ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (252)
  • 2015-2019  (252)
  • AWI Library  (252)
Collection
  • Books  (252)
Language
Years
Year
Classification
Branch Library
  • 11
    Call number: AWI G3-19-92460
    Description / Table of Contents: The Yukon Coast in Canada is an ice-rich permafrost coast and highly sensitive to changing environmental conditions. Retrogressive thaw slumps are a common thermoerosion feature along this coast, and develop through the thawing of exposed ice-rich permafrost on slopes and removal of accumulating debris. They contribute large amounts of sediment, including organic carbon and nitrogen, to the nearshore zone. The objective of this study was to 1) identify the climatic and geomorphological drivers of sediment-meltwater release, 2) quantify the amount of released meltwater, sediment, organic carbon and nitrogen, and 3) project the evolution of sediment-meltwater release of retrogressive thaw slumps in a changing future climate. The analysis is based on data collected over 18 days in July 2013 and 18 days in August 2012. A cut-throat flume was set up in the main sediment-meltwater channel of the largest retrogressive thaw slump on Herschel Island. In addition, two weather stations, one on top of the undisturbed tundra and one on the…
    Type of Medium: Monograph available for loan
    Pages: 163 Seiten , Illustrationen, Diagramme
    Language: English
    Note: Table of Contents Abstract Kurzfassung Abbreviations and nomenclature 1. Introduction 2. Scientific Background 2.1. Permafrost 2.2.Retrogressive Thaw Slumps 2.3. Inputs of Freshwater, Sediment and Carbon into the Canadian Beaufort Sea 3. Study Area 3.1. Regional Setting: Yukon Coast and Herschel Island 3.2. Retrogressive Thaw Slumps 4. Material and Methods 4.1. Field Work 4.1.1. Terrain Photography 4.1.2. Differential Global Positioning System (DGPS) 4.1.3. Light Detection And Ranging (LiDAR) and Digital Elevation Model (DEM) 4.1.4. Micrometeorology 4.1.5. Discharge Measurement 4.1.6. Multiple Regression-Statistical Relationships between Micrometeorological Variables and Discharge 4.1.7. Sampling 4.2. Laboratory Analyses 4.2.1. Sedimentological Analyses 4.2.2. Hydrochemical Analyses 4.3. Fluxes of Sediment and (In-) Organic Matter 5. Results 5.1. Field Work 5.1.1. Terrain Photography 5.1.2. Differential Global Positioning System (DGPS) 5.1.3. Light Detecting And Ranging (LiDAR) and Digital Elevation Model (DEM) 5.1.4. Micrometeorology 5.1.5. Discharge 5.1.6. Multiple Regression - Statistical Relationships between Micrometeorology and Discharge 5.2. Laboratory Analyses 5.2.1. Sedimentological Analyses 5.2.2. Hydrochemical Analyses 5.3. Fluxes of Sediment-meltwater 6. Discussion 6.1. Microclimatological and Geomorphological Factors Controlling Discharge 6.1.1. Diurnal Variations 6.1.2. Seasonal Variations 6.2. Contribution of Retrogressive Thaw Slumps to the Sediment Budget of the Yukon Coast 6.2.1. Origin of Outflow Material 6.2.2. Slump D in the Regional Context 6.2.3. Seasonal Sediment Budget Compilation for Slump D 6.2.4. Retrogressive Thaw Slump Occurrence along the Yukon Coast 6.2.5. Input to the Beaufort Sea 6.3. Projected Climatic Change and its Impact on Retrogressive Thaw Slump Outflow 6.4. Uncertainties and Limitations 6.5. Future Research 7. Conclusion 8. Appendix 8.1. Field Work 8.1.1. Slump D's northern headwall profile 8.1.2. Collinson Head slump 8.1.3. Herschel Island West Coast slump 8.1.4. Roland Bay slump 8.1.5. Kay Point slump 8.2. Laboratory Work 8.2.1. Volumetric Ice Content 8.2.2. Grain Size 8.3. Evolution of Slump D 8.3.1. Geo Eye satellite of Slump D 8.3.2. Aerial Oblique Photography of Slump D 8.3.3. LiDAR of Slump D 8.3.4. Time Lapse Photography of Slump D's Headwall 9. References 10. Financial and technical support 11. Acknowledgement - Danksagung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Call number: AWI G6-19-92461
    Type of Medium: Dissertations
    Pages: XVI, 203 Seiten , Illustrationen, Diagramme
    Language: English
