicators of Climate Change in the Earth-Ocean-Atmosphere System / V.B. Aizen and E.M. Aizen 16. Global Warming and the Trend toward Dryness in the Frigid High Mountains and Plateau of Western China / L.-S. Zhang Section V The Water Balance and Changing Regional Resources Section Summary 17. A Method to Assess the Effects of Climatic Warming on the Water Balance of Mountainous Regions / C. Liu and M.-K. Woo 18. Sensitivity Analyses for the Impact of Global Warming on Water Resources in Wales / C.P. Holt and J.A.A. Jones 19. Potential Hydrological Responses to Climate Change in Australia / F.H.S. Chiew, Q.J. Wang, T.A. McMahon, B.C. Bates and P.H. Whetton 20. Dynamics of Stage Fluctuation in Yangzhouyongcuo Lake, Tibetan Plateau / T. Liu 21. Derivation of Surface Temperature, Albedo, and Radiative Fluxes over the Tibetan Plateau Based on Satellite Measurement / L. Shi 22. Climatic Warming and its Impact on the Water Resources of the Yalong River, China / D. Yuren and H. Yuguang 23. The Probable Impact of Global Change on the Water Resources of Patagonia, Argentina / R.M. Quintela, O.E. Scarpati, L.B. Spescha and AD. Capriolo 24. Long Term Trends in the Water Balance of Central Japan / K. Mori Conclusions 25. The Impact of Global Warming on Regional Hydrology and Future Research Priorities / J.A.A. Jones Index
    Location: AWI Reading room
    Location: A 18 - must be ordered
    Branch Library: AWI Library
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Monograph available for loan
    Monograph available for loan
    Chichester [u.a.] : Wiley
    Call number: PIK M 370-92-0667 ; AWI A13-92-0307
    Type of Medium: Monograph available for loan
    Pages: XV, 217 S. , Ill., graph. Darst.
    ISBN: 0471914622
    Series Statement: Research and developments in climate and climatology
    Language: English
    Note: Contents: Preface. - Acknowledgements. - Chapter 1 Climate. - 1.1 The components of climate. - 1.2 Climate modelling and climate prediction. - 1.3 Climate changes and human perception. - 1.4 Feedback mechanisms in climate. - 1.4.1 The ice-albedo feedback mechanism. - 1.4.2 The water vapour “greenhouse”. - 1.4.3 Cloud feedbacks. - 1.4.4 Combining feedback effects. - 1.5 Perturbations on the climate system. - 1.5.1 External causes of climatic change. - 1.5.2 Internal causes of climatic change. - 1.6 Range of questions for climate modelling. - Recommended reading. - Chapter 2 A history of and introduction to climate models. - 2.1 Introducing climate modelling. - 2.2 Types of climate models. - 2.2.1 Energy balance climate models. - 2.2.2 One-dimensional radiative-convective climate models. - 2.2.3 Two-dimensional climate models. - 2.2.4 General circulation climate models. - 2.3 History of climate modelling. - 2.4 Sensitivity of climate models. - 2.5 Parameterization of climatic processes. - 2.6 Simulation of the full, interacting climate system: one goal of modelling. - Chapter 3 Energy balance models. - 3.1 Balancing the planetary radiation budget. - 3.2 The structure of energy balance models. - 3.3 Parameterizing the climate system for energy balance models. - 3.4 A BASIC energy balance climate model. - 3.5 Experiments with energy balance models. - 3.5.1 Explicit modelling of the cryosphere. - 3.6 Box models — another form of energy balance model. - 3.6.1 A simple box model of the ocean-atmosphere. - 3.6.2 A coupled atmosphere, land and ocean energy balance box model. - 3.7 Energy balance models: deceptively simple models. - Recommended reading. - Chapter 4 Radiative-convective models. - 4.1 The concept of a