ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Crystallography, X-Ray  (537)
  • Nature Publishing Group (NPG)  (537)
Collection
Publisher
Years
  • 1
    Publication Date: 2010-10-15
    Description: The pre-T-cell antigen receptor (pre-TCR), expressed by immature thymocytes, has a pivotal role in early T-cell development, including TCR beta-selection, survival and proliferation of CD4(-)CD8(-) double-negative thymocytes, and subsequent alphabeta T-cell lineage differentiation. Whereas alphabetaTCR ligation by the peptide-loaded major histocompatibility complex initiates T-cell signalling, pre-TCR-induced signalling occurs by means of a ligand-independent dimerization event. The pre-TCR comprises an invariant alpha-chain (pre-Talpha) that pairs with any TCR beta-chain (TCRbeta) following successful TCR beta-gene rearrangement. Here we provide the basis of pre-Talpha-TCRbeta assembly and pre-TCR dimerization. The pre-Talpha chain comprised a single immunoglobulin-like domain that is structurally distinct from the constant (C) domain of the TCR alpha-chain; nevertheless, the mode of association between pre-Talpha and TCRbeta mirrored that mediated by the Calpha-Cbeta domains of the alphabetaTCR. The pre-TCR had a propensity to dimerize in solution, and the molecular envelope of the pre-TCR dimer correlated well with the observed head-to-tail pre-TCR dimer. This mode of pre-TCR dimerization enabled the pre-Talpha domain to interact with the variable (V) beta domain through residues that are highly conserved across the Vbeta and joining (J) beta gene families, thus mimicking the interactions at the core of the alphabetaTCR's Valpha-Vbeta interface. Disruption of this pre-Talpha-Vbeta dimer interface abrogated pre-TCR dimerization in solution and impaired pre-TCR expression on the cell surface. Accordingly, we provide a mechanism of pre-TCR self-association that allows the pre-Talpha chain to simultaneously 'sample' the correct folding of both the V and C domains of any TCR beta-chain, regardless of its ultimate specificity, which represents a critical checkpoint in T-cell development. This unusual dual-chaperone-like sensing function of pre-Talpha represents a unique mechanism in nature whereby developmental quality control regulates the expression and signalling of an integral membrane receptor complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pang, Siew Siew -- Berry, Richard -- Chen, Zhenjun -- Kjer-Nielsen, Lars -- Perugini, Matthew A -- King, Glenn F -- Wang, Christina -- Chew, Sock Hui -- La Gruta, Nicole L -- Williams, Neal K -- Beddoe, Travis -- Tiganis, Tony -- Cowieson, Nathan P -- Godfrey, Dale I -- Purcell, Anthony W -- Wilce, Matthew C J -- McCluskey, James -- Rossjohn, Jamie -- England -- Nature. 2010 Oct 14;467(7317):844-8. doi: 10.1038/nature09448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944746" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Gene Rearrangement, T-Lymphocyte/genetics ; Humans ; Models, Molecular ; Mutation ; Protein Folding ; *Protein Multimerization ; Protein Structure, Tertiary ; Receptors, Antigen, T-Cell/*chemistry/genetics/*metabolism ; Receptors, Antigen, T-Cell, alpha-beta/chemistry/metabolism ; Signal Transduction ; Solutions ; T-Lymphocytes/cytology/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-02-19
    Description: E1 enzymes activate ubiquitin (Ub) and ubiquitin-like (Ubl) proteins in two steps by carboxy-terminal adenylation and thioester bond formation to a conserved catalytic cysteine in the E1 Cys domain. The structural basis for these intermediates remains unknown. Here we report crystal structures for human SUMO E1 in complex with SUMO adenylate and tetrahedral intermediate analogues at 2.45 and 2.6 A, respectively. These structures show that side chain contacts to ATP.Mg are released after adenylation to facilitate a 130 degree rotation of the Cys domain during thioester bond formation that is accompanied by remodelling of key structural elements including the helix that contains the E1 catalytic cysteine, the crossover and re-entry loops, and refolding of two helices that are required for adenylation. These changes displace side chains required for adenylation with side chains required for thioester bond formation. Mutational and biochemical analyses indicate these mechanisms are conserved in other E1s.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866016/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866016/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olsen, Shaun K -- Capili, Allan D -- Lu, Xuequan -- Tan, Derek S -- Lima, Christopher D -- F32 GM075695/GM/NIGMS NIH HHS/ -- F32 GM075695-03/GM/NIGMS NIH HHS/ -- R01 AI068038/AI/NIAID NIH HHS/ -- R01 AI068038-02/AI/NIAID NIH HHS/ -- R01 AI068038-03/AI/NIAID NIH HHS/ -- R01 GM065872/GM/NIGMS NIH HHS/ -- R01 GM065872-09/GM/NIGMS NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Feb 18;463(7283):906-12. doi: 10.1038/nature08765.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology, Sloan-Kettering Institute, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20164921" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; *Biocatalysis ; Catalytic Domain/*physiology ; Conserved Sequence ; Crystallography, X-Ray ; Cysteine/chemistry/metabolism ; Humans ; Magnesium/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; SUMO-1 Protein/*chemistry/*metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins/metabolism ; Small Ubiquitin-Related Modifier Proteins/metabolism ; Sulfides/*metabolism ; Ubiquitin/metabolism ; Ubiquitin-Activating Enzymes/*chemistry/*metabolism ; Ubiquitins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-05-21
    Description: Type II topoisomerases are required for the management of DNA tangles and supercoils, and are targets of clinical antibiotics and anti-cancer agents. These enzymes catalyse the ATP-dependent passage of one DNA duplex (the transport or T-segment) through a transient, double-stranded break in another (the gate or G-segment), navigating DNA through the protein using a set of dissociable internal interfaces, or 'gates'. For more than 20 years, it has been established that a pair of dimer-related tyrosines, together with divalent cations, catalyse G-segment cleavage. Recent efforts have proposed that strand scission relies on a 'two-metal mechanism', a ubiquitous biochemical strategy that supports vital cellular processes ranging from DNA synthesis to RNA self-splicing. Here we present the structure of the DNA-binding and cleavage core of Saccharomyces cerevisiae topoisomerase II covalently linked to DNA through its active-site tyrosine at 2.5A resolution, revealing for the first time the organization of a cleavage-competent type II topoisomerase configuration. Unexpectedly, metal-soaking experiments indicate that cleavage is catalysed by a novel variation of the classic two-metal approach. Comparative analyses extend this scheme to explain how distantly-related type IA topoisomerases cleave single-stranded DNA, unifying the cleavage mechanisms for these two essential enzyme families. The structure also highlights a hitherto undiscovered allosteric relay that actuates a molecular 'trapdoor' to prevent subunit dissociation during cleavage. This connection illustrates how an indispensable chromosome-disentangling machine auto-regulates DNA breakage to prevent the aberrant formation of mutagenic and cytotoxic genomic lesions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882514/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882514/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmidt, Bryan H -- Burgin, Alex B -- Deweese, Joseph E -- Osheroff, Neil -- Berger, James M -- CA077373/CA/NCI NIH HHS/ -- GM033944/GM/NIGMS NIH HHS/ -- GM053960/GM/NIGMS NIH HHS/ -- GM08295/GM/NIGMS NIH HHS/ -- R01 CA077373/CA/NCI NIH HHS/ -- R01 CA077373-11S1/CA/NCI NIH HHS/ -- R01 CA077373-12/CA/NCI NIH HHS/ -- R01 GM033944/GM/NIGMS NIH HHS/ -- T32 CA009592/CA/NCI NIH HHS/ -- T32CA09592/CA/NCI NIH HHS/ -- England -- Nature. 2010 Jun 3;465(7298):641-4. doi: 10.1038/nature08974.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20485342" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Base Sequence ; Catalytic Domain ; Crystallography, X-Ray ; DNA/*chemistry/genetics/*metabolism ; DNA Topoisomerases, Type I/*chemistry/*metabolism ; DNA Topoisomerases, Type II/*chemistry/*metabolism ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Saccharomyces cerevisiae/*enzymology ; Tyrosine
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-05-14
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883250/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883250/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karpowich, Nathan K -- Wang, Da-Neng -- F32 HL091618-03/HL/NHLBI NIH HHS/ -- R01 DK053973/DK/NIDDK NIH HHS/ -- R01 DK053973-12/DK/NIDDK NIH HHS/ -- R01 GM093825/GM/NIGMS NIH HHS/ -- R01 GM093825-01/GM/NIGMS NIH HHS/ -- R01 MH083840/MH/NIMH NIH HHS/ -- R01 MH083840-03/MH/NIMH NIH HHS/ -- R21 GM075936/GM/NIGMS NIH HHS/ -- R21 GM075936-02/GM/NIGMS NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- U54 GM075026-050010/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 May 13;465(7295):171-2. doi: 10.1038/465171a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20463728" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism ; Crystallography, X-Ray ; Fluorescence Resonance Energy Transfer ; Molecular Dynamics Simulation ; Plasma Membrane Neurotransmitter Transport Proteins/*chemistry/*metabolism ; Protein Conformation ; Sodium/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-10-12
    Description: Jasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3R,7S)-jasmonoyl-l-isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved alpha-helix for COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheard, Laura B -- Tan, Xu -- Mao, Haibin -- Withers, John -- Ben-Nissan, Gili -- Hinds, Thomas R -- Kobayashi, Yuichi -- Hsu, Fong-Fu -- Sharon, Michal -- Browse, John -- He, Sheng Yang -- Rizo, Josep -- Howe, Gregg A -- Zheng, Ning -- P30 DK056341/DK/NIDDK NIH HHS/ -- P30 DK056341-10/DK/NIDDK NIH HHS/ -- R01 AI068718/AI/NIAID NIH HHS/ -- R01 AI068718-04/AI/NIAID NIH HHS/ -- R01 CA107134/CA/NCI NIH HHS/ -- R01 CA107134-07/CA/NCI NIH HHS/ -- R01 GM057795/GM/NIGMS NIH HHS/ -- R01 GM057795-12/GM/NIGMS NIH HHS/ -- R01AI068718/AI/NIAID NIH HHS/ -- R01GM57795/GM/NIGMS NIH HHS/ -- T32 GM07270/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Nov 18;468(7322):400-5. doi: 10.1038/nature09430. Epub 2010 Oct 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20927106" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/chemistry/metabolism ; Arabidopsis/chemistry/metabolism ; Arabidopsis Proteins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Cyclopentanes/chemistry/*metabolism ; F-Box Proteins/chemistry/metabolism ; Indenes/chemistry/metabolism ; Inositol Phosphates/*metabolism ; Isoleucine/analogs & derivatives/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Oxylipins/chemistry/*metabolism ; Peptide Fragments/chemistry/metabolism ; Plant Growth Regulators/chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Repressor Proteins/*chemistry/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-06-26
    Description: DNA polymerase eta (Poleta) is unique among eukaryotic polymerases in its proficient ability for error-free replication through ultraviolet-induced cyclobutane pyrimidine dimers, and inactivation of Poleta (also known as POLH) in humans causes the variant form of xeroderma pigmentosum (XPV). We present the crystal structures of Saccharomyces cerevisiae Poleta (also known as RAD30) in ternary complex with a cis-syn thymine-thymine (T-T) dimer and with undamaged DNA. The structures reveal that the ability of Poleta to replicate efficiently through the ultraviolet-induced lesion derives from a simple and yet elegant mechanism, wherein the two Ts of the T-T dimer are accommodated in an active site cleft that is much more open than in other polymerases. We also show by structural, biochemical and genetic analysis that the two Ts are maintained in a stable configuration in the active site via interactions with Gln 55, Arg 73 and Met 74. Together, these features define the basis for Poleta's action on ultraviolet-damaged DNA that is crucial in suppressing the mutagenic and carcinogenic consequences of sun exposure, thereby reducing the incidence of skin cancers in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030469/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030469/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Silverstein, Timothy D -- Johnson, Robert E -- Jain, Rinku -- Prakash, Louise -- Prakash, Satya -- Aggarwal, Aneel K -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 CA107650/CA/NCI NIH HHS/ -- R01 CA107650-39/CA/NCI NIH HHS/ -- R01 ES017767/ES/NIEHS NIH HHS/ -- R01 ES017767-01/ES/NIEHS NIH HHS/ -- England -- Nature. 2010 Jun 24;465(7301):1039-43. doi: 10.1038/nature09104.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural and Chemical Biology, Mount Sinai School of Medicine, Box 1677, 1425 Madison Avenue, New York, New York 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577207" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA Damage ; DNA-Directed DNA Polymerase/*chemistry/genetics/*metabolism ; Humans ; Kinetics ; Models, Molecular ; Mutation, Missense ; Nucleic Acid Conformation ; Protein Structure, Tertiary ; Pyrimidine Dimers/chemistry/metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; Skin Neoplasms/*enzymology/genetics ; Structure-Activity Relationship ; Xeroderma Pigmentosum/enzymology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-10-12
    Description: Blood pressure is critically controlled by angiotensins, which are vasopressor peptides specifically released by the enzyme renin from the tail of angiotensinogen-a non-inhibitory member of the serpin family of protease inhibitors. Although angiotensinogen has long been regarded as a passive substrate, the crystal structures solved here to 2.1 A resolution show that the angiotensin cleavage site is inaccessibly buried in its amino-terminal tail. The conformational rearrangement that makes this site accessible for proteolysis is revealed in our 4.4 A structure of the complex of human angiotensinogen with renin. The co-ordinated changes involved are seen to be critically linked by a conserved but labile disulphide bridge. Here we show that the reduced unbridged form of angiotensinogen is present in the circulation in a near 40:60 ratio with the oxidized sulphydryl-bridged form, which preferentially interacts with receptor-bound renin. We propose that this redox-responsive transition of angiotensinogen to a form that will more effectively release angiotensin at a cellular level contributes to the modulation of blood pressure. Specifically, we demonstrate the oxidative switch of angiotensinogen to its more active sulphydryl-bridged form in the maternal circulation in pre-eclampsia-the hypertensive crisis of pregnancy that threatens the health and survival of both mother and child.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024006/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024006/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Aiwu -- Carrell, Robin W -- Murphy, Michael P -- Wei, Zhenquan -- Yan, Yahui -- Stanley, Peter L D -- Stein, Penelope E -- Broughton Pipkin, Fiona -- Read, Randy J -- 082961/Wellcome Trust/United Kingdom -- BS/05/002/18361/British Heart Foundation/United Kingdom -- MC_U105663142/Medical Research Council/United Kingdom -- PG/08/041/24818/British Heart Foundation/United Kingdom -- PG/09/072/27945/British Heart Foundation/United Kingdom -- British Heart Foundation/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Nov 4;468(7320):108-11. doi: 10.1038/nature09505. Epub 2010 Oct 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK. awz20@cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20927107" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Angiotensinogen/blood/*chemistry/*metabolism ; Angiotensins/chemistry/*metabolism/secretion ; Blood Pressure ; Crystallography, X-Ray ; Disulfides/chemistry/metabolism ; Female ; Humans ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Oxidative Stress ; Pre-Eclampsia/blood/metabolism ; Pregnancy ; Protein Conformation ; *Protein Processing, Post-Translational ; Renin/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-09-25
    Description: Gram-negative bacteria, such as Escherichia coli, frequently use tripartite efflux complexes in the resistance-nodulation-cell division (RND) family to expel various toxic compounds from the cell. The efflux system CusCBA is responsible for extruding biocidal Cu(I) and Ag(I) ions. No previous structural information was available for the heavy-metal efflux (HME) subfamily of the RND efflux pumps. Here we describe the crystal structures of the inner-membrane transporter CusA in the absence and presence of bound Cu(I) or Ag(I). These CusA structures provide new structural information about the HME subfamily of RND efflux pumps. The structures suggest that the metal-binding sites, formed by a three-methionine cluster, are located within the cleft region of the periplasmic domain. This cleft is closed in the apo-CusA form but open in the CusA-Cu(I) and CusA-Ag(I) structures, which directly suggests a plausible pathway for ion export. Binding of Cu(I) and Ag(I) triggers significant conformational changes in both the periplasmic and transmembrane domains. The crystal structure indicates that CusA has, in addition to the three-methionine metal-binding site, four methionine pairs-three located in the transmembrane region and one in the periplasmic domain. Genetic analysis and transport assays suggest that CusA is capable of actively picking up metal ions from the cytosol, using these methionine pairs or clusters to bind and export metal ions. These structures suggest a stepwise shuttle mechanism for transport between these sites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Feng -- Su, Chih-Chia -- Zimmermann, Michael T -- Boyken, Scott E -- Rajashankar, Kanagalaghatta R -- Jernigan, Robert L -- Yu, Edward W -- GM 072014/GM/NIGMS NIH HHS/ -- GM 074027/GM/NIGMS NIH HHS/ -- GM 081680/GM/NIGMS NIH HHS/ -- GM 086431/GM/NIGMS NIH HHS/ -- R01 GM072014/GM/NIGMS NIH HHS/ -- R01 GM074027/GM/NIGMS NIH HHS/ -- R01 GM074027-05/GM/NIGMS NIH HHS/ -- R01 GM086431/GM/NIGMS NIH HHS/ -- R01 GM086431-01A2/GM/NIGMS NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Sep 23;467(7314):484-8. doi: 10.1038/nature09395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, Iowa 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20865003" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/chemistry/metabolism ; Binding Sites ; Cell Membrane/metabolism ; Copper/chemistry/*metabolism ; Crystallography, X-Ray ; Cytosol/metabolism ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Ion Transport ; Membrane Transport Proteins/*chemistry/*metabolism ; Methionine/*metabolism ; Models, Biological ; Models, Molecular ; Periplasm/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Silver/chemistry/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-09-30