    Note: Dissertation, Universität Potsdam, 2019 , Table of contents Abstract Zusammenfassung Abbreviations 1 Introduction 1.1 Scientific background 1.1.1 Permafrost in the Northern Hemisphere 1.1.2 The permafrost carbon climate feedback 1.1.3 Rapidly changing, deep permafrost environments 1.2 Aims of this dissertation 1.3 Investigated study areas 1.4 Basic method overview 1.4.1 Field work in the Arctic 1.4.2 Laboratory procedure 1.4.3 Analysis ofl andscape-scale carbon and nitrogen stocks 1.5 Thesis organization 1.6 Overview of publications 1.6.1 Publication#1 - Yedoma landscape publication 1.6.2 Publication#2 - Thermokarst lake sequence publication 1.6.3 Publication#3 - North Alaska Arctic river delta publication 1.6.4 Extended Abstract - Western Alaska river delta study 1.6.5 Appendices - Supplementary material and paper in preparation II Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia 2.1 Abstract 2.2 Introduction 2.3 Material and methods 2.3.1 Study area 2.3.2 Field Work 2.3.3 Laboratory analysis 2.3.4 Landform classification and upscaling C and N pools 2.4 Results 2.4.1 Sedimentological results 2.4.2 Sampling site SOC and N stocks 2.4.3 Upscaling: Landscape SOC and N stocks 2.4.4 Radiocarbon dates 2.5 Discussion 2.5.1 Site specific soil organic C and N stock characteristics 2.5.2 Upscaling of C and N pools 2.5.3 Sediment and organic C accumulation rates 2.5.4 Characterizing soil organic carbon 2.5.5 The fate of organic carbon in thermokarst-affected yedoma in Siberia 2.6 Conclusions III Impacts of successive thermokarst lake stages on soil organic matter, Arctic Alaska 3.1 Abstract 3.2 Plain language summary 3.3 Introduction 3.4 Study site 3.5 Methods 3.5.1 Core collection 3.5.2 Biogeochemical analyses 3.5.3 Study area OC and N calculation 3.6 Results 3.6.1 Biogeochemistry 3.6.2 Sediment organic carbon and nitrogen stocks 3.6.3 Radiocarbon dates and carbon accumulation rates 3.6.4 Landscape C and N budget 3.7 Discussion 3.7.1 Impact of thermokarst lake dynamics on organic matter storage 3.7.2 High organic C and N stocks on the ACP 3.7.3 Landscape chronology 3.7.4 Organic matter accumulation 3.7.5 Future development 3.8 Conclusions IV Sedimentary and geochemical characteristics of two small permafrost-dominated Arctic river deltas in northern Alaska 4.1 Abstract 4.2 Introduction 4.3 Study area 4.4 Material and Methods 4.4.1 Soil organic carbon and soil nitrogen storage 4.4.2 Radiocarbon dating and organic carbon accumulation rates 4.4.3 Grain size distribution 4.4.4 Scaling carbon and nitrogen contents to landscape level 4.5 Results 4.5.1 Carbon and nitrogen contents 4.5.2 Radiocarbon dates and accumulation rates 4.5.3 Grain size distribution 4.5.4 Arctic river delta carbon and nitrogen storage 4.6. Discussion 4.6.1 Significance of carbon and nitrogen stocks in Arctic river deltas 4.6.2 SOC and SN distribution with depth 4.6.3 Sedimentary characteristics 4.6.3.1 Accumulation rates 4.6.3.2 Sediment distribution 4.6.4 Impacts of future changes 4.6.5 Significance of remotely sensed upscaling results 4.7 Conclusions V Soil carbon and nitrogen stocks in Arctic river deltas - New data for three Western Alaskan deltas 5.1 Abstract 5.2 Introduction 5.3 Study sites 5.4 Methods 5.5 Results and discussion 5.5 Conclusions VI Discussion 6.1 Interregional comparison 6.2 Changing thermokarst landscapes and their global impact 6.3 A growing C and N data base 6.4 Outlook - potential follow-up projects VII Synthesis VIII References Appendix A Synthesis of SOC and N inventories Appendix B Supplementary material to Chapter II Appendix C Supplementary material to Chapter III Appendix D Supplementary material to Chapter IV Appendix E Supplementary material to Chapter V Appendix F Arctic river delta data set - Version 1.0 Acknowledgements - Danksagung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Call number: M 17.90886 / Büro 00.10 ; AWI S5-18-90886
    Type of Medium: Monograph available for loan
    Pages: 350 Seiten
    Edition: 2., überarbeitete und erweiterte Auflage
    ISBN: 978-3-11-053868-7
    Language: German
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Monograph available for loan
    Cambridge, United Kingdom : Cambridge University Press
    Call number: AWI A2-17-90931
    Description / Table of Contents: Climate change is one of the greatest threats facing humanity; a definitive manifestation of the well-worn links between progress and devastation. This book explores the complex relationship that the corporate world has with climate change, and examines the central role of corporations in shaping political and social responses to the climate crisis. The book's principal message is that despite the need for dramatic economic and political change, corporate capitalism continues to rely upon the maintenance of 'business as usual'. The authors explore the different processes through which corporations engage with climate change. Key discussion points include climate change as business risk; corporate climate politics; the role of justification and compromise; and managerial identity and emotional reactions to climate change. Written for researchers and graduate students, this book moves beyond descriptive and normative approaches to provide a sociologically and critically informed theory of corporate responses to climate change.