radiative-convective climate model. - 4.2 The structure of global radiative-convective models. - 4.3 Radiation computation. - 4.3.1 Shortwave radiation. - 4.3.2 Longwave radiation. - 4.3.3 Eleat balance at the ground. - 4.4 Convective adjustment. - 4.5 Sensitivity experiments with radiative-convective models. - 4.6 Development of radiative-convective models. - 4.6.1 Cloud amount and height predicted from ‘convection’. - 4.6.2 A water vapour transport model. - 4.7 Radiation: the driver of climate. - Recommended reading. - Chapter 5 Two-dimensional models. - 5.1 Why two-dimensional models?. - 5.2 Two-dimensional statistical dynamical climate models. - 5.3 Convection, cloud cover and precipitation in two-dimensional statistical dynamical models. - 5.4 Radiation and surface characterization in two-dimensional statistical dynamical models. - 5.4.1 Radiation. - 5.4.2 Surface characterization. - 5.5 Intercomparison of a two-and a three-dimensional model. - 5.6 Other types of two-dimensional models. - 5.6.1 An upgraded energy balance model. - 5.6.2 A severely truncated spectral general circulation climate model. - 5.7 Why are some climate modellers Flatlanders?. - Recommended reading. - Chapter 6 General circulation climate models. - 6.1 The structure of general circulation climate models. - 6.2 Dynamics in general circulation climate models. - 6.2.1 Cartesian (or rectangular) grid general circulation climate models. - 6.2.2 Spectral general circulation climate models. - 6.3 Physics in general circulation climate models. - 6.3.1 Radiative transfer. - 6.3.2 Boundary layer. - 6.3.3 Surface parameterization. - 6.3.4 Convection. - 6.3.5 Large scale rainfall. - 6.4 Including ‘other’ elements in general circulation climate models. - 6.4.1 Cloud prediction. - 6.4.2 Modelling the cryosphere. - 6.5 Land surface parameterization in general circulation climate models. - 6.6 Coupled ocean-atmosphere general circulation climate models. - 6.7 Future climate projects and their importance to general circulation climate models. - 6.8 Epilogue. - Recommended reading. - Appendices. - A. Glossary. - B. Climate models: examples of simple microcomputer software. - I. Daisyworld: a simple biospheric feedback climate model. - II. Modelling the climatic impact of anthropogenerated albedo change. - III. An energy balance climate model (EBM). - IV. Carbon dioxide feedback using a simple ocean model. - General Bibliography. - Index.
    Location: A 18 - must be ordered
    Location: AWI Reading room
    Branch Library: PIK Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Monograph available for loan
    Monograph available for loan
    New York : Wiley
    Associated volumes
    Call number: 19/M 94.0481 ; AWI S2-00-0012 ; PIK L 031-93-0305
    In: Wiley series in probability and statistics
    Type of Medium: Monograph available for loan
    Pages: xx, 900 Seiten , Illustrationen
    Edition: Revised edition
    ISBN: 0471002550
    Series Statement: Wiley series in probability and mathematical statistics
    Classification:
    Geodetic Theory and Modeling
    Language: English