    Description: Cell-cell signalling of semaphorin ligands through interaction with plexin receptors is important for the homeostasis and morphogenesis of many tissues and is widely studied for its role in neural connectivity, cancer, cell migration and immune responses. SEMA4D and Sema6A exemplify two diverse vertebrate, membrane-spanning semaphorin classes (4 and 6) that are capable of direct signalling through members of the two largest plexin classes, B and A, respectively. In the absence of any structural information on the plexin ectodomain or its interaction with semaphorins the extracellular specificity and mechanism controlling plexin signalling has remained unresolved. Here we present crystal structures of cognate complexes of the semaphorin-binding regions of plexins B1 and A2 with semaphorin ectodomains (human PLXNB1(1-2)-SEMA4D(ecto) and murine PlxnA2(1-4)-Sema6A(ecto)), plus unliganded structures of PlxnA2(1-4) and Sema6A(ecto). These structures, together with biophysical and cellular assays of wild-type and mutant proteins, reveal that semaphorin dimers independently bind two plexin molecules and that signalling is critically dependent on the avidity of the resulting bivalent 2:2 complex (monomeric semaphorin binds plexin but fails to trigger signalling). In combination, our data favour a cell-cell signalling mechanism involving semaphorin-stabilized plexin dimerization, possibly followed by clustering, which is consistent with previous functional data. Furthermore, the shared generic architecture of the complexes, formed through conserved contacts of the amino-terminal seven-bladed beta-propeller (sema) domains of both semaphorin and plexin, suggests that a common mode of interaction triggers all semaphorin-plexin based signalling, while distinct insertions within or between blades of the sema domains determine binding specificity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587840/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587840/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janssen, Bert J C -- Robinson, Ross A -- Perez-Branguli, Francesc -- Bell, Christian H -- Mitchell, Kevin J -- Siebold, Christian -- Jones, E Yvonne -- 082301/Wellcome Trust/United Kingdom -- 083111/Wellcome Trust/United Kingdom -- 10976/Cancer Research UK/United Kingdom -- A10976/Cancer Research UK/United Kingdom -- A3964/Cancer Research UK/United Kingdom -- A5261/Cancer Research UK/United Kingdom -- G0700232/Medical Research Council/United Kingdom -- G0700232(82098)/Medical Research Council/United Kingdom -- G0900084/Medical Research Council/United Kingdom -- G9900061/Medical Research Council/United Kingdom -- G9900061(69203)/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Oct 28;467(7319):1118-22. doi: 10.1038/nature09468. Epub 2010 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20877282" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/chemistry/genetics/metabolism ; Binding Sites ; Cell Adhesion Molecules/*chemistry/genetics/*metabolism ; Cell Communication ; Crystallography, X-Ray ; Humans ; Ligands ; Mice ; Mice, Inbred C57BL ; Models, Molecular ; NIH 3T3 Cells ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/genetics/metabolism ; Semaphorins/*chemistry/genetics/*metabolism ; *Signal Transduction ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-04-16
    Description: Tumour metastasis is the primary cause of death of cancer patients. Development of new therapeutics preventing tumour metastasis is urgently needed. Migrastatin is a natural product secreted by Streptomyces, and synthesized migrastatin analogues such as macroketone are potent inhibitors of metastatic tumour cell migration, invasion and metastasis. Here we show that these migrastatin analogues target the actin-bundling protein fascin to inhibit its activity. X-ray crystal structural studies reveal that migrastatin analogues bind to one of the actin-binding sites on fascin. Our data demonstrate that actin cytoskeletal proteins such as fascin can be explored as new molecular targets for cancer treatment, in a similar manner to the microtubule protein tubulin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857318/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857318/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Lin -- Yang, Shengyu -- Jakoncic, Jean -- Zhang, J Jillian -- Huang, Xin-Yun -- CA136837/CA/NCI NIH HHS/ -- R01 CA136837/CA/NCI NIH HHS/ -- R01 CA136837-01A1/CA/NCI NIH HHS/ -- England -- Nature. 2010 Apr 15;464(7291):1062-6. doi: 10.1038/nature08978.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Cornell University Weill Medical College, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20393565" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Antineoplastic Agents/chemistry/metabolism/pharmacology/therapeutic use ; Binding Sites/drug effects ; Breast Neoplasms/drug therapy/pathology ; Carrier Proteins/*antagonists & inhibitors/chemistry/genetics/metabolism ; Cell Line, Tumor ; Cell Movement/drug effects ; Crystallography, X-Ray ; Drug Resistance, Neoplasm/genetics ; Female ; Humans ; Lung Neoplasms/prevention & control/secondary ; Macrolides/*chemistry/metabolism/*pharmacology/therapeutic use ; Mice ; Mice, Inbred BALB C ; Mice, Inbred NOD ; Mice, SCID ; Microfilament Proteins/*antagonists & inhibitors/chemistry/genetics/metabolism ; Models, Molecular ; Mutation/genetics ; Neoplasm Invasiveness/pathology/prevention & control ; Neoplasm Metastasis/drug therapy/pathology/*prevention & control ; Piperidones/*chemistry/metabolism/*pharmacology/therapeutic use ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2010-07-09
    Description: Interconversion between conductive and non-conductive forms of the K(+) channel selectivity filter underlies a variety of gating events, from flicker transitions (at the microsecond timescale) to C-type inactivation (millisecond to second timescale). Here we report the crystal structure of the Streptomyces lividans K(+) channel KcsA in its open-inactivated conformation and investigate the mechanism of C-type inactivation gating at the selectivity filter from channels 'trapped' in a series of partially open conformations. Five conformer classes were identified with openings ranging from 12 A in closed KcsA (Calpha-Calpha distances at Thr 112) to 32 A when fully open. They revealed a remarkable correlation between the degree of gate opening and the conformation and ion occupancy of the selectivity filter. We show that a gradual filter backbone reorientation leads first to a loss of the S2 ion binding site and a subsequent loss of the S3 binding site, presumably abrogating ion conduction. These structures indicate a molecular basis for C-type inactivation in K(+) channels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033749/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033749/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cuello, Luis G -- Jogini, Vishwanath -- Cortes, D Marien -- Perozo, Eduardo -- R01 GM057846/GM/NIGMS NIH HHS/ -- R01 GM057846-15/GM/NIGMS NIH HHS/ -- R01-GM57846/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jul 8;466(7303):203-8. doi: 10.1038/nature09153.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20613835" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*antagonists & inhibitors/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Electrons ; *Ion Channel Gating ; Kinetics ; Models, Biological ; Models, Molecular ; Potassium/metabolism ; Potassium Channels/*chemistry/metabolism ; Protein Conformation ; Streptomyces lividans/*chemistry ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2010-10-01
    Description: In most bacteria and all archaea, glutamyl-tRNA synthetase (GluRS) glutamylates both tRNA(Glu) and tRNA(Gln), and then Glu-tRNA(Gln) is selectively converted to Gln-tRNA(Gln) by a tRNA-dependent amidotransferase. The mechanisms by which the two enzymes recognize their substrate tRNA(s), and how they cooperate with each other in Gln-tRNA(Gln) synthesis, remain to be determined. Here we report the formation of the 'glutamine transamidosome' from the bacterium Thermotoga maritima, consisting of tRNA(Gln), GluRS and the heterotrimeric amidotransferase GatCAB, and its crystal structure at 3.35 A resolution. The anticodon-binding body of GluRS recognizes the common features of tRNA(Gln) and tRNA(Glu), whereas the tail body of GatCAB recognizes the outer corner of the L-shaped tRNA(Gln) in a tRNA(Gln)-specific manner. GluRS is in the productive form, as its catalytic body binds to the amino-acid-acceptor arm of tRNA(Gln). In contrast, GatCAB is in the non-productive form: the catalytic body of GatCAB contacts that of GluRS and is located near the acceptor stem of tRNA(Gln), in an appropriate site to wait for the completion of Glu-tRNA(Gln) formation by GluRS. We identified the hinges between the catalytic and anticodon-binding bodies of GluRS and between the catalytic and tail bodies of GatCAB, which allow both GluRS and GatCAB to adopt the productive and non-productive forms. The catalytic bodies of the two enzymes compete for the acceptor arm of tRNA(Gln) and therefore cannot assume their productive forms simultaneously. The transition from the present glutamylation state, with the productive GluRS and the non-productive GatCAB, to the putative amidation state, with the non-productive GluRS and the productive GatCAB, requires an intermediate state with the two enzymes in their non-productive forms, for steric reasons. The proposed mechanism explains how the transamidosome efficiently performs the two consecutive steps of Gln-tRNA(Gln) formation, with a low risk of releasing the unstable intermediate Glu-tRNA(Gln).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ito, Takuhiro -- Yokoyama, Shigeyuki -- England -- Nature. 2010 Sep 30;467(7315):612-6. doi: 10.1038/nature09411.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20882017" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon/genetics ; Biocatalysis ; Crystallography, X-Ray ; Electrophoretic Mobility Shift Assay ; Glutamate-tRNA Ligase/*chemistry/*metabolism ; Models, Molecular ; Molecular Conformation ; Nitrogenous Group Transferases/*chemistry/*metabolism ; Protein Binding ; RNA, Transfer, Gln/biosynthesis/*chemistry/*metabolism ; RNA, Transfer, Glu/chemistry/metabolism ; Staphylococcus aureus/enzymology ; Substrate Specificity ; Thermotoga maritima/*enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2010-04-30
    Description: The interferon-inducible dynamin-like myxovirus resistance protein 1 (MxA; also called MX1) GTPase is a key mediator of cell-autonomous innate immunity against pathogens such as influenza viruses. MxA partially localizes to COPI-positive membranes of the smooth endoplasmic reticulum-Golgi intermediate compartment. At the point of infection, it redistributes to sites of viral replication and promotes missorting of essential viral constituents. It has been proposed that the middle domain and the GTPase effector domain of dynamin-like GTPases constitute a stalk that mediates oligomerization and transmits conformational changes from the G domain to the target structure; however, the molecular architecture of this stalk has remained elusive. Here we report the crystal structure of the stalk of human MxA, which folds into a four-helical bundle. This structure tightly oligomerizes in the crystal in a criss-cross pattern involving three distinct interfaces and one loop. Mutations in each of these interaction sites interfere with native assembly, oligomerization, membrane binding and antiviral activity of MxA. On the basis of these results, we propose a structural model for dynamin oligomerization and stimulated GTP hydrolysis that is consistent with previous structural predictions and has functional implications for all members of the dynamin family.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Song -- von der Malsburg, Alexander -- Paeschke, Susann -- Behlke, Joachim -- Haller, Otto -- Kochs, Georg -- Daumke, Oliver -- England -- Nature. 2010 May 27;465(7297):502-6. doi: 10.1038/nature08972. Epub 2010 Apr 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Delbruck-Centrum for Molecular Medicine, Crystallography, Robert-Rossle-Strasse 10, 13125 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20428112" target="_blank"〉PubMed〈/a〉
    Keywords: Antiviral Agents/chemistry/metabolism/pharmacology ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; Dynamins/*chemistry/metabolism ; GTP Phosphohydrolases/metabolism ; GTP-Binding Proteins/*chemistry/genetics/*metabolism/pharmacology ; Guanosine Triphosphate/metabolism ; Humans ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; Influenza A Virus, H5N1 Subtype/drug effects/physiology ; Models, Molecular ; Myxovirus Resistance Proteins ; Protein Conformation ; *Protein Multimerization ; Virus Replication/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2010-01-22
    Description: In extremely acidic environments, enteric bacteria such as Escherichia coli rely on the amino acid antiporter AdiC to expel protons by exchanging intracellular agmatine (Agm(2+)) for extracellular arginine (Arg(+)). AdiC is a representative member of the amino acid-polyamine-organocation (APC) superfamily of membrane transporters. The structure of substrate-free AdiC revealed a homodimeric assembly, with each protomer containing 12 transmembrane segments and existing in an outward-open conformation. The overall folding of AdiC is similar to that of the Na(+)-coupled symporters. Despite these advances, it remains unclear how the substrate (arginine or agmatine) is recognized and transported by AdiC. Here we report the crystal structure of an E. coli AdiC variant bound to Arg at 3.0 A resolution. The positively charged Arg is enclosed in an acidic binding chamber, with the head groups of Arg hydrogen-bonded to main chain atoms of AdiC and the aliphatic portion of Arg stacked by hydrophobic side chains of highly conserved residues. Arg binding induces pronounced structural rearrangement in transmembrane helix 6 (TM6) and, to a lesser extent, TM2 and TM10, resulting in an occluded conformation. Structural analysis identified three potential gates, involving four aromatic residues and Glu 208, which may work in concert to differentially regulate the upload and release of Arg and Agm.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Xiang -- Zhou, Lijun -- Jiao, Xuyao -- Lu, Feiran -- Yan, Chuangye -- Zeng, Xin -- Wang, Jiawei -- Shi, Yigong -- England -- Nature. 2010 Feb 11;463(7282):828-32. doi: 10.1038/nature08741. Epub 2010 Jan 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ministry of Education Protein Science Laboratory, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20090677" target="_blank"〉PubMed〈/a〉
    Keywords: Agmatine/metabolism ; Amino Acid Transport Systems/*chemistry/*metabolism ; Antiporters/*chemistry/*metabolism ; Arginine/chemistry/*metabolism ; Biological Transport ; Conserved Sequence ; Crystallography, X-Ray ; Escherichia coli Proteins/*chemistry/*metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Protein Conformation ; Protein Folding ; Protein Multimerization ; Protons ; Static Electricity ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2010-08-20
    Description: The Na(+)/K(+)-ATPase pumps three sodium ions out of and two potassium ions into the cell for each ATP molecule that is split, thereby generating the chemical and electrical gradients across the plasma membrane that are essential in, for example, signalling, secondary transport and volume regulation in animal cells. Crystal structures of the potassium-bound form of the pump revealed an intimate docking of the alpha-subunit carboxy terminus at the transmembrane domain. Here we show that this element is a key regulator of a previously unrecognized ion pathway. Current models of P-type ATPases operate with a single ion conduit through the pump, but our data suggest an additional pathway in the Na(+)/K(+)-ATPase between the ion-binding sites and the cytoplasm. The C-terminal pathway allows a cytoplasmic proton to enter and stabilize site III when empty in the potassium-bound state, and when potassium is released the proton will also return to the cytoplasm, thus allowing an overall asymmetric stoichiometry of the transported ions. The C terminus controls the gate to the pathway. Its structure is crucial for pump function, as demonstrated by at least eight mutations in the region that cause severe neurological diseases. This novel model for ion transport by the Na(+)/K(+)-ATPase is established by electrophysiological studies of C-terminal mutations in familial hemiplegic migraine 2 (FHM2) and is further substantiated by molecular dynamics simulations. A similar ion regulation is likely to apply to the H(+)/K(+)-ATPase and the Ca(2+)-ATPase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poulsen, Hanne -- Khandelia, Himanshu -- Morth, J Preben -- Bublitz, Maike -- Mouritsen, Ole G -- Egebjerg, Jan -- Nissen, Poul -- England -- Nature. 2010 Sep 2;467(7311):99-102. doi: 10.1038/nature09309. Epub 2010 Aug 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉PUMPKIN - Centre for Membrane Pumps in Cells and Disease, Danish National Research Foundation, Department of Molecular Biology, Aarhus University, DK-8000 Aarhus C, Denmark. hp@mb.au.dk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20720542" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallography, X-Ray ; Humans ; *Ion Transport ; Migraine with Aura/genetics/*metabolism ; Models, Molecular ; Molecular Dynamics Simulation ; Oocytes/metabolism ; Potassium/metabolism ; Protons ; Sodium-Potassium-Exchanging ATPase/*chemistry/*metabolism ; Squalus acanthias/metabolism ; Sus scrofa/metabolism ; Xenopus
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2010-02-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhattacharya, Ananyo -- England -- Nature. 2010 Feb 4;463(7281):605-6. doi: 10.1038/463605a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20130626" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Child ; Crystallization ; Crystallography, X-Ray ; Diacylglycerol Kinase/chemistry ; Humans ; Magnetic Resonance Spectroscopy/*instrumentation/*methods ; Metabolomics/instrumentation/methods ; Models, Molecular ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2009-12-22