    Type of Medium: Monograph available for loan
    Pages: XIII, 254 Seiten , Diagramm , 23 cm
    Edition: 1st published 2015, Reprinted 2016
    ISBN: 9781107435131 (paperback) , 9781107078222 (hardback)
    URL: Cover
    Language: English
    Note: Contents: List of figures. - List of tables. - Foreword by Clive Hamilton. - Acknowledgements. - 1. Climate change and corporate capitalism. - 2. Creative self-destruction and the incorporation of critique. - 3. Climate change and the corporate construction of risk. - 4. Corporate political activity and climate coalitions. - 5. Justification, compromise, and corruption. - 6. Climate change, managerial identity and narrating the self. - 7. Emotions, corporate environmentalism and climate change. - 8. Political myths and pathways forward. - 9. Imagining alternatives. - Appendix. - References. - Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Call number: AWI P5-18-91710
    Type of Medium: Monograph available for loan
    Pages: 24 S. , Ill.
    Edition: Stand: September 2015
    Language: German
    Note: Inhaltsverzeichnis: Vorwort. - Einleitung. - 1. Strategische Ziele der Arktisforschung. - 2. Die zentralen Fragen der Arktisforschung. - 2.1. Vergangenheit, Gegenwart und Zukunft des Klimawandels in der Arktis. - 2.2. Beitrag des grönländischen Inlandeises zur Meeresspiegelerhöhung. - 2.3. Rückgang des arktischen Meereises. - 2.4. Permafrost und Gashydrate als unbekannte Größen im Klimasystem. - 2.5. Anpassung polarer Organismen an die arktische Umwelt im Wandel. - 2.6. Chancen und Risiken zunehmender wirtschaftlicher Nutzung der Arktis. - 3. Stand der deutschen Polarforschung. - 3.1. Partner der deutschen Arktisforschung. - 3.2. Regionale Schwerpunkte der deutschen Arktisforschung. - 3.3. Positionierung im internationalen Umfeld. - 4. Umsetzung der Arktisforschungsstrategie. - 4.1. Forschung für Nachhaltigkeit. - 4.2. Wissenstransfer in die Gesellschaft. - 4.3. Technologietransfer. - 4.4. Nachwuchsförderung. - Anmerkungen. - Impressum.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Call number: AWI G3-19-93211 ; AWI G3-19-93211(2. Ex.)