    Note: Contents Preface Acknowledgments 1. Statistics for Spatial Data 1.1 Spatial Data and Spatial Models 1.2 Introductory Examples 1.2.1 Geostatistical Data 1.2.2 Lattice Data 1.2.3 Point Patterns 1.3 Statistics for Spatial Data: Why? PART I GEOSTATISTICAL DATA 2. Geostatistics 2.1 Continuous Spatial Index 2.2 Spatial Data Analysis of Coal Ash in Pennsylvania 2.2.1 Intrinsic Stationarity 2.2.2 Square-Root-Differences Cloud 2.2.3 The Pocket Plot 2.2.4 Decomposing the Data into Large- and Small-Scale Variation 2.2.5 Analysis of Residuals 2.2.6 Variogram of Residuals from Median Polish 2.3 Stationary Processes 2.3.1 Variogram 2.3.2 Covariogram and Correlogram 2.4 Estimation of the Variogram 2.4.1 Comparison of Variogram and Covariogram Estimation 2.4.2 Exact Distribution Theory for the Variogram Estimator 2.4.3 Robust Estimation of the Variogram 2.5 Spectral Representations 2.5.1 Valid Covariograms 2.5.2 Valid Variograms 2.6 Variogram Model Fitting 2.6.1 Criteria for Fitting a Variogram Model 2.6.2 Least Squares 2.6.3 Properties of Variogram-Parameter Estimators 2.6.4 Cross-Validating the Fitted Variogram 3. Spatial Prediction and Kriging 3.1 Scale of Variation 3.2 Ordinary Kriging 3.2.1 Effect of Variogram Parameters on Kriging 3.2.2 Lognormal and Trans-Gaussian Kriging 3.2.3 Cokriging 3.2.4 Some Final Remarks 3.3 Robust Kriging 3.4 Universal Kriging 3.4.1 Universal Kriging of Coal-Ash Data 3.4.2 Trend-Surface Prediction 3.4.3 Estimating the Variogram for Universal Kriging 3.4.4 Bayesian Kriging 3.4.5 Kriging Revisited 3.5 Median-Polish Kriging 3.5.1 Gridded Data 3.5.2 Nongridded Data 3.5.3 Median Polishing Spatial Data: Inference Results 3.5.4 Median-Based Covariogram Estimators are Less Biased 3.6 Geostatistical Data, Simulated and Real 3.6.1 Simulation of Spatial Processes 3.6.2 Conditional Simulation 3.6.3 Geostatistical Data 4. Applications of Geostatistics 4.1 Wolfcamp-Aquifer Data 4.1.1 Intrinsic-Stationarity Assumption 4.1.2 Nonconstant-Mean Assumption 4.2 Soil-Water Tension Data 4.3 Soil-Water-Infiltration Data 4.3.1 Estimating and Modeling the Spatial Dependence 4.3.2 Inference on Mean Effects (Spatial Analysis of Variance) 4.4 Sudden-Infant-Death-Syndrome Data 4.5 Wheat-Yield Data 4.5.1 Presence of Trend in the Data 4.5.2 Intrinsic Stationarity 4.5.3 Median-Polish (Robust) Kriging 4.6 Acid-Deposition Data 4.6.1 Spatial Modeling and Prediction 4.6.2 Sampling Design 4.7 Space-Time Geostatistical Data 5. Special Topics in Statistics for Spatial Data 5.1 Nonlinear Geostatistics 5.2 Change of Support 5.3 Stability of the Geostatistical Method 5.3.1 Estimation of Spatial-Dependence Parameters 5.3.2 Stability of the Kriging Predictor 5.3.3 Stability of the Kriging Variance 5.4 Intrinsic Random Functions of Order k 5.5 Applications of the Theory of Random Processes 5.6 Spatial Design 5.6.1 Spatial Sampling Design 5.6.2 Spatial Experimental Design 5.7 Field Trials 5.7.1 Nearest-Neighbor Analyses 5.7.2 Analyses Based on Spatial Modeling 5.8 Infill Asymptotics 5.9 The Many Faces of Spatial Prediction 5.9.1 Stochastic Methods of Spatial Prediction 5.9.2 Nonstochastic Methods of Spatial Prediction 5.9.3 Comparisons and Some Final Remarks PART II LATTICE DATA 6. Spatial Models on Lattices 6.1 Lattices 6.2 Spatial Data Analysis of Sudden Infant Deaths in North Carolina 6.2.1 Nonspatial Data Analysis 6.2.2 Spatial Data Analysis 6.2.3 Trend Removal 6.2.4 Some Final Remarks 6.3 Conditionally and Simultaneously Specified Spatial Gaussian Models 6.3.1 Simultaneously Specified Spatial Gaussian Models 6.3.2 Conditionally Specified Spatial Gaussian Models 6.3.3 Comparison 6.4 Markov Random Fields 6.4.1 Neighbors, Cliques, and the Negpotential Function Q 6.4.2 Pairwise-Only Dependence and Conditional Exponential Distributions 6.4.3 Some Final Remarks 6.5 Conditionally Specified Spatial Models for Discrete Data 6.5.1 Binary Data 6.5.2 Counts Data 6.6 Conditionally Specified Spatial Models for Continuous Data 6. 