    Description: Broken chromosomes arising from DNA double-strand breaks result from endogenous events such as the production of reactive oxygen species during cellular metabolism, as well as from exogenous sources such as ionizing radiation. Left unrepaired or incorrectly repaired they can lead to genomic changes that may result in cell death or cancer. DNA-dependent protein kinase (DNA-PK), a holoenzyme that comprises the DNA-PK catalytic subunit (DNA-PKcs) and the heterodimer Ku70/Ku80, has a major role in non-homologous end joining-the main pathway in mammals used to repair double-strand breaks. DNA-PKcs is a serine/threonine protein kinase comprising a single polypeptide chain of 4,128 amino acids and belonging to the phosphatidylinositol-3-OH kinase (PI(3)K)-related protein family. DNA-PKcs is involved in the sensing and transmission of DNA damage signals to proteins such as p53, setting off events that lead to cell cycle arrest. It phosphorylates a wide range of substrates in vitro, including Ku70/Ku80, which is translocated along DNA. Here we present the crystal structure of human DNA-PKcs at 6.6 A resolution, in which the overall fold is clearly visible, to our knowledge, for the first time. The many alpha-helical HEAT repeats (helix-turn-helix motifs) facilitate bending and allow the polypeptide chain to fold into a hollow circular structure. The carboxy-terminal kinase domain is located on top of this structure, and a small HEAT repeat domain that probably binds DNA is inside. The structure provides a flexible cradle to promote DNA double-strand-break repair.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811870/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811870/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sibanda, Bancinyane L -- Chirgadze, Dimitri Y -- Blundell, Tom L -- 079281/Wellcome Trust/United Kingdom -- A3846/Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Jan 7;463(7277):118-21. doi: 10.1038/nature08648. Epub 2009 Dec 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Cambridge, Old Addenbrooke's site, 80 Tennis Court Road, Cambridge CB2 1GA, UK. lynn@cryst.bioc.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20023628" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Nuclear/chemistry ; Catalytic Domain ; Crystallography, X-Ray ; DNA/metabolism ; DNA Breaks, Double-Stranded ; DNA-Activated Protein Kinase/*chemistry/metabolism ; DNA-Binding Proteins/chemistry ; HeLa Cells ; *Helix-Turn-Helix Motifs ; Humans ; Models, Molecular ; Nuclear Proteins/*chemistry/metabolism ; Protein Folding ; Protein Structure, Secondary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2010-12-18
    Description: Recognition of modified histone species by distinct structural domains within 'reader' proteins plays a critical role in the regulation of gene expression. Readers that simultaneously recognize histones with multiple marks allow transduction of complex chromatin modification patterns into specific biological outcomes. Here we report that chromatin regulator tripartite motif-containing 24 (TRIM24) functions in humans as a reader of dual histone marks by means of tandem plant homeodomain (PHD) and bromodomain (Bromo) regions. The three-dimensional structure of the PHD-Bromo region of TRIM24 revealed a single functional unit for combinatorial recognition of unmodified H3K4 (that is, histone H3 unmodified at lysine 4, H3K4me0) and acetylated H3K23 (histone H3 acetylated at lysine 23, H3K23ac) within the same histone tail. TRIM24 binds chromatin and oestrogen receptor to activate oestrogen-dependent genes associated with cellular proliferation and tumour development. Aberrant expression of TRIM24 negatively correlates with survival of breast cancer patients. The PHD-Bromo of TRIM24 provides a structural rationale for chromatin activation through a non-canonical histone signature, establishing a new route by which chromatin readers may influence cancer pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058826/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058826/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsai, Wen-Wei -- Wang, Zhanxin -- Yiu, Teresa T -- Akdemir, Kadir C -- Xia, Weiya -- Winter, Stefan -- Tsai, Cheng-Yu -- Shi, Xiaobing -- Schwarzer, Dirk -- Plunkett, William -- Aronow, Bruce -- Gozani, Or -- Fischle, Wolfgang -- Hung, Mien-Chie -- Patel, Dinshaw J -- Barton, Michelle Craig -- GM079641/GM/NIGMS NIH HHS/ -- GM081627/GM/NIGMS NIH HHS/ -- P01 GM081627/GM/NIGMS NIH HHS/ -- P01 GM081627-010003/GM/NIGMS NIH HHS/ -- P01 GM081627-020003/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- P30DK078392-01/DK/NIDDK NIH HHS/ -- T32 HD07325/HD/NICHD NIH HHS/ -- U54 RR025216/RR/NCRR NIH HHS/ -- UL1 TR000077/TR/NCATS NIH HHS/ -- England -- Nature. 2010 Dec 16;468(7326):927-32. doi: 10.1038/nature09542.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Program in Genes and Development, Graduate School of Biomedical Sciences, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21164480" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Breast Neoplasms/*genetics/*metabolism/pathology ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line, Tumor ; Chromatin/metabolism ; Chromatin Assembly and Disassembly ; Crystallography, X-Ray ; Estrogen Receptor alpha/metabolism ; Estrogens/metabolism ; *Gene Expression Regulation, Neoplastic/genetics ; HEK293 Cells ; Histones/chemistry/*metabolism ; Humans ; Methylation ; Protein Array Analysis ; Protein Binding ; Protein Structure, Tertiary ; Substrate Specificity ; Survival Rate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2010-01-08
    Description: G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the beta(2) adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805469/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805469/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bokoch, Michael P -- Zou, Yaozhong -- Rasmussen, Soren G F -- Liu, Corey W -- Nygaard, Rie -- Rosenbaum, Daniel M -- Fung, Juan Jose -- Choi, Hee-Jung -- Thian, Foon Sun -- Kobilka, Tong Sun -- Puglisi, Joseph D -- Weis, William I -- Pardo, Leonardo -- Prosser, R Scott -- Mueller, Luciano -- Kobilka, Brian K -- GM56169/GM/NIGMS NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- R01 GM056169/GM/NIGMS NIH HHS/ -- R01 GM056169-13/GM/NIGMS NIH HHS/ -- R21 MH082313/MH/NIMH NIH HHS/ -- R21 MH082313-01A1/MH/NIMH NIH HHS/ -- R37 NS028471/NS/NINDS NIH HHS/ -- R37 NS028471-19/NS/NINDS NIH HHS/ -- England -- Nature. 2010 Jan 7;463(7277):108-12. doi: 10.1038/nature08650.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054398" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-2 Receptor Agonists ; Adrenergic beta-2 Receptor Antagonists ; Allosteric Regulation/drug effects ; Binding Sites ; Crystallography, X-Ray ; Drug Inverse Agonism ; Ethanolamines/pharmacology ; Formoterol Fumarate ; Humans ; Ligands ; Lysine/analogs & derivatives/metabolism ; Methylation ; Models, Molecular ; Mutant Proteins ; Nuclear Magnetic Resonance, Biomolecular ; Propanolamines/metabolism/pharmacology ; Protein Structure, Tertiary/drug effects ; Receptors, Adrenergic, beta-2/*chemistry/*metabolism ; Static Electricity ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2010-12-03
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088109/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088109/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kielian, Margaret -- R01 AI075647/AI/NIAID NIH HHS/ -- R01 AI075647-17/AI/NIAID NIH HHS/ -- R01 GM057454/GM/NIGMS NIH HHS/ -- R01 GM057454-11/GM/NIGMS NIH HHS/ -- R21 AI067931/AI/NIAID NIH HHS/ -- R21 AI067931-02/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Dec 2;468(7324):645-6. doi: 10.1038/468645a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124448" target="_blank"〉PubMed〈/a〉
    Keywords: Chikungunya virus/*chemistry/physiology ; Crystallography, X-Ray ; Membrane Fusion ; Membrane Glycoproteins/*chemistry/metabolism ; Models, Biological ; Protein Multimerization ; Protein Structure, Quaternary ; Receptors, Virus/metabolism ; Sindbis Virus/*chemistry/*physiology ; Viral Envelope Proteins/*chemistry/*metabolism ; Viral Fusion Proteins/chemistry/metabolism ; Virion/chemistry/metabolism ; *Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2008-11-18
    Description: Pentraxins are a family of ancient innate immune mediators conserved throughout evolution. The classical pentraxins include serum amyloid P component (SAP) and C-reactive protein, which are two of the acute-phase proteins synthesized in response to infection. Both recognize microbial pathogens and activate the classical complement pathway through C1q (refs 3 and 4). More recently, members of the pentraxin family were found to interact with cell-surface Fcgamma receptors (FcgammaR) and activate leukocyte-mediated phagocytosis. Here we describe the structural mechanism for pentraxin's binding to FcgammaR and its functional activation of FcgammaR-mediated phagocytosis and cytokine secretion. The complex structure between human SAP and FcgammaRIIa reveals a diagonally bound receptor on each SAP pentamer with both D1 and D2 domains of the receptor contacting the ridge helices from two SAP subunits. The 1:1 stoichiometry between SAP and FcgammaRIIa infers the requirement for multivalent pathogen binding for receptor aggregation. Mutational and binding studies show that pentraxins are diverse in their binding specificity for FcgammaR isoforms but conserved in their recognition structure. The shared binding site for SAP and IgG results in competition for FcgammaR binding and the inhibition of immune-complex-mediated phagocytosis by soluble pentraxins. These results establish antibody-like functions for pentraxins in the FcgammaR pathway, suggest an evolutionary overlap between the innate and adaptive immune systems, and have new therapeutic implications for autoimmune diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688732/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688732/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Jinghua -- Marnell, Lorraine L -- Marjon, Kristopher D -- Mold, Carolyn -- Du Clos, Terry W -- Sun, Peter D -- R01 AI28358/AI/NIAID NIH HHS/ -- T32 AI007538/AI/NIAID NIH HHS/ -- Z01 AI000853-09/Intramural NIH HHS/ -- England -- Nature. 2008 Dec 18;456(7224):989-92. doi: 10.1038/nature07468. Epub 2008 Nov 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19011614" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Binding, Competitive ; C-Reactive Protein/chemistry/*immunology/*metabolism ; Crystallography, X-Ray ; Cytokines/immunology/secretion ; Humans ; Immunity, Innate/*immunology ; Immunoglobulin G/immunology/metabolism ; Macrophages/cytology/immunology ; Models, Molecular ; Phagocytosis ; Protein Conformation ; Receptors, IgG/chemistry/*immunology/*metabolism ; Serum Amyloid P-Component/chemistry/*immunology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2008-11-28
    Description: Gibberellins (GAs) are phytohormones essential for many developmental processes in plants. A nuclear GA receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1), has a primary structure similar to that of the hormone-sensitive lipases (HSLs). Here we analyse the crystal structure of Oryza sativa GID1 (OsGID1) bound with GA(4) and GA(3) at 1.9 A resolution. The overall structure of both complexes shows an alpha/beta-hydrolase fold similar to that of HSLs except for an amino-terminal lid. The GA-binding pocket corresponds to the substrate-binding site of HSLs. On the basis of the OsGID1 structure, we mutagenized important residues for GA binding and examined their binding activities. Almost all of them showed very little or no activity, confirming that the residues revealed by structural analysis are important for GA binding. The replacement of Ile 133 with Leu or Val-residues corresponding to those of the lycophyte Selaginella moellendorffii GID1s-caused an increase in the binding affinity for GA(34), a 2beta-hydroxylated GA(4). These observations indicate that GID1 originated from HSL and was further modified to have higher affinity and more strict selectivity for bioactive GAs by adapting the amino acids involved in GA binding in the course of plant evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shimada, Asako -- Ueguchi-Tanaka, Miyako -- Nakatsu, Toru -- Nakajima, Masatoshi -- Naoe, Youichi -- Ohmiya, Hiroko -- Kato, Hiroaki -- Matsuoka, Makoto -- England -- Nature. 2008 Nov 27;456(7221):520-3. doi: 10.1038/nature07546.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19037316" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; Gibberellins/*chemistry/*metabolism ; Hydrolases/chemistry/metabolism ; Hydroxylation ; Models, Molecular ; Oryza/*chemistry/genetics/metabolism ; Plant Growth Regulators/*chemistry/*metabolism ; Plant Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Conformation ; Substrate Specificity ; Two-Hybrid System Techniques
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2008-05-16
    Description: The potential impact of pandemic influenza makes effective measures to limit the spread and morbidity of virus infection a public health priority. Antiviral drugs are seen as essential requirements for control of initial influenza outbreaks caused by a new virus, and in pre-pandemic plans there is a heavy reliance on drug stockpiles. The principal target for these drugs is a virus surface glycoprotein, neuraminidase, which facilitates the release of nascent virus and thus the spread of infection. Oseltamivir (Tamiflu) and zanamivir (Relenza) are two currently used neuraminidase inhibitors that were developed using knowledge of the enzyme structure. It has been proposed that the closer such inhibitors resemble the natural substrate, the less likely they are to select drug-resistant mutant viruses that retain viability. However, there have been reports of drug-resistant mutant selection in vitro and from infected humans. We report here the enzymatic properties and crystal structures of neuraminidase mutants from H5N1-infected patients that explain the molecular basis of resistance. Our results show that these mutants are resistant to oseltamivir but still strongly inhibited by zanamivir owing to an altered hydrophobic pocket in the active site of the enzyme required for oseltamivir binding. Together with recent reports of the viability and pathogenesis of H5N1 (ref. 7) and H1N1 (ref. 8) viruses with neuraminidases carrying these mutations, our results indicate that it would be prudent for pandemic stockpiles of oseltamivir to be augmented by additional antiviral drugs, including zanamivir.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Collins, Patrick J -- Haire, Lesley F -- Lin, Yi Pu -- Liu, Junfeng -- Russell, Rupert J -- Walker, Philip A -- Skehel, John J -- Martin, Stephen R -- Hay, Alan J -- Gamblin, Steven J -- MC_U117512711/Medical Research Council/United Kingdom -- MC_U117512723/Medical Research Council/United Kingdom -- MC_U117570592/Medical Research Council/United Kingdom -- MC_U117584222/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2008 Jun 26;453(7199):1258-61. doi: 10.1038/nature06956. Epub 2008 May 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC-National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18480754" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; *Drug Resistance, Viral ; Enzyme Inhibitors/chemistry/metabolism/pharmacology ; Humans ; Influenza A Virus, H1N1 Subtype/drug effects/enzymology/genetics ; Influenza A Virus, H5N1 Subtype/*drug effects/*enzymology/genetics ; Influenza, Human/virology ; Kinetics ; Models, Molecular ; Molecular Conformation ; Mutation/*genetics ; Neuraminidase/antagonists & inhibitors/*chemistry/*genetics/metabolism ; Oseltamivir/chemistry/metabolism/*pharmacology ; Protein Binding ; Zanamivir/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2008-09-02
    Description: Translation initiation, the rate-limiting step of the universal process of protein synthesis, proceeds through sequential, tightly regulated steps. In bacteria, the correct messenger RNA start site and the reading frame are selected when, with the help of initiation factors IF1, IF2 and IF3, the initiation codon is decoded in the peptidyl site of the 30S ribosomal subunit by the fMet-tRNA(fMet) anticodon. This yields a 30S initiation complex (30SIC) that is an intermediate in the formation of the 70S initiation complex (70SIC) that occurs on joining of the 50S ribosomal subunit to the 30SIC and release of the initiation factors. The localization of IF2 in the 30SIC has proved to be difficult so far using biochemical approaches, but could now be addressed using cryo-electron microscopy and advanced particle separation techniques on the basis of three-dimensional statistical analysis. Here we report the direct visualization of a 30SIC containing mRNA, fMet-tRNA(fMet) and initiation factors IF1 and GTP-bound IF2. We demonstrate that the fMet-tRNA(fMet) is held in a characteristic and precise position and conformation by two interactions that contribute to the formation of a stable complex: one involves the transfer RNA decoding stem which is buried in the 30S peptidyl site, and the other occurs between the carboxy-terminal domain of IF2 and the tRNA acceptor end. The structure provides insights into the mechanism of 70SIC assembly and rationalizes the rapid activation of GTP hydrolysis triggered on 30SIC-50S joining by showing that the GTP-binding domain of IF2 would directly face the GTPase-activated centre of the 50S subunit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simonetti, Angelita -- Marzi, Stefano -- Myasnikov, Alexander G -- Fabbretti, Attilio -- Yusupov, Marat -- Gualerzi, Claudio O -- Klaholz, Bruno P -- England -- Nature. 2008 Sep 18;455(7211):416-20. doi: 10.1038/nature07192. Epub 2008 Aug 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Genetics and of Molecular and Cellular Biology, Department of Structural Biology and Genomics, Illkirch F-67404, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18758445" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; Crystallography, X-Ray ; Guanosine Triphosphate/chemistry/metabolism ; Models, Molecular ; Multiprotein Complexes/*chemistry/genetics/metabolism/*ultrastructure ; *Peptide Chain Initiation, Translational ; Prokaryotic Initiation Factor-1/chemistry/genetics/metabolism/ultrastructure ; Prokaryotic Initiation Factor-2/chemistry/genetics/metabolism/ultrastructure ; Protein Conformation ; RNA, Messenger/chemistry/genetics/metabolism ; RNA, Transfer, Met/chemistry/genetics/metabolism/ultrastructure ; Ribosome Subunits/chemistry/metabolism/ultrastructure ; Ribosomes/chemistry/*metabolism/*ultrastructure ; Thermus thermophilus/*enzymology/genetics/*ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2008-12-19
    Description: Here we report on a 3.0 A crystal structure of a ternary complex of wild-type Thermus thermophilus argonaute bound to a 5'-phosphorylated 21-nucleotide guide DNA and a 20-nucleotide target RNA containing cleavage-preventing mismatches at the 10-11 step. The seed segment (positions 2 to 8) adopts an A-helical-like Watson-Crick paired duplex, with both ends of the guide strand anchored in the complex. An arginine, inserted between guide-strand bases 10 and 11 in the binary complex, locking it in an inactive conformation, is released on ternary complex formation. The nucleic-acid-binding channel between the PAZ- and PIWI-containing lobes of argonaute widens on formation of a more open ternary complex. The relationship of structure to function was established by determining cleavage activity of ternary complexes containing position-dependent base mismatch, bulge and 2'-O-methyl modifications. Consistent with the geometry of the ternary complex, bulges residing in the seed segments of the target, but not the guide strand, were better accommodated and their complexes were catalytically active.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765400/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765400/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Yanli -- Juranek, Stefan -- Li, Haitao -- Sheng, Gang -- Tuschl, Thomas -- Patel, Dinshaw J -- R01 AI068776/AI/NIAID NIH HHS/ -- R01 AI068776-02/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Dec 18;456(7224):921-6. doi: 10.1038/nature07666.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial-Sloan Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19092929" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/genetics/*metabolism ; Base Pair Mismatch ; Base Pairing ; Base Sequence ; Crystallography, X-Ray ; DNA/chemistry/genetics/*metabolism ; Methylation ; Models, Molecular ; Phosphorylation ; Protein Conformation ; RNA/chemistry/genetics/*metabolism ; RNA Interference ; RNA-Induced Silencing Complex/*chemistry/genetics/*metabolism ; Substrate Specificity ; Thermus thermophilus/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2008-08-30