    Type of Medium: Dissertations
    Pages: viii, 220 Seiten , Illustrationen
    Language: English
    Note: Dissertation, Universität Potsdam, 2019 , Table of Contents Abstract Zusammenfassung 1 Introduction 1.1 Scientific background 1.1.1 Permafrost - terrestrial and subsea 1.1.2 Subsea permafrost distribution 1.1.3 Relevance in the context of a changing Arctic 1.1.4 Influences on subsea permafrost 1.2 Hypotheses and objectives 1.3 Thesis organization 2 Detection of subsea permafrost degradation rates 2.1 An overview of geophysical methods and studies in subsea permafrost 2.2 Geophysical objectives 2.3 Passive seismic techniques 2.3.1 H/V passive seismics 2.3.2 Passive seismic interferometry 2.4 Instrument design & marine tests on Sylt 2.5 Arctic feasibility test site around Muostakh Island 2.6 Arctic deployment for wide area detection around Muostakh Island 3 Modelling of subsea permafrost degradation processes 3.1 An overview on subsea permafrost modelling 3.2 Salt distribution- mechanisms beyond diffusional transport 3.3 Open questions in salt transport and permafrost degradation 3.4 Modelling objectives 3.5 Study sites 3.5.1 Primary study site: Cape Mamontov Klyk 3.5.2 Secondary study sites: Buor Khaya & Muostakh Island 3.6 Developing a model for subsea permafrost 3.6.1 Thermal regime of the subsurface: governing equations of conductive heat transfer 3.6.2 Model definitions: concentration and thaw depth 3.6.3 Saline effect on the state of permafrost 3.6.4 Salt transport: governing equation & parameterizations 3.6.5 Modelling approach 3.6.6 Model testing 3. 7 Results: Influence of model parameters on subsea permafrost degradation 3.8 Discussion and implications 3.8.1 Modelled inundation parameters 3.8.2 Further factors affecting subsea permafrost degradation 3.8.3 Implications 4 From local to regional scale: Amending sparsely distributed temperature records 4.1 An overview of borehole temperature reconstruction . 4.2 On the transferability of ground to air temperatures . 4.3 Reconstruction objectives 4.4 Borehole sites and climate 4.5 Borehole temperatures 4.6 Inversion method 4.6.1 Forward model 4.6.2 Optimization 4.6.3 Sensitivity analysis 4.7 Results and discussion of the reconstruction from the permafrost boreholes 4.7.1 Recoverable period 4.7.2 Optimization 4.7.3 Surface temperature reconstructions and fit 4.7.4 Inversion method's impact on character of solution & sensitivity to temperature history parameterization 4.8 Discussion of spatial differences and implications 4.8.1 Comparison to other temperature data 4.8.2 Site differences 4.8.3 Methodological considerations 4.8.4 Implications 5 Conclusion and outlook 5.1 Outlook Appendices A Modelling tests for H/V method configuration Bibliography Acknowledgements
    Location: AWI Reading room
    Location: AWI Reading room
    Branch Library: AWI Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Call number: AWI P7-19-93234 ; IASS 19.93234 ; PIK N 454-20-93234
    In: World ocean review, 6
    Type of Medium: Series available for loan
    Pages: 329 Seiten , Illustrationen
    ISBN: 978-3-86648-634-8
    Series Statement: World ocean review 6
    Language: German
    Note: Inhalt Vorwort Arktis und Antarktis – Naturräume in Poleposition Eine kurze Geschichte der Polarregionen Der Mensch erobert die Polargebiete Conclusio: Arktis und Antarktis – zwei grundverschiedene Polargebiete Die Polargebiete als Teil des globalen Klimasystems Warum es in den Polarregionen so kalt wird Eisschollen, Eisschilde und das Meer Conclusio: Eine Kettenreaktion mit frostigem Ende Die Auswirkungen des Klimawandels auf die Polarregionen Die Pfade der Wärme Der Rückzug des Eises Conclusio: Mehr Wärme – viel weniger Eis Die Flora und Fauna der Polarregionen Ein Leben in der Kälte Das Leben im Meer Polare Ökosysteme auf dem Rückzug Conclusio: Hochspezialisiert und extrem gefährdet Politik und Wirtschaft in den Polarregionen Die Arktis und die Antarktis als politische Arenen Ein Wirtschaftsaufschwung mit Nebenwirkungen Conclusio: Wachsendes Interesse an den Polarregionen Gesamt-Conclusio Glossar Abkürzungen Quellenverzeichnis Mitwirkende Index Partner und Danksagung Abbildungsverzeichnis Impressum
    Location: AWI Reading room
    Location: A 18 - must be ordered
    Branch Library: AWI Library
    Branch Library: RIFS Library
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Call number: AWI G3-20-93487
    Description / Table of Contents: This book provides a general survey of Geocryology, which is the study of frozen ground called permafrost. Frozen ground is the product of cold climates as well as a variety of environmental factors. Its major characteristic is the accumulation of large quantities of ice which may exceed 90% by volume. Soil water changing to ice results in ground heaving, while thawing of this ice produces ground subsidence often accompanied by soil flowage. Permafrost is very susceptible to changes in weather and climate as well as to changes in the microenvironment. Cold weather produces contraction of the ground, resulting in cracking of the soil as well as breakup of concrete, rock, etc. Thus permafrost regions have unique landforms and processes not found in warmer lands. The book is divided into three parts. Part 1 provides an introduction to the characteristics of permafrost. Four chapters deal with its definition and characteristics, the unique processes operating there, the factors affecting it, and its general distribution. Part 2 consists of seven chapters describing the characteristic landforms unique to these areas and the processes involved in their formation. Part 3 discusses the special problems encountered by engineers in construction projects including settlements, roads and railways, the oil and gas industry, mining, and the agricultural and forest industries. The three authors represent three countries and three language groups, and together have over 120 years of experience of working in permafrost areas throughout the world. The book contains over 300 illustrations and photographs, and includes an extensive bibliography in order to introduce the interested reader to the large current literature.