7 Simultaneously Specified and Other Spatial Models 6.7.1 Simultaneously Specified Spatial Models 6.7.2 Other Spatial Models 6.8 Space-Time Models 7. Inference for Lattice Models 7.1 Inference for the Mercer and Hall Wheat-Yield Data 7.1.1 Data Description 7.1.2 Spatial Lattice Models 7.2 Parameter Estimation for Lattice Models 7.2.1 Estimation Criteria 7.2.2 Gaussian Maximum Likelihood Estimation 7.2.3 Some Computational Details 7.3 Properties of Estimators 7.3.1 Increasing-Domain Asymptotics 7.3.2 The Jackknife and Bootstrap for Spatial Lattice Data 7.3.3 Cross-Validation and Model Selection 7.4 Statistical Image Analysis and Remote Sensing 7.4.1 Remote Sensing 7 .4.2 Ordinary Discriminant Analysis 7.4.3 Markov-Random-Field Models 7.4.4 Edge Processes 7.4.5 Textured Images 7.4.6 Single Photon Emission Tomography 7.4.7 Least Squares and Image Regularization 7.4.8 Method of Sieves 7.4.9 Mathematical Morphology 7.5 Regional Mapping, Scotland Lip-Cancer Data 7.5.1 Exploratory Regional Mapping 7.5.2 Parametric Empirical Bayes Mapping 7.6 Sudden-Infant-Death-Syndrome Data 7.6.1 Exploratory Spatial Data Analysis 7.6.2 Auto-Poisson Model 7 .6.3 Auto-Gaussian Model 7. 7 Lattice Data, Simulated and Real 7.7.1 Simulation of Lattice Processes 7.7.2 Lattice Data PART III SPATIAL PATTERNS 8. Spatial Point Patterns 8.1 Random Spatial Index 8.2 Spatial Data Analysis of Longleaf Pines (Pinus palustris) 8.2.1 Data Description 8.2.2 Complete Spatial Randomness, Regularity, and Clustering 8.2.3 Quadrat Methods 8.2.4 Kernel Estimators of the Intensity Function 8.2.5 Distance Methods 8.2.6 Nearest-Neighbor Distribution Functions and the K Function 8.2.7 Some Final Remarks 8.3 Point Process Theory 8.3.1 Moment Measures 8.3.2 Generating Functionals 8.3.3 Stationary and Isotropic Point Processes 8.3.4 Palm Distributions 8.3.5 Reduced Second Moment Measure 8.4 Complete Spatial Randomness, Distance Functions, and Second Moment Measures 8.4.1 Complete Spatial Randomness 8.4.2 Distance Functions 8.4.3 K Functions, 8.4.4 Animal-Behavior Data 8.4.5 Some Final Remarks 8.5 Models and Model Fitting 8.5.1 Inhomogeneous Poisson Process 8.5.2 Cox Process 8.5.3 Poisson Cluster Process 8.5.4 Simple Inhibition Point Processes 8.5.5 Markov Point Process 8.5.6 Thinned and Related Point Processes 8.5.7 Other Models 8.5.8 Some Final Remarks 8.6 Multivariate Spatial Point Processes 8.6.1 Theoretical Considerations 8.6.2 Estimation of the Cross K Function 8.6.3 Bivariate Spatial-Point-Process Models 8.7 Marked Spatial Point Processes 8.7.1 Theoretical Considerations 8.7.2 Estimation of Moment Measures 8.7.3 Marked Spatial-Point-Process Models 8.8 Space-Time Point Patterns 8.9 Spatial Point Patterns, Simulated and Real 8.9.1 Simulation of Spatial Point Patterns 8.9.2 Spatial Point Patterns 9. Modeting Objects 9.1 Set Models 9.1.1 Fractal Sets 9.1.2 Fuzzy Sets 9.1.3 Random Closed Sets: An Example 9.2 Random Parallelograms in IR 2 9.3 Random Closed Sets and Mathematical Morphology 9.3.1 Theory and Methods 9.3.2 Inference on Random Closed Sets 9.4 The Boolean Model 9.4.1 Main Properties 9.4.2 Generalizations of the Boolean Model 9.5 Methods of Boolean-Model Parameter Estimation 9.5.1 Analysis of Random-Parallelograms Data 9.5.2 Analysis of Heather-Incidence Data 9.5.3 Intensity Estimation in the Boolean Model 9.6 Inference for the Boolean Model 9.7 Modeling Growth with Random Sets 9.7.1 Random-Set Growth Models 9.7.2 Tumor-Growth Data 9.7.3 Fitting the Tumor-Growth Parameters References Author Index Subject lndex
    Location: Reading room
    Location: AWI Reading room
    Location: A 18 - must be ordered
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...