    Description: The slicer activity of the RNA-induced silencing complex is associated with argonaute, the RNase H-like PIWI domain of which catalyses guide-strand-mediated sequence-specific cleavage of target messenger RNA. Here we report on the crystal structure of Thermus thermophilus argonaute bound to a 5'-phosphorylated 21-base DNA guide strand, thereby identifying the nucleic-acid-binding channel positioned between the PAZ- and PIWI-containing lobes, as well as the pivot-like conformational changes associated with complex formation. The bound guide strand is anchored at both of its ends, with the solvent-exposed Watson-Crick edges of stacked bases 2 to 6 positioned for nucleation with the mRNA target, whereas two critically positioned arginines lock bases 10 and 11 at the cleavage site into an unanticipated orthogonal alignment. Biochemical studies indicate that key amino acid residues at the active site and those lining the 5'-phosphate-binding pocket made up of the Mid domain are critical for cleavage activity, whereas alterations of residues lining the 2-nucleotide 3'-end-binding pocket made up of the PAZ domain show little effect.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689319/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689319/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Yanli -- Sheng, Gang -- Juranek, Stefan -- Tuschl, Thomas -- Patel, Dinshaw J -- P30 CA008748/CA/NCI NIH HHS/ -- R01 AI068776/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Nov 13;456(7219):209-13. doi: 10.1038/nature07315. Epub 2008 Aug 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18754009" target="_blank"〉PubMed〈/a〉
    Keywords: Aptamers, Nucleotide/metabolism ; Bacterial Proteins/*chemistry/metabolism ; Crystallography, X-Ray ; *Gene Silencing ; Hydrogen Bonding ; *Models, Molecular ; Mutation ; Protein Structure, Tertiary ; RNA/metabolism ; Thermus thermophilus/*chemistry/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2008-09-02
    Description: A common hallmark of human cancers is the overexpression of telomerase, a ribonucleoprotein complex that is responsible for maintaining the length and integrity of chromosome ends. Telomere length deregulation and telomerase activation is an early, and perhaps necessary, step in cancer cell evolution. Here we present the high-resolution structure of the Tribolium castaneum catalytic subunit of telomerase, TERT. The protein consists of three highly conserved domains, organized into a ring-like structure that shares common features with retroviral reverse transcriptases, viral RNA polymerases and B-family DNA polymerases. Domain organization places motifs implicated in substrate binding and catalysis in the interior of the ring, which can accommodate seven to eight bases of double-stranded nucleic acid. Modelling of an RNA-DNA heteroduplex in the interior of this ring demonstrates a perfect fit between the protein and the nucleic acid substrate, and positions the 3'-end of the DNA primer at the active site of the enzyme, providing evidence for the formation of an active telomerase elongation complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gillis, Andrew J -- Schuller, Anthony P -- Skordalakes, Emmanuel -- England -- Nature. 2008 Oct 2;455(7213):633-7. doi: 10.1038/nature07283. Epub 2008 Aug 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression and Regulation Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18758444" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Binding Sites ; Catalysis ; Catalytic Domain ; Conserved Sequence ; Crystallization ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Nucleotides/metabolism ; Protein Structure, Tertiary ; Telomerase/*chemistry/metabolism ; Tribolium/*enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2008-07-03
    Description: G-protein-coupled receptors have a major role in transmembrane signalling in most eukaryotes and many are important drug targets. Here we report the 2.7 A resolution crystal structure of a beta(1)-adrenergic receptor in complex with the high-affinity antagonist cyanopindolol. The modified turkey (Meleagris gallopavo) receptor was selected to be in its antagonist conformation and its thermostability improved by earlier limited mutagenesis. The ligand-binding pocket comprises 15 side chains from amino acid residues in 4 transmembrane alpha-helices and extracellular loop 2. This loop defines the entrance of the ligand-binding pocket and is stabilized by two disulphide bonds and a sodium ion. Binding of cyanopindolol to the beta(1)-adrenergic receptor and binding of carazolol to the beta(2)-adrenergic receptor involve similar interactions. A short well-defined helix in cytoplasmic loop 2, not observed in either rhodopsin or the beta(2)-adrenergic receptor, directly interacts by means of a tyrosine with the highly conserved DRY motif at the end of helix 3 that is essential for receptor activation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923055/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923055/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warne, Tony -- Serrano-Vega, Maria J -- Baker, Jillian G -- Moukhametzianov, Rouslan -- Edwards, Patricia C -- Henderson, Richard -- Leslie, Andrew G W -- Tate, Christopher G -- Schertler, Gebhard F X -- MC_U105178937/Medical Research Council/United Kingdom -- MC_U105184322/Medical Research Council/United Kingdom -- MC_U105184325/Medical Research Council/United Kingdom -- MC_U105197215/Medical Research Council/United Kingdom -- U.1051.04.020(78937)/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2008 Jul 24;454(7203):486-91. doi: 10.1038/nature07101. Epub 2008 Jun 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18594507" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-1 Receptor Agonists ; Adrenergic beta-1 Receptor Antagonists ; Adrenergic beta-Antagonists/chemistry/metabolism ; Amino Acid Motifs ; Animals ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Ligands ; Models, Molecular ; Mutant Proteins/chemistry/genetics/metabolism ; Mutation ; Pindolol/analogs & derivatives/chemistry/metabolism ; Propanolamines/chemistry/metabolism ; Protein Conformation ; Receptors, Adrenergic, beta-1/*chemistry/metabolism ; Thermodynamics ; Turkeys
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-12-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wassarman, Paul M -- England -- Nature. 2008 Dec 4;456(7222):586-7. doi: 10.1038/456586a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19052615" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conserved Sequence ; Crystallography, X-Ray ; Egg Proteins/*chemistry/genetics/*metabolism ; Female ; Fertilization/physiology ; Male ; Membrane Glycoproteins/*chemistry/genetics/*metabolism ; Mice ; Ovum/*chemistry/*metabolism ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Cell Surface/*chemistry/genetics/*metabolism ; Spermatozoa/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2008-05-27
    Description: Understanding the energetics of molecular interactions is fundamental to all of the central quests of structural biology including structure prediction and design, mapping evolutionary pathways, learning how mutations cause disease, drug design, and relating structure to function. Hydrogen-bonding is widely regarded as an important force in a membrane environment because of the low dielectric constant of membranes and a lack of competition from water. Indeed, polar residue substitutions are the most common disease-causing mutations in membrane proteins. Because of limited structural information and technical challenges, however, there have been few quantitative tests of hydrogen-bond strength in the context of large membrane proteins. Here we show, by using a double-mutant cycle analysis, that the average contribution of eight interhelical side-chain hydrogen-bonding interactions throughout bacteriorhodopsin is only 0.6 kcal mol(-1). In agreement with these experiments, we find that 4% of polar atoms in the non-polar core regions of membrane proteins have no hydrogen-bond partner and the lengths of buried hydrogen bonds in soluble proteins and membrane protein transmembrane regions are statistically identical. Our results indicate that most hydrogen-bond interactions in membrane proteins are only modestly stabilizing. Weak hydrogen-bonding should be reflected in considerations of membrane protein folding, dynamics, design, evolution and function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2734483/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2734483/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joh, Nathan Hyunjoong -- Min, Andrew -- Faham, Salem -- Whitelegge, Julian P -- Yang, Duan -- Woods, Virgil L -- Bowie, James U -- R01 CA081000/CA/NCI NIH HHS/ -- R01 CA081000-07/CA/NCI NIH HHS/ -- R01 CA081000-08/CA/NCI NIH HHS/ -- R01 CA081000-09/CA/NCI NIH HHS/ -- R01 GM063919/GM/NIGMS NIH HHS/ -- R01 GM063919-06/GM/NIGMS NIH HHS/ -- R01 GM063919-07/GM/NIGMS NIH HHS/ -- R01 GM063919-08/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Jun 26;453(7199):1266-70. doi: 10.1038/nature06977. Epub 2008 May 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, UCLA-DOE Center for Genomics and Proteomics, Molecular Biology Institute, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18500332" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriorhodopsins/chemistry/genetics/metabolism ; Crystallography, X-Ray ; Deuterium Exchange Measurement ; Hydrogen Bonding ; Membrane Proteins/*chemistry/genetics/*metabolism ; Models, Molecular ; Mutation/genetics ; Protein Folding ; Solubility ; Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2008-01-04
    Description: Typical 2-Cys peroxiredoxins (Prxs) have an important role in regulating hydrogen peroxide-mediated cell signalling. In this process, Prxs can become inactivated through the hyperoxidation of an active site Cys residue to Cys sulphinic acid. The unique repair of this moiety by sulphiredoxin (Srx) restores peroxidase activity and terminates the signal. The hyperoxidized form of Prx exists as a stable decameric structure with each active site buried. Therefore, it is unclear how Srx can access the sulphinic acid moiety. Here we present the 2.6 A crystal structure of the human Srx-PrxI complex. This complex reveals the complete unfolding of the carboxy terminus of Prx, and its unexpected packing onto the backside of Srx away from the Srx active site. Binding studies and activity analyses of site-directed mutants at this interface show that the interaction is required for repair to occur. Moreover, rearrangements in the Prx active site lead to a juxtaposition of the Prx Gly-Gly-Leu-Gly and Srx ATP-binding motifs, providing a structural basis for the first step of the catalytic mechanism. The results also suggest that the observed interactions may represent a common mode for other proteins to bind to Prxs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646140/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646140/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jonsson, Thomas J -- Johnson, Lynnette C -- Lowther, W Todd -- R01 GM072866/GM/NIGMS NIH HHS/ -- R01 GM072866-03/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Jan 3;451(7174):98-101. doi: 10.1038/nature06415.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Structural Biology and Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18172504" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites/genetics ; Catalysis ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Multiprotein Complexes/chemistry/genetics/metabolism ; Mutagenesis, Site-Directed ; Oxidation-Reduction ; Oxidoreductases/*chemistry/genetics/*metabolism ; Oxidoreductases Acting on Sulfur Group Donors ; Peroxiredoxins/*chemistry/genetics/*metabolism ; Protein Structure, Quaternary ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2008-02-22
    Description: Messenger-RNA-directed protein synthesis is accomplished by the ribosome. In eubacteria, this complex process is initiated by a specialized transfer RNA charged with formylmethionine (tRNA(fMet)). The amino-terminal formylated methionine of all bacterial nascent polypeptides blocks the reactive amino group to prevent unfavourable side-reactions and to enhance the efficiency of translation initiation. The first enzymatic factor that processes nascent chains is peptide deformylase (PDF); it removes this formyl group as polypeptides emerge from the ribosomal tunnel and before the newly synthesized proteins can adopt their native fold, which may bury the N terminus. Next, the N-terminal methionine is excised by methionine aminopeptidase. Bacterial PDFs are metalloproteases sharing a conserved N-terminal catalytic domain. All Gram-negative bacteria, including Escherichia coli, possess class-1 PDFs characterized by a carboxy-terminal alpha-helical extension. Studies focusing on PDF as a target for antibacterial drugs have not revealed the mechanism of its co-translational mode of action despite indications in early work that it co-purifies with ribosomes. Here we provide biochemical evidence that E. coli PDF interacts directly with the ribosome via its C-terminal extension. Crystallographic analysis of the complex between the ribosome-interacting helix of PDF and the ribosome at 3.7 A resolution reveals that the enzyme orients its active site towards the ribosomal tunnel exit for efficient co-translational processing of emerging nascent chains. Furthermore, we have found that the interaction of PDF with the ribosome enhances cell viability. These results provide the structural basis for understanding the coupling between protein synthesis and enzymatic processing of nascent chains, and offer insights into the interplay of PDF with the ribosome-associated chaperone trigger factor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bingel-Erlenmeyer, Rouven -- Kohler, Rebecca -- Kramer, Gunter -- Sandikci, Arzu -- Antolic, Snjezana -- Maier, Timm -- Schaffitzel, Christiane -- Wiedmann, Brigitte -- Bukau, Bernd -- Ban, Nenad -- England -- Nature. 2008 Mar 6;452(7183):108-11. doi: 10.1038/nature06683. Epub 2008 Feb 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18288106" target="_blank"〉PubMed〈/a〉
    Keywords: Amidohydrolases/*chemistry/deficiency/genetics/*metabolism ; Amino Acid Sequence ; Arabinose/metabolism ; Binding Sites ; Crystallography, X-Ray ; Escherichia coli/*enzymology/genetics/growth & development/metabolism ; Genetic Complementation Test ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; N-Formylmethionine/metabolism ; Peptidylprolyl Isomerase/metabolism ; Protein Binding ; *Protein Biosynthesis ; *Protein Processing, Post-Translational ; Protein Structure, Secondary ; RNA, Transfer, Met/genetics/metabolism ; Ribosome Subunits/chemistry/metabolism ; Ribosomes/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2008-10-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whisstock, James C -- Bottomley, Stephen P -- England -- Nature. 2008 Oct 30;455(7217):1189-90. doi: 10.1038/4551189a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18972012" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid/chemistry/metabolism ; Animals ; Antithrombin III/*chemistry/*metabolism ; Biopolymers/chemistry/metabolism ; Crystallography, X-Ray ; Dimerization ; Humans ; Models, Molecular ; Protein Conformation ; Protein Folding
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2008-07-04
    Description: Neurotrophins (NTs) are important regulators for the survival, differentiation and maintenance of different peripheral and central neurons. NTs bind to two distinct classes of glycosylated receptor: the p75 neurotrophin receptor (p75(NTR)) and tyrosine kinase receptors (Trks). Whereas p75(NTR) binds to all NTs, the Trk subtypes are specific for each NT. The question of whether NTs stimulate p75(NTR) by inducing receptor homodimerization is still under debate. Here we report the 2.6-A resolution crystal structure of neurotrophin-3 (NT-3) complexed to the ectodomain of glycosylated p75(NTR). In contrast to the previously reported asymmetric complex structure, which contains a dimer of nerve growth factor (NGF) bound to a single ectodomain of deglycosylated p75(NTR) (ref. 3), we show that NT-3 forms a central homodimer around which two glycosylated p75(NTR) molecules bind symmetrically. Symmetrical binding occurs along the NT-3 interfaces, resulting in a 2:2 ligand-receptor cluster. A comparison of the symmetrical and asymmetric structures reveals significant differences in ligand-receptor interactions and p75(NTR) conformations. Biochemical experiments indicate that both NT-3 and NGF bind to p75(NTR) with 2:2 stoichiometry in solution, whereas the 2:1 complexes are the result of artificial deglycosylation. We therefore propose that the symmetrical 2:2 complex reflects a native state of p75(NTR) activation at the cell surface. These results provide a model for NTs-p75(NTR) recognition and signal generation, as well as insights into coordination between p75(NTR) and Trks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gong, Yong -- Cao, Peng -- Yu, Hong-jun -- Jiang, Tao -- England -- Nature. 2008 Aug 7;454(7205):789-93. doi: 10.1038/nature07089. Epub 2008 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18596692" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Crystallography, X-Ray ; Dimerization ; Glycosylation ; Humans ; Ligands ; Models, Molecular ; Neurotrophin 3/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Rats ; Receptor, Nerve Growth Factor/*chemistry/genetics/*metabolism ; Spodoptera
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2008-04-25