    Type of Medium: Monograph available for loan
    Pages: xliii, 765 Seiten , Illustrationen, Karten, Diagramme
    Edition: First edition
    ISBN: 9781138054165 , 9781315166988 (electronic)
    Language: English
    Note: Table of contents Preface About the authors Acknowledgements Dedication List of figures List of tables List of symbols Part I Introduction and characteristics of permafrost I Definition and description 1.1 Introduction 1.2 Additional terms originating in Russia 1.3 History of permafrost research 1.4 Measurement of ground temperature 1.5 Conduction, convection and advection 1.6 Therm al regimes in regions based on heat conduction 1.7 Continentality index 1.8 Moisture movement in the active layer during freezing and thawing 1.9 Moisture conditions in permafrost ground 1.10 Results of freezing moisture 1.11 Strength of ice 1.12 Cryosols, gelisols, and leptosols 1.13 Fragipans 1.14 Salinity in permafrost regions 1.15 Organic matter 1.16 Micro-organisms in permafrost 1.16.1 Antarctic permafrost 1.16.2 High-latitude permafrost 1.16.3 High altitude permafrost in China 1.16.4 Phenotypic traits 1.16.5 Relation to climate change on the Tibetan plateau 1.17 Gas and gas hydrates 1.18 Thermokarst areas 1.19 Offshore permafrost 2 Cryogenic processes where temperatures dip below 0°C 2.1 Introduction 2.2 The nature of ice and water 2.3 Effects of oil pollution on freezing 2.4 Freezing and thawing of the active layer in permafrost in equilibrium with a stable climate 2.5 Relation of clay mineralogy to the average position of the permafrost table 2.6 Ground temperature envelopes in profiles affected by changes in mean annual ground surface temperature (MASGT) 2.7 Needle ice 2.8 Frost heaving 2.9 Densification and thaw settlement 2.10 Cryostratigraphy, cryostructures, cryotextures and cryofacies 2.11 Ground cracking 2.12 Dilation cracking 2.13 Frost susceptibility 2.14 Cryoturbation, gravity processes and injection structures 2.14.1 Cryoturbation 2.14.2 Upward injection of sediments from below 2.14.3 Load-casting 2.15 Upheaving of objects 2.16 Upturning of objects 2.17 Sorting 2.18 Weathering and frost comminution 2.19 Karst in areas with permafrost 2.20 Seawater density and salinity 3 Factors affecting permafrost distribution 3.1 Introduction 3.2 Climatic factors 3.2.1 Heat balance on the surface of the Earth and its effect on the climate 3.2.2 Relationship between air and ground temperatures 3.2.3 Thermal offset 3.2.4 Relation to air masses 3.2.5 Precipitation 3.2.6 Latitude and longitude 3.2.7 Topography and altitude 3.2.8 Cold air drainage 3.2.9 Buffering of temperatures against change in mountain ranges 3.3 Terrain factors 3.3.1 Vegetation 3.3.2 Hydrology 3.3.3 Lakes and water bodies 3.3.4 Nature of the soil and rock 3.3.5 Fire 3.3.6 Glaciers 3.3.7 The effects of Man 4 Permafrost distribution 4.1 Introduction 4.2 Zonation of permafrost 4.3 Permafrost mapping 4.4 Examples of mapping units used 4.5 Modeling permafrost distribution 4.6 Advances in geophysical methods 4.7 Causes of variability reducing the reliability of small-scale maps 4.8 Maps of permafrost-related properties based on field observations 4.8.1 Permafrost thickness 4.8.2 Maps of ice content 4.8.3 Water resources locked up in perennially frozen ground 4.8.4 Total carbon content 4.9 Use of remote sensing and airborne platforms in monitoring environmental conditions and disturbances 4.10 Sensitivity to climate change: Hazard zonation 4.11 Classification of permafrost stability based on mean annual ground temperature Part II Permafrost landforms II. 1 Introduction 5 Frost cracking, ice-wedges, sand, loess and rock tessellons 5.1 Introduction 5.2 Primary and secondary wedges 5.2.1 Primary wedges 5.2.1.1 Ice-wedges 5.2.1.2 Sand tessellons 5.2.1.3 Loess tessellons 5.2.1.4 Rock tessellons 5.2.2 Secondary wedges 5.2.2.1 Ice-wedge casts 5.2.2.2 Soil wedges 6 Massive ground ice in