    Description: Bacteriophage lambda has for many years been a model system for understanding mechanisms of gene regulation. A 'genetic switch' enables the phage to transition from lysogenic growth to lytic development when triggered by specific environmental conditions. The key component of the switch is the cI repressor, which binds to two sets of three operator sites on the lambda chromosome that are separated by about 2,400 base pairs (bp). A hallmark of the lambda system is the pairwise cooperativity of repressor binding. In the absence of detailed structural information, it has been difficult to understand fully how repressor molecules establish the cooperativity complex. Here we present the X-ray crystal structure of the intact lambda cI repressor dimer bound to a DNA operator site. The structure of the repressor, determined by multiple isomorphous replacement methods, reveals an unusual overall architecture that allows it to adopt a conformation that appears to facilitate pairwise cooperative binding to adjacent operator sites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stayrook, Steven -- Jaru-Ampornpan, Peera -- Ni, Jenny -- Hochschild, Ann -- Lewis, Mitchell -- R01 GM044025/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Apr 24;452(7190):1022-5. doi: 10.1038/nature06831.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 37th and Hamilton Walk, Philadelphia, Pennsylvania 19102-6059, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18432246" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Allosteric Site ; Bacteriophage lambda/*chemistry/genetics ; Crystallography, X-Ray ; DNA-Binding Proteins/*chemistry/*metabolism ; Dimerization ; Models, Biological ; *Models, Molecular ; Operator Regions, Genetic/*genetics ; Protein Conformation ; Repressor Proteins/*chemistry/*metabolism ; Structure-Activity Relationship ; Viral Regulatory and Accessory Proteins/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2008-02-01
    Description: The M2 protein from influenza A virus is a pH-activated proton channel that mediates acidification of the interior of viral particles entrapped in endosomes. M2 is the target of the anti-influenza drugs amantadine and rimantadine; recently, resistance to these drugs in humans, birds and pigs has reached more than 90% (ref. 1). Here we describe the crystal structure of the transmembrane-spanning region of the homotetrameric protein in the presence and absence of the channel-blocking drug amantadine. pH-dependent structural changes occur near a set of conserved His and Trp residues that are involved in proton gating. The drug-binding site is lined by residues that are mutated in amantadine-resistant viruses. Binding of amantadine physically occludes the pore, and might also perturb the pK(a) of the critical His residue. The structure provides a starting point for solving the problem of resistance to M2-channel blockers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3889492/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3889492/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stouffer, Amanda L -- Acharya, Rudresh -- Salom, David -- Levine, Anna S -- Di Costanzo, Luigi -- Soto, Cinque S -- Tereshko, Valentina -- Nanda, Vikas -- Stayrook, Steven -- DeGrado, William F -- R37 GM054616/GM/NIGMS NIH HHS/ -- T32 GM008275/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Jan 31;451(7178):596-9. doi: 10.1038/nature06528.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18235504" target="_blank"〉PubMed〈/a〉
    Keywords: Amantadine/chemistry/metabolism/pharmacology ; Crystallography, X-Ray ; Drug Resistance, Viral/genetics ; Histidine/metabolism ; Hydrogen-Ion Concentration ; Influenza A virus/*chemistry/genetics/metabolism ; Ion Channel Gating/drug effects ; Models, Molecular ; Protein Structure, Quaternary ; Protons ; Structure-Activity Relationship ; Tryptophan/metabolism ; Viral Matrix Proteins/*antagonists & inhibitors/*chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2008-11-07
    Description: The recent emergence of highly pathogenic avian (H5N1) influenza viruses, their epizootic and panzootic nature, and their association with lethal human infections have raised significant global health concerns. Several studies have underlined the importance of non-structural protein NS1 in the increased pathogenicity and virulence of these strains. NS1, which consists of two domains-a double-stranded RNA (dsRNA) binding domain and the effector domain, separated through a linker-is an antagonist of antiviral type-I interferon response in the host. Here we report the X-ray structure of the full-length NS1 from an H5N1 strain (A/Vietnam/1203/2004) that was associated with 60% of human deaths in an outbreak in Vietnam. Compared to the individually determined structures of the RNA binding domain and the effector domain from non-H5N1 strains, the RNA binding domain within H5N1 NS1 exhibits modest structural changes, while the H5N1 effector domain shows significant alteration, particularly in the dimeric interface. Although both domains in the full-length NS1 individually participate in dimeric interactions, an unexpected finding is that these interactions result in the formation of a chain of NS1 molecules instead of distinct dimeric units. Three such chains in the crystal interact with one another extensively to form a tubular organization of similar dimensions to that observed in the cryo-electron microscopy images of NS1 in the presence of dsRNA. The tubular oligomeric organization of NS1, in which residues implicated in dsRNA binding face a 20-A-wide central tunnel, provides a plausible mechanism for how NS1 sequesters varying lengths of dsRNA, to counter cellular antiviral dsRNA response pathways, while simultaneously interacting with other cellular ligands during an infection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798118/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798118/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bornholdt, Zachary A -- Prasad, B V Venkataram -- AI36040/AI/NIAID NIH HHS/ -- R37 AI036040/AI/NIAID NIH HHS/ -- R37 AI036040-21/AI/NIAID NIH HHS/ -- RR002250/RR/NCRR NIH HHS/ -- England -- Nature. 2008 Dec 18;456(7224):985-8. doi: 10.1038/nature07444. Epub 2008 Nov 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18987632" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Humans ; Influenza A Virus, H5N1 Subtype/*chemistry/*pathogenicity ; Influenza, Human/epidemiology/virology ; Models, Molecular ; Protein Multimerization ; Protein Structure, Tertiary ; Vietnam/epidemiology ; Viral Nonstructural Proteins/*chemistry/ultrastructure ; Virulence ; Virulence Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2008-09-17
    Description: Hedgehog (Hh) proteins specify tissue pattern in metazoan embryos by forming gradients that emanate from discrete sites of expression and elicit concentration-dependent cellular differentiation or proliferation responses. Cellular responses to Hh and the movement of Hh through tissues are both precisely regulated, and abnormal Hh signalling has been implicated in human birth defects and cancer. Hh signalling is mediated by its amino-terminal domain (HhN), which is dually lipidated and secreted as part of a multivalent lipoprotein particle. Reception of the HhN signal is modulated by several cell-surface proteins on responding cells, including Patched (Ptc), Smoothened (Smo), Ihog (known as CDO or CDON in mammals) and the vertebrate-specific proteins Hip (also known as Hhip) and Gas1 (ref. 11). Drosophila Ihog and its vertebrate homologues CDO and BOC contain multiple immunoglobulin and fibronectin type III (FNIII) repeats, and the first FNIII repeat of Ihog binds Drosophila HhN in a heparin-dependent manner. Surprisingly, pull-down experiments suggest that a mammalian Sonic hedgehog N-terminal domain (ShhN) binds a non-orthologous FNIII repeat of CDO. Here we report biochemical, biophysical and X-ray structural studies of a complex between ShhN and the third FNIII repeat of CDO. We show that the ShhN-CDO interaction is completely unlike the HhN-Ihog interaction and requires calcium, which binds at a previously undetected site on ShhN. This site is conserved in nearly all Hh proteins and is a hotspot for mediating interactions between ShhN and CDO, Ptc, Hip and Gas1. Mutations in vertebrate Hh proteins causing holoprosencephaly and brachydactyly type A1 map to this calcium-binding site and disrupt interactions with these partners.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2679680/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2679680/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McLellan, Jason S -- Zheng, Xiaoyan -- Hauk, Glenn -- Ghirlando, Rodolfo -- Beachy, Philip A -- Leahy, Daniel J -- R01 HD055545/HD/NICHD NIH HHS/ -- Z99 DK999999/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Oct 16;455(7215):979-83. doi: 10.1038/nature07358. Epub 2008 Sep 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18794898" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Calcium/metabolism ; Cell Adhesion Molecules/chemistry/metabolism ; Cell Cycle Proteins/chemistry/metabolism ; Cell Line ; *Conserved Sequence ; Crystallography, X-Ray ; Drosophila Proteins/*chemistry/*metabolism ; Drosophila melanogaster/chemistry ; Fibronectins/chemistry ; GPI-Linked Proteins ; Hedgehog Proteins/*chemistry/genetics/*metabolism ; Humans ; Immunoglobulin G/chemistry/metabolism ; Membrane Glycoproteins/*chemistry/*metabolism ; Membrane Proteins/chemistry/metabolism ; Mice ; Models, Molecular ; Protein Binding/genetics ; Protein Structure, Tertiary ; Receptors, Cell Surface/*chemistry/*metabolism ; *Sequence Homology, Amino Acid ; Signal Transduction ; Tumor Suppressor Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2008-11-07
    Description: Xeroderma pigmentosum is a monogenic disease characterized by hypersensitivity to ultraviolet light. The cells of xeroderma pigmentosum patients are defective in nucleotide excision repair, limiting their capacity to eliminate ultraviolet-induced DNA damage, and resulting in a strong predisposition to develop skin cancers. The use of rare cutting DNA endonucleases-such as homing endonucleases, also known as meganucleases-constitutes one possible strategy for repairing DNA lesions. Homing endonucleases have emerged as highly specific molecular scalpels that recognize and cleave DNA sites, promoting efficient homologous gene targeting through double-strand-break-induced homologous recombination. Here we describe two engineered heterodimeric derivatives of the homing endonuclease I-CreI, produced by a semi-rational approach. These two molecules-Amel3-Amel4 and Ini3-Ini4-cleave DNA from the human XPC gene (xeroderma pigmentosum group C), in vitro and in vivo. Crystal structures of the I-CreI variants complexed with intact and cleaved XPC target DNA suggest that the mechanism of DNA recognition and cleavage by the engineered homing endonucleases is similar to that of the wild-type I-CreI. Furthermore, these derivatives induced high levels of specific gene targeting in mammalian cells while displaying no obvious genotoxicity. Thus, homing endonucleases can be designed to recognize and cleave the DNA sequences of specific genes, opening up new possibilities for genome engineering and gene therapy in xeroderma pigmentosum patients whose illness can be treated ex vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Redondo, Pilar -- Prieto, Jesus -- Munoz, Ines G -- Alibes, Andreu -- Stricher, Francois -- Serrano, Luis -- Cabaniols, Jean-Pierre -- Daboussi, Fayza -- Arnould, Sylvain -- Perez, Christophe -- Duchateau, Philippe -- Paques, Frederic -- Blanco, Francisco J -- Montoya, Guillermo -- England -- Nature. 2008 Nov 6;456(7218):107-11. doi: 10.1038/nature07343.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Macromolecular Crystallography Group, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18987743" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Cell Line ; Cricetinae ; Cricetulus ; Crystallography, X-Ray ; DNA/chemistry/*genetics/*metabolism ; DNA Repair ; DNA Restriction Enzymes/*chemistry/genetics/*metabolism/toxicity ; DNA-Binding Proteins/*genetics ; Enzyme Stability ; *Genetic Engineering ; Humans ; Models, Molecular ; Phosphorylation ; Protein Multimerization ; Substrate Specificity ; Xeroderma Pigmentosum/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2008-07-29
    Description: Epac proteins are activated by binding of the second messenger cAMP and then act as guanine nucleotide exchange factors for Rap proteins. The Epac proteins are involved in the regulation of cell adhesion and insulin secretion. Here we have determined the structure of Epac2 in complex with a cAMP analogue (Sp-cAMPS) and RAP1B by X-ray crystallography and single particle electron microscopy. The structure represents the cAMP activated state of the Epac2 protein with the RAP1B protein trapped in the course of the exchange reaction. Comparison with the inactive conformation reveals that cAMP binding causes conformational changes that allow the cyclic nucleotide binding domain to swing from a position blocking the Rap binding site towards a docking site at the Ras exchange motif domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rehmann, Holger -- Arias-Palomo, Ernesto -- Hadders, Michael A -- Schwede, Frank -- Llorca, Oscar -- Bos, Johannes L -- England -- Nature. 2008 Sep 4;455(7209):124-7. doi: 10.1038/nature07187. Epub 2008 Jul 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Centre for Biomedical Genetics and Cancer Genomics Centre, University Medical Center, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands. h.rehmann@UMCutrecht.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18660803" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Binding Sites ; Carrier Proteins/*chemistry/*metabolism/ultrastructure ; Crystallography, X-Ray ; Cyclic AMP/*analogs & derivatives/chemistry/metabolism ; Enzyme Activation ; Guanine Nucleotide Exchange Factors/*chemistry/*metabolism/ultrastructure ; Humans ; Mice ; Microscopy, Electron ; Models, Molecular ; Protein Binding ; Protein Conformation ; Thionucleotides/*chemistry/*metabolism ; rap GTP-Binding Proteins/chemistry/*metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2008-03-07
    Description: Carbonic anhydrase, a zinc enzyme found in organisms from all kingdoms, catalyses the reversible hydration of carbon dioxide and is used for inorganic carbon acquisition by phytoplankton. In the oceans, where zinc is nearly depleted, diatoms use cadmium as a catalytic metal atom in cadmium carbonic anhydrase (CDCA). Here we report the crystal structures of CDCA in four distinct forms: cadmium-bound, zinc-bound, metal-free and acetate-bound. Despite lack of sequence homology, CDCA is a structural mimic of a functional beta-carbonic anhydrase dimer, with striking similarity in the spatial organization of the active site residues. CDCA readily exchanges cadmium and zinc at its active site--an apparently unique adaptation to oceanic life that is explained by a stable opening of the metal coordinating site in the absence of metal. Given the central role of diatoms in exporting carbon to the deep sea, their use of cadmium in an enzyme critical for carbon acquisition establishes a remarkable link between the global cycles of cadmium and carbon.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Yan -- Feng, Liang -- Jeffrey, Philip D -- Shi, Yigong -- Morel, Francois M M -- England -- Nature. 2008 Mar 6;452(7183):56-61. doi: 10.1038/nature06636.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, Princeton University, New Jersey 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18322527" target="_blank"〉PubMed〈/a〉
    Keywords: Acetates/metabolism ; Binding Sites ; Cadmium/*metabolism ; Carbonic Anhydrases/*chemistry/*metabolism ; Catalysis ; Crystallography, X-Ray ; Diatoms/*enzymology ; Dimerization ; Kinetics ; Marine Biology ; Models, Molecular ; Molecular Mimicry ; Protein Structure, Secondary ; Seawater/*microbiology ; Zinc/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2008-11-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mellgren, Ronald L -- England -- Nature. 2008 Nov 20;456(7220):337-8. doi: 10.1038/456337a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19020611" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biocatalysis ; Calcium/metabolism ; Calcium-Binding Proteins/*chemistry/*metabolism ; Calpain/*antagonists & inhibitors/chemistry/*metabolism ; *Catalytic Domain ; Crystallography, X-Ray ; Models, Molecular ; Peptide Fragments/chemistry/metabolism ; Protein Binding ; Protein Multimerization ; Rats
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2008-10-17
    Description: Repeating intermolecular protein association by means of beta-sheet expansion is the mechanism underlying a multitude of diseases including Alzheimer's, Huntington's and Parkinson's and the prion encephalopathies. A family of proteins, known as the serpins, also forms large stable multimers by ordered beta-sheet linkages leading to intracellular accretion and disease. These 'serpinopathies' include early-onset dementia caused by mutations in neuroserpin, liver cirrhosis and emphysema caused by mutations in alpha(1)-antitrypsin (alpha(1)AT), and thrombosis caused by mutations in antithrombin. Serpin structure and function are quite well understood, and the family has therefore become a model system for understanding the beta-sheet expansion disorders collectively known as the conformational diseases. To develop strategies to prevent and reverse these disorders, it is necessary to determine the structural basis of the intermolecular linkage and of the pathogenic monomeric state. Here we report the crystallographic structure of a stable serpin dimer which reveals a domain swap of more than 50 residues, including two long antiparallel beta-strands inserting in the centre of the principal beta-sheet of the neighbouring monomer. This structure explains the extreme stability of serpin polymers, the molecular basis of their rapid propagation, and provides critical new insights into the structural changes which initiate irreversible beta-sheet expansion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamasaki, Masayuki -- Li, Wei -- Johnson, Daniel J D -- Huntington, James A -- G0801899/Medical Research Council/United Kingdom -- England -- Nature. 2008 Oct 30;455(7217):1255-8. doi: 10.1038/nature07394. Epub 2008 Oct 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Cambridge, Department of Haematology, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18923394" target="_blank"〉PubMed〈/a〉
    Keywords: Antithrombin III/*chemistry/*metabolism ; Biopolymers/chemistry/metabolism ; Crystallography, X-Ray ; Dimerization ; Humans ; Models, Molecular ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2008-04-25
    Description: Escherichia coli AlkB and its human homologues ABH2 and ABH3 repair DNA/RNA base lesions by using a direct oxidative dealkylation mechanism. ABH2 has the primary role of guarding mammalian genomes against 1-meA damage by repairing this lesion in double-stranded DNA (dsDNA), whereas AlkB and ABH3 preferentially repair single-stranded DNA (ssDNA) lesions and can repair damaged bases in RNA. Here we show the first crystal structures of AlkB-dsDNA and ABH2-dsDNA complexes, stabilized by a chemical cross-linking strategy. This study reveals that AlkB uses an unprecedented base-flipping mechanism to access the damaged base: it squeezes together the two bases flanking the flipped-out one to maintain the base stack, explaining the preference of AlkB for repairing ssDNA lesions over dsDNA ones. In addition, the first crystal structure of ABH2, presented here, provides a structural basis for designing inhibitors of this human DNA repair protein.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2587245/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2587245/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Cai-Guang -- Yi, Chengqi -- Duguid, Erica M -- Sullivan, Christopher T -- Jian, Xing -- Rice, Phoebe A -- He, Chuan -- GM071440/GM/NIGMS NIH HHS/ -- R01 GM071440/GM/NIGMS NIH HHS/ -- R01 GM071440-03/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Apr 24;452(7190):961-5. doi: 10.1038/nature06889.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18432238" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/analogs & derivatives/metabolism ; Binding Sites ; Cross-Linking Reagents/chemistry ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA Damage ; DNA Repair ; DNA Repair Enzymes/*chemistry/metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Dioxygenases/*chemistry/*metabolism ; Escherichia coli Proteins/*chemistry/*metabolism ; Humans ; Mixed Function Oxygenases/*chemistry/*metabolism ; Models, Molecular ; Protein Binding ; RNA/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2008-05-27
    Description: Members of the epidermal growth factor receptor (EGFR) or ErbB/HER family and their activating ligands are essential regulators of diverse developmental processes. Inappropriate activation of these receptors is a key feature of many human cancers, and its reversal is an important clinical goal. A natural secreted antagonist of EGFR signalling, called Argos, was identified in Drosophila. We showed previously that Argos functions by directly binding (and sequestering) growth factor ligands that activate EGFR. Here we describe the 1.6-A resolution crystal structure of Argos bound to an EGFR ligand. Contrary to expectations, Argos contains no EGF-like domain. Instead, a trio of closely related domains (resembling a three-finger toxin fold) form a clamp-like structure around the bound EGF ligand. Although structurally unrelated to the receptor, Argos mimics EGFR by using a bipartite binding surface to entrap EGF. The individual Argos domains share unexpected structural similarities with the extracellular ligand-binding regions of transforming growth factor-beta family receptors. The three-domain clamp of Argos also resembles the urokinase-type plasminogen activator (uPA) receptor, which uses a similar mechanism to engulf the EGF-like module of uPA. Our results indicate that undiscovered mammalian counterparts of Argos may exist among other poorly characterized structural homologues. In addition, the structures presented here define requirements for the design of artificial EGF-sequestering proteins that would be valuable anti-cancer therapeutics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2526102/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2526102/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klein, Daryl E -- Stayrook, Steven E -- Shi, Fumin -- Narayan, Kartik -- Lemmon, Mark A -- R01 CA079992/CA/NCI NIH HHS/ -- R01 CA079992-10/CA/NCI NIH HHS/ -- R01 CA125432/CA/NCI NIH HHS/ -- R01 CA125432-01A1/CA/NCI NIH HHS/ -- England -- Nature. 2008 Jun 26;453(7199):1271-5. doi: 10.1038/nature06978. Epub 2008 May 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 809C Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104-6059, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18500331" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; Drosophila Proteins/*chemistry/*metabolism ; Drosophila melanogaster/*chemistry/cytology ; Epidermal Growth Factor/*chemistry/*metabolism ; Eye Proteins/*chemistry/*metabolism ; Humans ; Ligands ; Membrane Proteins/*chemistry/*metabolism ; Models, Molecular ; Nerve Tissue Proteins/*chemistry/*metabolism ; Protein Structure, Tertiary ; Receptor, Epidermal Growth Factor/antagonists & inhibitors/chemistry/*metabolism ; Receptors, Transforming Growth Factor beta/chemistry/metabolism ; Spodoptera
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2008-02-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Christopher -- England -- Nature. 2008 Jan 31;451(7178):532-3. doi: 10.1038/451532a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18235492" target="_blank"〉PubMed〈/a〉
    Keywords: Amantadine/chemistry/metabolism/pharmacology ; Animals ; Crystallography, X-Ray ; Humans ; Hydrogen-Ion Concentration ; Influenza A virus/*chemistry/genetics/pathogenicity/physiology ; Ion Channel Gating/drug effects ; Nuclear Magnetic Resonance, Biomolecular ; Protein Structure, Quaternary ; Protons ; Viral Matrix Proteins/antagonists & inhibitors/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2008-05-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kowalczykowski, Stephen C -- R01 GM062653/GM/NIGMS NIH HHS/ -- R37 GM062653/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 May 22;453(7194):463-6. doi: 10.1038/453463a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18497811" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; DNA/*chemistry/genetics/*metabolism ; *DNA Repair ; Models, Molecular ; Molecular Conformation ; Rec A Recombinases/*chemistry/*metabolism ; *Recombination, Genetic/genetics ; *Sequence Homology, Nucleic Acid
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2008-11-21
    Description: The Ca(2+)-dependent cysteine proteases, calpains, regulate cell migration, cell death, insulin secretion, synaptic function and muscle homeostasis. Their endogenous inhibitor, calpastatin, consists of four inhibitory repeats, each of which neutralizes an activated calpain with exquisite specificity and potency. Despite the physiological importance of this interaction, the structural basis of calpain inhibition by calpastatin is unknown. Here we report the 3.0 A structure of Ca(2+)-bound m-calpain in complex with the first calpastatin repeat, both from rat, revealing the mechanism of exclusive specificity. The structure highlights the complexity of calpain activation by Ca(2+), illustrating key residues in a peripheral domain that serve to stabilize the protease core on Ca(2+) binding. Fully activated calpain binds ten Ca(2+) atoms, resulting in several conformational changes allowing recognition by calpastatin. Calpain inhibition is mediated by the intimate contact with three critical regions of calpastatin. Two regions target the penta-EF-hand domains of calpain and the third occupies the substrate-binding cleft, projecting a loop around the active site thiol to evade proteolysis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847431/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847431/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moldoveanu, Tudor -- Gehring, Kalle -- Green, Douglas R -- P01 CA069381/CA/NCI NIH HHS/ -- P01 CA069381-140010/CA/NCI NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 AI040646/AI/NIAID NIH HHS/ -- R01 AI040646-14/AI/NIAID NIH HHS/ -- R01 AI044828/AI/NIAID NIH HHS/ -- R01 AI044828-12/AI/NIAID NIH HHS/ -- R01 AI047891/AI/NIAID NIH HHS/ -- R01 AI047891-12/AI/NIAID NIH HHS/ -- R37 GM052735/GM/NIGMS NIH HHS/ -- R37 GM052735-19/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Nov 20;456(7220):404-8. doi: 10.1038/nature07353.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, St Jude Children's Research Hospital, 332 N Lauderdale, Memphis, Tennessee 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19020622" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biocatalysis ; Calcium/metabolism ; Calcium-Binding Proteins/*chemistry/genetics/*metabolism ; Calpain/antagonists & inhibitors/*chemistry/*metabolism ; *Catalytic Domain ; Crystallography, X-Ray ; EF Hand Motifs ; Enzyme Activation ; Protein Binding ; Protein Multimerization ; Protein Processing, Post-Translational ; Rats ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2008-05-03
    Description: During infection by Gram-negative pathogenic bacteria, the type III secretion system (T3SS) is assembled to allow for the direct transmission of bacterial virulence effectors into the host cell. The T3SS system is characterized by a series of prominent multi-component rings in the inner and outer bacterial membranes, as well as a translocation pore in the host cell membrane. These are all connected by a series of polymerized tubes that act as the direct conduit for the T3SS proteins to pass through to the host cell. During assembly of the T3SS, as well as the evolutionarily related flagellar apparatus, a post-translational cleavage event within the inner membrane proteins EscU/FlhB is required to promote a secretion-competent state. These proteins have long been proposed to act as a part of a molecular switch, which would regulate the appropriate chronological secretion of the various T3SS apparatus components during assembly and subsequently the transported virulence effectors. Here we show that a surface type II beta-turn in the Escherichia coli protein EscU undergoes auto-cleavage by a mechanism involving cyclization of a strictly conserved asparagine residue. Structural and in vivo analysis of point and deletion mutations illustrates the subtle conformational effects of auto-cleavage in modulating the molecular features of a highly conserved surface region of EscU, a potential point of interaction with other T3SS components at the inner membrane. In addition, this work provides new structural insight into the distinct conformational requirements for a large class of self-cleaving reactions involving asparagine cyclization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zarivach, Raz -- Deng, Wanyin -- Vuckovic, Marija -- Felise, Heather B -- Nguyen, Hai V -- Miller, Samuel I -- Finlay, B Brett -- Strynadka, Natalie C J -- 5R01 AI030479/AI/NIAID NIH HHS/ -- R01 AI030479/AI/NIAID NIH HHS/ -- U54 AI057141/AI/NIAID NIH HHS/ -- England -- Nature. 2008 May 1;453(7191):124-7. doi: 10.1038/nature06832.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, and the Center for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18451864" target="_blank"〉PubMed〈/a〉
    Keywords: Asparagine/chemistry/metabolism ; Circular Dichroism ; Crystallography, X-Ray ; Cyclization ; Enteropathogenic Escherichia coli/*chemistry/*metabolism/pathogenicity ; Escherichia coli Proteins/*chemistry/genetics/*metabolism ; Models, Chemical ; Models, Molecular ; Protein Structure, Tertiary ; Salmonella typhimurium/genetics/metabolism ; Virulence Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2008-12-05
    Description: Species-specific recognition between the egg extracellular matrix (zona pellucida) and sperm is the first, crucial step of mammalian fertilization. Zona pellucida filament components ZP3 and ZP2 act as sperm receptors, and mice lacking either of the corresponding genes produce oocytes without a zona pellucida and are completely infertile. Like their counterparts in the vitelline envelope of non-mammalian eggs and many other secreted eukaryotic proteins, zona pellucida subunits polymerize using a 'zona pellucida (ZP) domain' module, whose conserved amino-terminal part (ZP-N) was suggested to constitute a domain of its own. No atomic structure has been reported for ZP domain proteins, and there is no structural information on any conserved vertebrate protein that is essential for fertilization and directly involved in egg-sperm binding. Here we describe the 2.3 angstrom (A) resolution structure of the ZP-N fragment of mouse primary sperm receptor ZP3. The ZP-N fold defines a new immunoglobulin superfamily subtype with a beta-sheet extension characterized by an E' strand and an invariant tyrosine residue implicated in polymerization. The structure strongly supports the presence of ZP-N repeats within the N-terminal region of ZP2 and other vertebrate zona pellucida/vitelline envelope proteins, with implications for overall egg coat architecture, the post-fertilization block to polyspermy and speciation. Moreover, it provides an important framework for understanding human diseases caused by mutations in ZP domain proteins and developing new methods of non-hormonal contraception.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Monne, Magnus -- Han, Ling -- Schwend, Thomas -- Burendahl, Sofia -- Jovine, Luca -- G0500367/Medical Research Council/United Kingdom -- England -- Nature. 2008 Dec 4;456(7222):653-7. doi: 10.1038/nature07599.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Karolinska Institutet, Department of Biosciences and Nutrition, Halsovagen 7, SE-141 57 Huddinge, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19052627" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; CHO Cells ; Conserved Sequence ; Cricetinae ; Cricetulus ; Crystallization ; Crystallography, X-Ray ; Egg Proteins/*chemistry/genetics/*metabolism ; Female ; Male ; Membrane Glycoproteins/*chemistry/genetics/*metabolism ; Mice ; Models, Molecular ; Molecular Sequence Data ; Ovum/*chemistry/*metabolism ; Peptide Fragments/chemistry/genetics/metabolism ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Cell Surface/*chemistry/genetics/*metabolism ; Repetitive Sequences, Amino Acid ; Spermatozoa/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2008-03-21
    Description: The design of new enzymes for reactions not catalysed by naturally occurring biocatalysts is a challenge for protein engineering and is a critical test of our understanding of enzyme catalysis. Here we describe the computational design of eight enzymes that use two different catalytic motifs to catalyse the Kemp elimination-a model reaction for proton transfer from carbon-with measured rate enhancements of up to 10(5) and multiple turnovers. Mutational analysis confirms that catalysis depends on the computationally designed active sites, and a high-resolution crystal structure suggests that the designs have close to atomic accuracy. Application of in vitro evolution to enhance the computational designs produced a 〉200-fold increase in k(cat)/K(m) (k(cat)/K(m) of 2,600 M(-1)s(-1) and k(cat)/k(uncat) of 〉10(6)). These results demonstrate the power of combining computational protein design with directed evolution for creating new enzymes, and we anticipate the creation of a wide range of useful new catalysts in the future.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rothlisberger, Daniela -- Khersonsky, Olga -- Wollacott, Andrew M -- Jiang, Lin -- DeChancie, Jason -- Betker, Jamie -- Gallaher, Jasmine L -- Althoff, Eric A -- Zanghellini, Alexandre -- Dym, Orly -- Albeck, Shira -- Houk, Kendall N -- Tawfik, Dan S -- Baker, David -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 May 8;453(7192):190-5. doi: 10.1038/nature06879. Epub 2008 Mar 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18354394" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Motifs ; Binding Sites/genetics ; Catalysis ; Computational Biology ; *Computer Simulation ; Crystallography, X-Ray ; Directed Molecular Evolution/*methods ; Drug Design ; Drug Evaluation, Preclinical ; Enzymes/*chemistry/genetics/*metabolism ; Kinetics ; Models, Chemical ; Models, Molecular ; Protein Engineering/*methods ; Quantum Theory ; Sensitivity and Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2008-05-23
    Description: All organisms have to monitor the folding state of cellular proteins precisely. The heat-shock protein DegP is a protein quality control factor in the bacterial envelope that is involved in eliminating misfolded proteins and in the biogenesis of outer-membrane proteins. Here we describe the molecular mechanisms underlying the regulated protease and chaperone function of DegP from Escherichia coli. We show that binding of misfolded proteins transforms hexameric DegP into large, catalytically active 12-meric and 24-meric multimers. A structural analysis of these particles revealed that DegP represents a protein packaging device whose central compartment is adaptable to the size and concentration of substrate. Moreover, the inner cavity serves antagonistic functions. Whereas the encapsulation of folded protomers of outer-membrane proteins is protective and might allow safe transit through the periplasm, misfolded proteins are eliminated in the molecular reaction chamber. Oligomer reassembly and concomitant activation on substrate binding may also be critical in regulating other HtrA proteases implicated in protein-folding diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krojer, Tobias -- Sawa, Justyna -- Schafer, Eva -- Saibil, Helen R -- Ehrmann, Michael -- Clausen, Tim -- 070776/Wellcome Trust/United Kingdom -- 079605/Wellcome Trust/United Kingdom -- BB/C516144/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/C516179/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/F010281/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBS/B/03955/Biotechnology and Biological Sciences Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2008 Jun 12;453(7197):885-90. doi: 10.1038/nature07004. Epub 2008 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute for Molecular Pathology - IMP, Dr Bohrgasse 7, A-1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18496527" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane ; Proteins/biosynthesis/chemistry/metabolism/ultrastructure ; Cell Membrane/metabolism ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Escherichia coli/*enzymology ; Heat-Shock Proteins/*chemistry/*metabolism/ultrastructure ; Models, Molecular ; Molecular Chaperones/*chemistry/*metabolism/ultrastructure ; Periplasmic Proteins/*chemistry/*metabolism/ultrastructure ; Protein Folding ; Protein Structure, Quaternary ; Serine Endopeptidases/*chemistry/*metabolism/ultrastructure ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2008-05-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saeki, Yasushi -- Tanaka, Keiji -- England -- Nature. 2008 May 22;453(7194):460-1. doi: 10.1038/453460a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18497808" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallography, X-Ray ; Humans ; Nuclear Magnetic Resonance, Biomolecular ; Proteasome Endopeptidase Complex/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Protein Subunits/*chemistry/genetics/*metabolism ; Saccharomyces cerevisiae ; Ubiquitin/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2008-10-17