lowlands 6.1 Introduction 6.2 Distribution of massive icy beds in surface sediments 6.3 Sources of the sediments 6.4 Deglaciation of the Laurentide ice sheet 6.5 Methods used to determine the origin of the massive icy beds 6.6 Massive icy beds interpreted as being formed by cryosuction 6.7 Massive icy beds that may represent stagnant glacial ice 6.8 Other origins of massive icy beds 6.9 Ice complexes including yedoma deposits 6.10 Conditions for growth of thick ice-wedges 6.11 The mechanical condition of the growth of ice-wedges and its connection to the properties of the surrounding sediments 6.12 Buoyancy of ice-wedges 6.13 Summary of the ideas explaining yedoma evolution 6.14 Aufeis 6.15 Perennial ice caves 6.16 Types of ice found in perennial ice caves 6.17 Processes involved in the formation of perennial ice caves 6.18 Cycles of perennial cave evolution 6.18.1 Perennial ice caves in deep hollows 6.18.2 Sloping caves with two entrances 6.18.3 Perennial ice caves with only one main entrance but air entering through cracks and joints in the bedrock walls 6.18.4 Perennial ice caves with only one main entrance and no other sources of cooling 6.19 Ice caves in subtropical climates 6.20 Massive blocks of ice in bedrock or soil 7 Permafrost mounds 7.1 Introduction 7.2 Mounds over 2.5 m diameter 7.2.1 Mounds formed predominantly of injection ice 7.2.1.1 Pingo mounds 7.2.1.2 Hydrostatic or closed system pingos 7.2.1.3 Hydraulic or open system pingos 7.2.1.4 Pingo plateaus 7.2.1.5 Seasonal frost mounds 7.2.1.6 Icing blisters 7.2.1.7 Perennial mounds of uncertain origin 7.2.1.8 Similar mounds that can be confused with injection phenomena 7.2.2 Mounds formed dominantly by cryosuction 7.2.2.1 Paisas 7.2.2.1.1 Paisas in maritime climates 7.2.2.1.2 Paisas in cold, continental climates 7.2.2.1.3 Lithalsas 7.2.2.1.4 Palsa/Lithalsa look-alikes 7.2.3 Mounds formed by the accumulation of ice in the thawing fringe: Peat plateaus 7.3 Cryogenic mounds less than 2.5 m in diameter 7.3.1 Oscillating hummocks 7.3.2 Thufurs 7.3.3 Silt-cycling hummocks 7.3.4 Niveo-aeolian hummocks 7.3.5 Similar-looking mounds of uncertain origin 7.3.6 String bogs 7.3.7 Pounus 8 Mass wasting of fine-grained materials in cold climates 8.1 Introduction 8.2 Classification of mass wasting 8.3 Slow flows 8.3.1 Cryogenic creep 8.3.1.1 Needle ice creep 8.3.1.2 Frost heave and frost creep 8.3.1.3 Gelifluction 8.3.1.4 Other creep-type contributions to downslope movement of soil 8.3.2 Landforms produced by cryogenic slow flows in humid areas 8.3.3 Landforms developed by cryogenic flows in more arid regions 8.4 Cryogenic fast flows 8.4.1 Cryogenic debris flows 8.4.2 Cryogenic slides and slumps 8.4.3 Cryogenic composite slope failures 8.4.3.1 Active-layer detachment slides 8.4.3.2 Retrogressive thaw failures 8.4.3.3 Snow avalanches and slushflows 8.4.3.3.1 Snow avalanches 8.4.3.3.2 Slush avalanches 8.5 Relative effect in moving debris downslope in the mountains 9 Landforms consisting of blocky materials in cold climates 9.1 Introduction 9.2 Source of the blocks 9.3 Influence of rock type 9.4 Weathering products 9.5 Biogenic weathering 9.6 Fate of the soluble salts produced by chemical and biogenic weathering 9.7 Rate of cliff retreat 9.8 Landforms resulting from the accumulation of predominantly blocky materials in cryogenic climates 9.8.1 Cryogenic block fields 9.8.1.1 Measurement of rates of release of blocks on slopes 9.8.2 Cryogenic block slopes and fans 9.8.3 Classification of cryogenic talus slopes 9.8.3.1 Coarse blocky talus slopes 9.8.4 Protection of infrastructure from falling rock 9.9 Talus containing significant amounts of finer material 9.9.1 Rock glaciers 9.9.1.1 Sedimentary composition and structure of active rock glaciers 9.9.1.2 Origin of the ice in active rock glaciers 9.9.1.3 Relationship to vegetation 9.9.2 Movement of active rock glaciers 9.9.2.1 Horizontal movement 9.9.2.2 Movement of the front 9.9.3 Distribution of active rock glaciers 9.9.4 Inactive and fossil rock glaciers 9.9.5 Streams flowing from under rock glaciers 9.10 Cryogenic block streams 9.10.1 Characteristics 9.10.2 Classification 9.10.2.1
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Call number: AWI NBM-17-91184
    Description / Table of Contents: The Atlas content is presented by 8 large sections and 39 subsections which present characteristics of the key glaciological regions; there are also two auxiliary subsections: introductory one and the reference part that is indicator of geographical regions. The whole material is placed on the 590 pages of the Atlas. Themes and subjects of the maps are given in a system of three levels which one with corresponding number of base scales and, respectively, the territorial coverage. In addition to a possibility to look through all digital maps, any user can also see original vector layers in the format of shp. files which are saved in decimal degrees .This makes possible to project the data into any view, to design own project, to transform the data into other GIS-formats, to analyze the information together with own or other data with geographical conjunction .
    Type of Medium: Non-book medium
    Pages: 1 CD-ROM
    Language: Russian , English
    Note: In rus. und engl. Sprache , Teilw. in kyrill. Schr.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Call number: AWI G1-17-90601
    Description / Table of Contents: This innovative study presents concepts and problems in soil physics, and provides solutions using original computer programs. It provides a close examination of physical environments of soil, including an analysis of the movement of heat, water and gases. The authors employ the programming language Python, which is now widely used for numerical problem solving in the sciences. In contrast to the majority of the literature on soil physics, this text focuses on solving, not deriving, differential equations for transport. Using numerical procedures to solve differential equations allows the solution of quite difficult problems with fairly simple mathematical tools. Numerical methods convert differential into algebraic equations, which can be solved using conventional methods of linear algebra. Each chapter introduces a soil physics concept, and proceeds to develop computer programs to solve the equations and illustrate the points made in the discussion. Problems at the end of each chapter help the reader practise using the concepts introduced. The text is suitable for advanced undergraduates, graduates and researchers of soil physics. It employs an open source philosophy where computer code is presented, explained and discussed, and provides the reader with a full understanding of the solutions. Once mastered, the code can be adapted and expanded for the user's own models, fostering further developments. The Python tools provide a simple syntax, Object Oriented Programming techniques, powerful mathematical and numerical tools, and a user friendly environment.
    Type of Medium: Monograph available for loan
    Pages: X, 449 Seiten , Illustrationen
    Edition: First edition
    ISBN: 0199683093 , 9780199683093
    Language: English
    Note: Contents: 1 Introduction. - 2 Basic Physical Properties of Soil. - 2.1 Geometry of the Soil Matrix. - 2.2 Soil Structure. - 2.3 Fractal Geometry. - 2.4 Geometry of the Pore Space. - 2.5 Specific Surface Area. - 2.6 Averaging. - 2.7 Bulk Density, Water Content and Porosity. - 2.8 Relationships between Variables. - 2.9 Typical Values of Physical Properties. - 2.10 Volumes and Volumetric Fractions for a Soil Prism. - 2.11 Soil Solid Phase. - 2.12 Soil Texture. - 2.13 Sedimentation Law. - 2.14 Exercises. - 3 Soil Gas Phase and Gas Diffusion. - 3.1 Transport Equations. - 3.2 The Diffiisivity of Gases in Soil. - 3.3 Computing Gas Concentrations. - 3.4 Simulating