    Description: Most proteins are secreted from bacteria by the interaction of the cytoplasmic SecA ATPase with a membrane channel, formed by the heterotrimeric SecY complex. Here we report the crystal structure of SecA bound to the SecY complex, with a maximum resolution of 4.5 angstrom (A), obtained for components from Thermotoga maritima. One copy of SecA in an intermediate state of ATP hydrolysis is bound to one molecule of the SecY complex. Both partners undergo important conformational changes on interaction. The polypeptide-cross-linking domain of SecA makes a large conformational change that could capture the translocation substrate in a 'clamp'. Polypeptide movement through the SecY channel could be achieved by the motion of a 'two-helix finger' of SecA inside the cytoplasmic funnel of SecY, and by the coordinated tightening and widening of SecA's clamp above the SecY pore. SecA binding generates a 'window' at the lateral gate of the SecY channel and it displaces the plug domain, preparing the channel for signal sequence binding and channel opening.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zimmer, Jochen -- Nam, Yunsun -- Rapoport, Tom A -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Oct 16;455(7215):936-43. doi: 10.1038/nature07335.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18923516" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/*metabolism ; Adenosine Triphosphate/metabolism ; Bacillus subtilis/chemistry ; Bacterial Proteins/*chemistry/*metabolism ; Crystallography, X-Ray ; Hydrolysis ; Membrane Transport Proteins/*chemistry/*metabolism ; Models, Biological ; Models, Molecular ; Movement ; Multiprotein Complexes/chemistry/metabolism ; Protein Binding ; Protein Conformation ; Protein Sorting Signals/physiology ; Protein Transport ; Structure-Activity Relationship ; Thermotoga maritima/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2008-05-16
    Description: Invertebrate phototransduction uses an inositol-1,4,5-trisphosphate signalling cascade in which photoactivated rhodopsin stimulates a G(q)-type G protein, that is, a class of G protein that stimulates membrane-bound phospholipase Cbeta. The same cascade is used by many G-protein-coupled receptors, indicating that invertebrate rhodopsin is a prototypical member. Here we report the crystal structure of squid (Todarodes pacificus) rhodopsin at 2.5 A resolution. Among seven transmembrane alpha-helices, helices V and VI extend into the cytoplasmic medium and, together with two cytoplasmic helices, they form a rigid protrusion from the membrane surface. This peculiar structure, which is not seen in bovine rhodopsin, seems to be crucial for the recognition of G(q)-type G proteins. The retinal Schiff base forms a hydrogen bond to Asn 87 or Tyr 111; it is far from the putative counterion Glu 180. In the crystal, a tight association is formed between the amino-terminal polypeptides of neighbouring monomers; this intermembrane dimerization may be responsible for the organization of hexagonally packed microvillar membranes in the photoreceptor rhabdom.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murakami, Midori -- Kouyama, Tsutomu -- England -- Nature. 2008 May 15;453(7193):363-7. doi: 10.1038/nature06925.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18480818" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Crystallography, X-Ray ; Decapodiformes/*chemistry ; Dimerization ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Secondary ; Retinaldehyde/metabolism ; Rhodopsin/*chemistry/metabolism ; Schiff Bases ; Vision, Ocular/physiology ; Water/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2008-11-28
    Description: Gibberellins control a range of growth and developmental processes in higher plants and have been widely used in the agricultural industry. By binding to a nuclear receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1), gibberellins regulate gene expression by promoting degradation of the transcriptional regulator DELLA proteins, including GIBBERELLIN INSENSITIVE (GAI). The precise manner in which GID1 discriminates and becomes activated by bioactive gibberellins for specific binding to DELLA proteins remains unclear. Here we present the crystal structure of a ternary complex of Arabidopsis thaliana GID1A, a bioactive gibberellin and the amino-terminal DELLA domain of GAI. In this complex, GID1A occludes gibberellin in a deep binding pocket covered by its N-terminal helical switch region, which in turn interacts with the DELLA domain containing DELLA, VHYNP and LExLE motifs. Our results establish a structural model of a plant hormone receptor that is distinct from the mechanism of the hormone perception and effector recognition of the known auxin receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murase, Kohji -- Hirano, Yoshinori -- Sun, Tai-ping -- Hakoshima, Toshio -- England -- Nature. 2008 Nov 27;456(7221):459-63. doi: 10.1038/nature07519.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19037309" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Arabidopsis/*chemistry/metabolism ; Arabidopsis Proteins/*chemistry/genetics/*metabolism ; Circular Dichroism ; Crystallography, X-Ray ; Gibberellins/metabolism/*pharmacology ; Models, Biological ; Models, Molecular ; Plant Growth Regulators/metabolism/*pharmacology ; Protein Binding ; Protein Structure, Tertiary/drug effects ; Receptors, Cell Surface/*chemistry/genetics/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2008-11-21
    Description: Calpains are non-lysosomal calcium-dependent cysteine proteinases that selectively cleave proteins in response to calcium signals and thereby control cellular functions such as cytoskeletal remodelling, cell cycle progression, gene expression and apoptotic cell death. In mammals, the two best-characterized members of the calpain family, calpain 1 and calpain 2 (micro-calpain and m-calpain, respectively), are ubiquitously expressed. The activity of calpains is tightly controlled by the endogenous inhibitor calpastatin, which is an intrinsically unstructured protein capable of reversibly binding and inhibiting four molecules of calpain, but only in the presence of calcium. To date, the mechanism of inhibition by calpastatin and the basis for its absolute specificity have remained speculative. It was not clear how this unstructured protein inhibits calpains without being cleaved itself, nor was it known how calcium induced changes that facilitated the binding of calpastatin to calpain. Here we report the 2.4-A-resolution crystal structure of the calcium-bound calpain 2 heterodimer bound by one of the four inhibitory domains of calpastatin. Calpastatin is seen to inhibit calpain by occupying both sides of the active site cleft. Although the inhibitor passes through the active site cleft it escapes cleavage in a novel manner by looping out and around the active site cysteine. The inhibitory domain of calpastatin recognizes multiple lower affinity sites present only in the calcium-bound form of the enzyme, resulting in an interaction that is tight, specific and calcium dependent. This crystal structure, and that of a related complex, also reveal the conformational changes that calpain undergoes on binding calcium, which include opening of the active site cleft and movement of the domains relative to each other to produce a more compact enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hanna, Rachel A -- Campbell, Robert L -- Davies, Peter L -- England -- Nature. 2008 Nov 20;456(7220):409-12. doi: 10.1038/nature07451.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19020623" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; Calcium-Binding Proteins/*chemistry/*metabolism ; Calpain/*antagonists & inhibitors/*chemistry/metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Models, Molecular ; Protein Binding ; Protein Multimerization ; Rats ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2008-07-04
    Description: At termination of protein synthesis, type I release factors promote hydrolysis of the peptidyl-transfer RNA linkage in response to recognition of a stop codon. Here we describe the crystal structure of the Thermus thermophilus 70S ribosome in complex with the release factor RF1, tRNA and a messenger RNA containing a UAA stop codon, at 3.2 A resolution. The stop codon is recognized in a pocket formed by conserved elements of RF1, including its PxT recognition motif, and 16S ribosomal RNA. The codon and the 30S subunit A site undergo an induced fit that results in stabilization of a conformation of RF1 that promotes its interaction with the peptidyl transferase centre. Unexpectedly, the main-chain amide group of Gln 230 in the universally conserved GGQ motif of the factor is positioned to contribute directly to peptidyl-tRNA hydrolysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Laurberg, Martin -- Asahara, Haruichi -- Korostelev, Andrei -- Zhu, Jianyu -- Trakhanov, Sergei -- Noller, Harry F -- England -- Nature. 2008 Aug 14;454(7206):852-7. doi: 10.1038/nature07115. Epub 2008 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California at Santa Cruz, Santa Cruz, California 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18596689" target="_blank"〉PubMed〈/a〉
    Keywords: Codon, Terminator/genetics/metabolism ; Crystallography, X-Ray ; Models, Molecular ; *Peptide Chain Termination, Translational ; Peptide Termination Factors/chemistry/metabolism ; Peptidyl Transferases/chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; RNA, Bacterial/metabolism ; RNA, Ribosomal, 23S/chemistry ; RNA, Transfer/chemistry/genetics/metabolism ; Ribosomes/*chemistry/*metabolism ; Thermus thermophilus/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-10-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Economou, Anastassios -- England -- Nature. 2008 Oct 16;455(7215):879-80. doi: 10.1038/455879a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18923500" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/*metabolism ; Adenosine Triphosphate/metabolism ; Bacteria/chemistry/cytology/metabolism ; Bacterial Proteins/*chemistry/*metabolism ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Membrane Transport Proteins/*chemistry/*metabolism ; Molecular Motor Proteins/chemistry/metabolism ; Protein Conformation ; Protein Transport
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2008-09-02
    Description: Deubiquitinating enzymes (DUBs) remove ubiquitin from conjugated substrates to regulate various cellular processes. The Zn(2+)-dependent DUBs AMSH and AMSH-LP regulate receptor trafficking by specifically cleaving Lys 63-linked polyubiquitin chains from internalized receptors. Here we report the crystal structures of the human AMSH-LP DUB domain alone and in complex with a Lys 63-linked di-ubiquitin at 1.2 A and 1.6 A resolutions, respectively. The AMSH-LP DUB domain consists of a Zn(2+)-coordinating catalytic core and two characteristic insertions, Ins-1 and Ins-2. The distal ubiquitin interacts with Ins-1 and the core, whereas the proximal ubiquitin interacts with Ins-2 and the core. The core and Ins-1 form a catalytic groove that accommodates the Lys 63 side chain of the proximal ubiquitin and the isopeptide-linked carboxy-terminal tail of the distal ubiquitin. This is the first reported structure of a DUB in complex with an isopeptide-linked ubiquitin chain, which reveals the mechanism for Lys 63-linkage-specific deubiquitination by AMSH family members.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sato, Yusuke -- Yoshikawa, Azusa -- Yamagata, Atsushi -- Mimura, Hisatoshi -- Yamashita, Masami -- Ookata, Kayoko -- Nureki, Osamu -- Iwai, Kazuhiro -- Komada, Masayuki -- Fukai, Shuya -- England -- Nature. 2008 Sep 18;455(7211):358-62. doi: 10.1038/nature07254. Epub 2008 Aug 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18758443" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalysis ; Conserved Sequence ; Crystallography, X-Ray ; Endopeptidases/chemistry/metabolism ; Endosomal Sorting Complexes Required for Transport ; Humans ; Kinetics ; Lysine/*metabolism ; Mice ; Models, Molecular ; Polyubiquitin/*chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/chemistry/metabolism ; Structure-Activity Relationship ; Substrate Specificity ; Ubiquitin Thiolesterase/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2008-10-17
    Description: Over 30% of proteins are secreted across or integrated into membranes. Their newly synthesized forms contain either cleavable signal sequences or non-cleavable membrane anchor sequences, which direct them to the evolutionarily conserved Sec translocon (SecYEG in prokaryotes and Sec61, comprising alpha-, gamma- and beta-subunits, in eukaryotes). The translocon then functions as a protein-conducting channel. These processes of protein localization occur either at or after translation. In bacteria, the SecA ATPase drives post-translational translocation. The only high-resolution structure of a translocon available so far is that for SecYEbeta from the archaeon Methanococcus jannaschii, which lacks SecA. Here we present the 3.2-A-resolution crystal structure of the SecYE translocon from a SecA-containing organism, Thermus thermophilus. The structure, solved as a complex with an anti-SecY Fab fragment, revealed a 'pre-open' state of SecYE, in which several transmembrane helices are shifted, as compared to the previous SecYEbeta structure, to create a hydrophobic crack open to the cytoplasm. Fab and SecA bind to a common site at the tip of the cytoplasmic domain of SecY. Molecular dynamics and disulphide mapping analyses suggest that the pre-open state might represent a SecYE conformational transition that is inducible by SecA binding. Moreover, we identified a SecA-SecYE interface that comprises SecA residues originally buried inside the protein, indicating that both the channel and the motor components of the Sec machinery undergo cooperative conformational changes on formation of the functional complex.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590585/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590585/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsukazaki, Tomoya -- Mori, Hiroyuki -- Fukai, Shuya -- Ishitani, Ryuichiro -- Mori, Takaharu -- Dohmae, Naoshi -- Perederina, Anna -- Sugita, Yuji -- Vassylyev, Dmitry G -- Ito, Koreaki -- Nureki, Osamu -- R01 GM074252/GM/NIGMS NIH HHS/ -- R01 GM074252-04/GM/NIGMS NIH HHS/ -- R01 GM074840/GM/NIGMS NIH HHS/ -- R01 GM074840-04/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Oct 16;455(7215):988-91. doi: 10.1038/nature07421.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18923527" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/genetics/immunology/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Disulfides/chemistry/metabolism ; Hydrophobic and Hydrophilic Interactions ; Immunoglobulin Fab Fragments/chemistry/immunology ; Methanococcus/chemistry/enzymology ; Models, Biological ; Models, Molecular ; Protein Binding ; Protein Structure, Tertiary ; Thermus thermophilus/*chemistry/*enzymology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2008-09-06
    Description: Maintenance methylation of hemimethylated CpG dinucleotides at DNA replication forks is the key to faithful mitotic inheritance of genomic methylation patterns. UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is required for maintenance methylation by interacting with DNA nucleotide methyltransferase 1 (DNMT1), the maintenance methyltransferase, and with hemimethylated CpG, the substrate for DNMT1 (refs 1 and 2). Here we present the crystal structure of the SET and RING-associated (SRA) domain of mouse UHRF1 in complex with DNA containing a hemimethylated CpG site. The DNA is contacted in both the major and minor grooves by two loops that penetrate into the middle of the DNA helix. The 5-methylcytosine has flipped completely out of the DNA helix and is positioned in a binding pocket with planar stacking contacts, Watson-Crick polar hydrogen bonds and van der Waals interactions specific for 5-methylcytosine. Hence, UHRF1 contains a previously unknown DNA-binding module and is the first example of a non-enzymatic, sequence-specific DNA-binding protein domain to use the base flipping mechanism to interact with DNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2602803/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2602803/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hashimoto, Hideharu -- Horton, John R -- Zhang, Xing -- Bostick, Magnolia -- Jacobsen, Steven E -- Cheng, Xiaodong -- CA1263022/CA/NCI NIH HHS/ -- GM049245/GM/NIGMS NIH HHS/ -- GM060398/GM/NIGMS NIH HHS/ -- R01 GM049245/GM/NIGMS NIH HHS/ -- R01 GM049245-15/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Oct 9;455(7214):826-9. doi: 10.1038/nature07280. Epub 2008 Sep 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772888" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/*metabolism ; Animals ; Base Sequence ; CpG Islands/genetics ; Crystallography, X-Ray ; DNA/*chemistry/genetics/*metabolism ; *DNA Methylation ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Mice ; Models, Molecular ; Molecular Conformation ; Nuclear Proteins/*chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2008-10-31
    Description: AB(5) toxins comprise an A subunit that corrupts essential eukaryotic cell functions, and pentameric B subunits that direct target-cell uptake after binding surface glycans. Subtilase cytotoxin (SubAB) is an AB(5) toxin secreted by Shiga toxigenic Escherichia coli (STEC), which causes serious gastrointestinal disease in humans. SubAB causes haemolytic uraemic syndrome-like pathology in mice through SubA-mediated cleavage of BiP/GRP78, an essential endoplasmic reticulum chaperone. Here we show that SubB has a strong preference for glycans terminating in the sialic acid N-glycolylneuraminic acid (Neu5Gc), a monosaccharide not synthesized in humans. Structures of SubB-Neu5Gc complexes revealed the basis for this specificity, and mutagenesis of key SubB residues abrogated in vitro glycan recognition, cell binding and cytotoxicity. SubAB specificity for Neu5Gc was confirmed using mouse tissues with a human-like deficiency of Neu5Gc and human cell lines fed with Neu5Gc. Despite lack of Neu5Gc biosynthesis in humans, assimilation of dietary Neu5Gc creates high-affinity receptors on human gut epithelia and kidney vasculature. This, and the lack of Neu5Gc-containing body fluid competitors in humans, confers susceptibility to the gastrointestinal and systemic toxicities of SubAB. Ironically, foods rich in Neu5Gc are the most common source of STEC contamination. Thus a bacterial toxin's receptor is generated by metabolic incorporation of an exogenous factor derived from food.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723748/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723748/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Byres, Emma -- Paton, Adrienne W -- Paton, James C -- Lofling, Jonas C -- Smith, David F -- Wilce, Matthew C J -- Talbot, Ursula M -- Chong, Damien C -- Yu, Hai -- Huang, Shengshu -- Chen, Xi -- Varki, Nissi M -- Varki, Ajit -- Rossjohn, Jamie -- Beddoe, Travis -- R01 AI068715-01A1/AI/NIAID NIH HHS/ -- R01 AI068715-02/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Dec 4;456(7222):648-52. doi: 10.1038/nature07428. Epub 2008 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Protein Crystallography Unit and ARC Centre of Excellence for Structural and Functional Microbial Genomics, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18971931" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Toxins/chemistry/genetics/*metabolism/*toxicity ; Cell Death/drug effects ; Cell Line ; Crystallography, X-Ray ; Escherichia coli Proteins/*chemistry/genetics/metabolism/*toxicity ; Humans ; Mice ; Microscopy, Fluorescence ; Models, Molecular ; Neuraminic Acids/administration & dosage/*metabolism/pharmacology ; Polysaccharides/*chemistry/*metabolism ; Protein Binding ; Protein Subunits ; Shiga-Toxigenic Escherichia coli/chemistry/pathogenicity ; Sialic Acids/chemistry/metabolism ; Species Specificity ; Substrate Specificity ; Subtilisins/*chemistry/genetics/metabolism/*toxicity ; Survival Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2008-09-27