One-Dimensional Steady-State Oxygen Diffusion in a Soil Profile. - 3.5 Numerical Implementation. - 3.6 Exercises. - 4 Soil Temperature and Heat Flow. - 4.1 Differential Equations for Heat Conduction. - 4.2 Soil Temperature Data. - 4.3 Numerical Solution of the Heat Flow Equation. - 4.4 Soil Thermal Properties. - 4.5 Numerical Implementation. - 4.6 Exercises. - 5 Soil Liquid Phase and Soil-Water Interactions. - 5.1 Properties of Water. - 5.2 Soil Water Potential. - 5.3 Water Potential-Water Content Relations. - 5.4 Liquid- and Vapour-Phase Equilibrium. - 5.5 Exercises. - 6 Steady-State Water Flow and Hydraulic Conductivity. - 6.1 Forces on Water in Porous Media. - 6.2 Water Flow in Saturated Soils. - 6.3 Saturated Hydraulic Conductivity. - 6.4 Unsaturated Hydraulic Conductivity. - 6.5 Exercises. - 7 Variation in Soil Properties. - 7.1 Frequency Distributions. - 7.2 Probability Density Functions. - 7.3 Transformations. - 7.4 Spatial Correlation. - 7.5 Approaches to Stochastic Modelling. - 7.6 Numerical Implementation. - 7.7 Exercises. - 8 Transient Water Flow. - 8.1 Mass Conservation Equation. - 8.2 Water Flow. - 8.3 Infiltration. - 8.4 Numerical Simulation of Infiltration. - 8.5 Numerical Implementation. - 8.6 Exercises. - 9 Triangulated Irregular Network. - 9.1 Digital Terrain Model. - 9.2 Triangulated Irregular Network. - 9.3 Numerical Implementation. - 9.4 Main. - 9.5 Triangulation. - 9.6 GIS Functions. - 9.7 Boundary. - 9.8 Geometrical Properties of Triangles. - 9.9 Delaunay Triangulation. - 9.10 Refinement. - 9.11 Utilities. - 9.12 Visualization. - 9.13 Exercise. - 10 Water Flow in Three Dimensions. - 10.1 Governing Equations. - 10.2 Numerical Formulation. - 10.3 Coupling Surface and Subsurface Flow. - 10.4 Numerical Implementation. - 10.5 Simulation. - 10.6 Visualization and Results. - 10.7 Exercises. - 11 Evaporation. - 11.1 General Concepts. - 11.2 Simultaneous Transport of Liquid and Vapour in Isothermal Soil. - 11.3 Modelling evaporation. - 11.4 Numerical Implementation. - 11.5 Exercises. - 12 Modelling Coupled Transport. - 12.1 Transport Equations. - 12.2 Partial Differential Equations. - 12.3 Surface Boundary Conditions. - 12.4 Numerical Implementation. - 12.5 Exercises. - 13 Solute Transport in Soils. - 13.1 Mass Flow. - 13.2 Diffusion. - 13.3 Hydrodynamic Dispersion. - 13.4 Advection-Dispersion Equation. - 13.5 Solute-Soil Interaction. - 13.6 Sources and Sinks of Solutes. - 13.7 Analytical Solutions. - 13.8 Numerical Solution. - 13.9 Numerical Implementation. - 13.10 Exercises. - 14 Transpiration and Plant-Water Relations. - 14.1 Soil Water Content and Soil Water Potential under a Vegetated Surface. - 14.2 General Features of Water Flow in the SPAC. - 14.3 Resistances to Water Flow within the Plant. - 14.4 Effect of Environment on Plant Resistance. - 14.5 Detailed Consideration of Soil and Root Resistances. - 14.6 Numerical Implementation. - 14.7 Exercises. - 15 Atmospheric Boundary Conditions. - 15.1 Radiation Balance at the Exchange Surface. - 15.2 Boundary-Layer Conductance for Heat and Water Vapour. - 15.3 Evapotranspiration and the Penman-Monteith Equation. - 15.4 Partitioning of Evapotranspiration. - 15.5 Exercise. - Appendix A: Basic Concepts and Examples of Python Programming. - A.1 Basic Python. - A.2 Basic Concepts of Computer Programming. - A.3 Data Representation: Variables. - A.4 Comments Rules and Indendation. - A.5 Arithmetic Expression. - A.6 Functions. - A.7 Flow Control. - A.8 File Input and Output. - A.9 Arrays. - A.10 Reading Date Time. - A.11 Object-Oriented Programming in Python. - A.12 Output and Visualization. - A.13 Exercises. - Appendix B: Computational Tools. - B.1 Numerical Differentiation. - B.2 Numerical Integration. - B.3 Linear Algebra. - B.4 Exercises. - List of Symbols. - List of Python Variables. - List of Python Projects. - References. - Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...