    Description: Opsin, the ligand-free form of the G-protein-coupled receptor rhodopsin, at low pH adopts a conformationally distinct, active G-protein-binding state known as Ops*. A synthetic peptide derived from the main binding site of the heterotrimeric G protein-the carboxy terminus of the alpha-subunit (GalphaCT)-stabilizes Ops*. Here we present the 3.2 A crystal structure of the bovine Ops*-GalphaCT peptide complex. GalphaCT binds to a site in opsin that is opened by an outward tilt of transmembrane helix (TM) 6, a pairing of TM5 and TM6, and a restructured TM7-helix 8 kink. Contacts along the inner surface of TM5 and TM6 induce an alpha-helical conformation in GalphaCT with a C-terminal reverse turn. Main-chain carbonyl groups in the reverse turn constitute the centre of a hydrogen-bonded network, which links the two receptor regions containing the conserved E(D)RY and NPxxY(x)(5,6)F motifs. On the basis of the Ops*-GalphaCT structure and known conformational changes in Galpha, we discuss signal transfer from the receptor to the G protein nucleotide-binding site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scheerer, Patrick -- Park, Jung Hee -- Hildebrand, Peter W -- Kim, Yong Ju -- Krauss, Norbert -- Choe, Hui-Woog -- Hofmann, Klaus Peter -- Ernst, Oliver P -- England -- Nature. 2008 Sep 25;455(7212):497-502. doi: 10.1038/nature07330.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Medizinische Physik und Biophysik (CC2), Charite - Universitatsmedizin Berlin, Chariteplatz 1, D-10117 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18818650" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Arginine/chemistry/metabolism ; Binding Sites ; Cattle ; Conserved Sequence ; Crystallization ; Crystallography, X-Ray ; GTP-Binding Protein alpha Subunits/*chemistry/*metabolism ; Models, Biological ; Models, Molecular ; Protein Conformation ; Regeneration ; Retinaldehyde/chemistry/metabolism ; Rhodopsin/chemistry ; Rod Opsins/*chemistry/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2008-05-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schertler, Gebhard F X -- MC_U105178937/Medical Research Council/United Kingdom -- England -- Nature. 2008 May 15;453(7193):292-3. doi: 10.1038/453292a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18480801" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallography, X-Ray ; Decapodiformes/*chemistry ; Models, Molecular ; Protein Structure, Secondary ; Rhodopsin/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2008-07-11
    Description: Ebola virus (EBOV) entry requires the surface glycoprotein (GP) to initiate attachment and fusion of viral and host membranes. Here we report the crystal structure of EBOV GP in its trimeric, pre-fusion conformation (GP1+GP2) bound to a neutralizing antibody, KZ52, derived from a human survivor of the 1995 Kikwit outbreak. Three GP1 viral attachment subunits assemble to form a chalice, cradled by the GP2 fusion subunits, while a novel glycan cap and projected mucin-like domain restrict access to the conserved receptor-binding site sequestered in the chalice bowl. The glycocalyx surrounding GP is likely central to immune evasion and may explain why survivors have insignificant neutralizing antibody titres. KZ52 recognizes a protein epitope at the chalice base where it clamps several regions of the pre-fusion GP2 to the amino terminus of GP1. This structure provides a template for unravelling the mechanism of EBOV GP-mediated fusion and for future immunotherapeutic development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2700032/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2700032/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jeffrey E -- Fusco, Marnie L -- Hessell, Ann J -- Oswald, Wendelien B -- Burton, Dennis R -- Saphire, Erica Ollmann -- R01 AI067927/AI/NIAID NIH HHS/ -- R01 AI067927-03/AI/NIAID NIH HHS/ -- R21 AI053423/AI/NIAID NIH HHS/ -- R21 AI053423-02/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Jul 10;454(7201):177-82. doi: 10.1038/nature07082.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, Mail Drop IMM-2, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18615077" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Viral/genetics/*immunology ; Binding Sites, Antibody ; Cathepsins/metabolism ; Cell Line ; Cricetinae ; Cricetulus ; Crystallography, X-Ray ; Democratic Republic of the Congo ; Ebolavirus/*chemistry/immunology ; Glycoproteins/*chemistry/*immunology/metabolism ; Glycosylation ; Humans ; Membrane Fusion ; Models, Molecular ; Protein Conformation ; Receptors, Virus/chemistry/metabolism ; *Survivors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2008-07-29
    Description: Influenza A virus is a major human and animal pathogen with the potential to cause catastrophic loss of life. The virus reproduces rapidly, mutates frequently and occasionally crosses species barriers. The recent emergence in Asia of avian influenza related to highly pathogenic forms of the human virus has highlighted the urgent need for new effective treatments. Here we demonstrate the importance to viral replication of a subunit interface in the viral RNA polymerase, thereby providing a new set of potential drug binding sites entirely independent of surface antigen type. No current medication targets this heterotrimeric polymerase complex. All three subunits, PB1, PB2 and PA, are required for both transcription and replication. PB1 carries the polymerase active site, PB2 includes the capped-RNA recognition domain, and PA is involved in assembly of the functional complex, but so far very little structural information has been reported for any of them. We describe the crystal structure of a large fragment of one subunit (PA) of influenza A RNA polymerase bound to a fragment of another subunit (PB1). The carboxy-terminal domain of PA forms a novel fold, and forms a deep, highly hydrophobic groove into which the amino-terminal residues of PB1 can fit by forming a 3(10) helix.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Obayashi, Eiji -- Yoshida, Hisashi -- Kawai, Fumihiro -- Shibayama, Naoya -- Kawaguchi, Atsushi -- Nagata, Kyosuke -- Tame, Jeremy R H -- Park, Sam-Yong -- England -- Nature. 2008 Aug 28;454(7208):1127-31. doi: 10.1038/nature07225. Epub 2008 Jul 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Protein Design Laboratory, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama 230-0045, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18660801" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Line ; Crystallization ; Crystallography, X-Ray ; Humans ; Influenza A Virus, H1N1 Subtype/*enzymology/genetics ; Protein Binding ; Protein Subunits/*chemistry/genetics/*metabolism ; RNA Replicase/*chemistry/genetics/*metabolism ; Viral Proteins/*chemistry/genetics/*metabolism ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2008-07-11
    Description: The recent emergence of highly pathogenic avian influenza A virus strains with subtype H5N1 pose a global threat to human health. Elucidation of the underlying mechanisms of viral replication is critical for development of anti-influenza virus drugs. The influenza RNA-dependent RNA polymerase (RdRp) heterotrimer has crucial roles in viral RNA replication and transcription. It contains three proteins: PA, PB1 and PB2. PB1 harbours polymerase and endonuclease activities and PB2 is responsible for cap binding; PA is implicated in RNA replication and proteolytic activity, although its function is less clearly defined. Here we report the 2.9 angstrom structure of avian H5N1 influenza A virus PA (PA(C), residues 257-716) in complex with the PA-binding region of PB1 (PB1(N), residues 1-25). PA(C) has a fold resembling a dragon's head with PB1(N) clamped into its open 'jaws'. PB1(N) is a known inhibitor that blocks assembly of the polymerase heterotrimer and abolishes viral replication. Our structure provides details for the binding of PB1(N) to PA(C) at the atomic level, demonstrating a potential target for novel anti-influenza therapeutics. We also discuss a potential nucleotide binding site and the roles of some known residues involved in polymerase activity. Furthermore, to explore the role of PA in viral replication and transcription, we propose a model for the influenza RdRp heterotrimer by comparing PA(C) with the lambda3 reovirus polymerase structure, and docking the PA(C) structure into an available low resolution electron microscopy map.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Xiaojing -- Zhou, Jie -- Bartlam, Mark -- Zhang, Rongguang -- Ma, Jianyuan -- Lou, Zhiyong -- Li, Xuemei -- Li, Jingjing -- Joachimiak, Andrzej -- Zeng, Zonghao -- Ge, Ruowen -- Rao, Zihe -- Liu, Yingfang -- England -- Nature. 2008 Aug 28;454(7208):1123-6. doi: 10.1038/nature07120. Epub 2008 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18615018" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Birds/*virology ; Crystallography, X-Ray ; Influenza A Virus, H5N1 Subtype/*enzymology ; Models, Molecular ; Multienzyme Complexes/chemistry/metabolism ; Nucleotides/metabolism ; Peptide Fragments/chemistry/metabolism ; Protein Binding ; Protein Structure, Quaternary ; RNA Replicase/*chemistry/metabolism ; Viral Proteins/*chemistry/*metabolism ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-11-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hedden, Peter -- England -- Nature. 2008 Nov 27;456(7221):455-6. doi: 10.1038/456455a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19037306" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*chemistry ; Arabidopsis Proteins/chemistry/metabolism ; Crystallography, X-Ray ; Gibberellins/*chemistry/metabolism/*pharmacology ; Oryza/*chemistry ; Plant Proteins/*chemistry/*metabolism ; Protein Binding ; Protein Conformation/drug effects ; Receptors, Cell Surface/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2008-09-06
    Description: DNA methylation of CpG dinucleotides is an important epigenetic modification of mammalian genomes and is essential for the regulation of chromatin structure, of gene expression and of genome stability. Differences in DNA methylation patterns underlie a wide range of biological processes, such as genomic imprinting, inactivation of the X chromosome, embryogenesis, and carcinogenesis. Inheritance of the epigenetic methylation pattern is mediated by the enzyme DNA methyltransferase 1 (Dnmt1), which methylates newly synthesized CpG sequences during DNA replication, depending on the methylation status of the template strands. The protein UHRF1 (also known as Np95 and ICBP90) recognizes hemi-methylation sites via a SET and RING-associated (SRA) domain and directs Dnmt1 to these sites. Here we report the crystal structures of the SRA domain in free and hemi-methylated DNA-bound states. The SRA domain folds into a globular structure with a basic concave surface formed by highly conserved residues. Binding of DNA to the concave surface causes a loop and an amino-terminal tail of the SRA domain to fold into DNA interfaces at the major and minor grooves of the methylation site. In contrast to fully methylated CpG sites recognized by the methyl-CpG-binding domain, the methylcytosine base at the hemi-methylated site is flipped out of the DNA helix in the SRA-DNA complex and fits tightly into a protein pocket on the concave surface. The complex structure suggests that the successive flip out of the pre-existing methylated cytosine and the target cytosine to be methylated is associated with the coordinated transfer of the hemi-methylated CpG site from UHRF1 to Dnmt1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arita, Kyohei -- Ariyoshi, Mariko -- Tochio, Hidehito -- Nakamura, Yusuke -- Shirakawa, Masahiro -- England -- Nature. 2008 Oct 9;455(7214):818-21. doi: 10.1038/nature07249. Epub 2008 Sep 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772891" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Animals ; Base Sequence ; Conserved Sequence ; CpG Islands/genetics ; Crystallography, X-Ray ; DNA/*chemistry/genetics/*metabolism ; DNA (Cytosine-5-)-Methyltransferase/metabolism ; *DNA Methylation ; Mice ; Models, Biological ; Models, Molecular ; Molecular Conformation ; Nuclear Proteins/*chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2008-05-24
    Description: Targeted protein degradation is largely performed by the ubiquitin-proteasome pathway, in which substrate proteins are marked by covalently attached ubiquitin chains that mediate recognition by the proteasome. It is currently unclear how the proteasome recognizes its substrates, as the only established ubiquitin receptor intrinsic to the proteasome is Rpn10/S5a (ref. 1), which is not essential for ubiquitin-mediated protein degradation in budding yeast. In the accompanying manuscript we report that Rpn13 (refs 3-7), a component of the nine-subunit proteasome base, functions as a ubiquitin receptor, complementing its known role in docking de-ubiquitinating enzyme Uch37/UCHL5 (refs 4-6) to the proteasome. Here we merge crystallography and NMR data to describe the ubiquitin-binding mechanism of Rpn13. We determine the structure of Rpn13 alone and complexed with ubiquitin. The co-complex reveals a novel ubiquitin-binding mode in which loops rather than secondary structural elements are used to capture ubiquitin. Further support for the role of Rpn13 as a proteasomal ubiquitin receptor is demonstrated by its ability to bind ubiquitin and proteasome subunit Rpn2/S1 simultaneously. Finally, we provide a model structure of Rpn13 complexed to diubiquitin, which provides insights into how Rpn13 as a ubiquitin receptor is coupled to substrate deubiquitination by Uch37.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2825158/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2825158/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schreiner, Patrick -- Chen, Xiang -- Husnjak, Koraljka -- Randles, Leah -- Zhang, Naixia -- Elsasser, Suzanne -- Finley, Daniel -- Dikic, Ivan -- Walters, Kylie J -- Groll, Michael -- CA097004/CA/NCI NIH HHS/ -- GM008700/GM/NIGMS NIH HHS/ -- GM43601/GM/NIGMS NIH HHS/ -- R01 CA097004/CA/NCI NIH HHS/ -- R01 CA097004-05/CA/NCI NIH HHS/ -- R01 CA097004-06A1/CA/NCI NIH HHS/ -- R37 GM043601/GM/NIGMS NIH HHS/ -- R37 GM043601-17/GM/NIGMS NIH HHS/ -- T32 GM008700/GM/NIGMS NIH HHS/ -- T32 GM008700-09/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 May 22;453(7194):548-52. doi: 10.1038/nature06924.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Integrated Protein Science at the Department Chemie, Lehrstuhl fur Biochemie, Technische Universitat Munchen, Lichtenbergstrasse 4, D-85747 Garching, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18497827" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Cell Adhesion Molecules/*chemistry/genetics/*metabolism ; Crystallography, X-Ray ; Humans ; Membrane Glycoproteins/chemistry/genetics/metabolism ; Mice ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Proteasome Endopeptidase Complex/*chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Protein Subunits/chemistry/genetics/metabolism ; Ubiquitin/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2008-03-07
    Description: Pentameric ligand-gated ion channels (pLGICs) are key players in the early events of electrical signal transduction at chemical synapses. The family codes for a structurally conserved scaffold of channel proteins that open in response to the binding of neurotransmitter molecules. All proteins share a pentameric organization of identical or related subunits that consist of an extracellular ligand-binding domain followed by a transmembrane channel domain. The nicotinic acetylcholine receptor (nAChR) is the most thoroughly studied member of the pLGIC family (for recent reviews see refs 1-3). Two sources of structural information provided an architectural framework for the family. The structure of the soluble acetylcholine-binding protein (AChBP) defined the organization of the extracellular domain and revealed the chemical basis of ligand interaction. Electron microscopy studies of the nAChR from Torpedo electric ray have yielded a picture of the full-length protein and have recently led to the interpretation of an electron density map at 4.0 A resolution. Despite the wealth of experimental information, high-resolution structures of any family member have so far not been available. Until recently, the pLGICs were believed to be only expressed in multicellular eukaryotic organisms. The abundance of prokaryotic genome sequences, however, allowed the identification of several homologous proteins in bacterial sources. Here we present the X-ray structure of a prokaryotic pLGIC from the bacterium Erwinia chrysanthemi (ELIC) at 3.3 A resolution. Our study reveals the first structure of a pLGIC at high resolution and provides an important model system for the investigation of the general mechanisms of ion permeation and gating within the family.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hilf, Ricarda J C -- Dutzler, Raimund -- England -- Nature. 2008 Mar 20;452(7185):375-9. doi: 10.1038/nature06717. Epub 2008 Mar 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Zurich, Winterthurer Strasse 190, CH-8057 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18322461" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; *Ion Channel Gating ; Ion Channels/*chemistry/*metabolism ; Ligands ; Models, Molecular ; Pectobacterium chrysanthemi/*chemistry ; Protein Structure, Secondary ; Static Electricity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2008-02-01
    Description: The transcription apparatus in Archaea can be described as a simplified version of its eukaryotic RNA polymerase (RNAP) II counterpart, comprising an RNAPII-like enzyme as well as two general transcription factors, the TATA-binding protein (TBP) and the eukaryotic TFIIB orthologue TFB. It has been widely understood that precise comparisons of cellular RNAP crystal structures could reveal structural elements common to all enzymes and that these insights would be useful in analysing components of each enzyme that enable it to perform domain-specific gene expression. However, the structure of archaeal RNAP has been limited to individual subunits. Here we report the first crystal structure of the archaeal RNAP from Sulfolobus solfataricus at 3.4 A resolution, completing the suite of multi-subunit RNAP structures from all three domains of life. We also report the high-resolution (at 1.76 A) crystal structure of the D/L subcomplex of archaeal RNAP and provide the first experimental evidence of any RNAP possessing an iron-sulphur (Fe-S) cluster, which may play a structural role in a key subunit of RNAP assembly. The striking structural similarity between archaeal RNAP and eukaryotic RNAPII highlights the simpler archaeal RNAP as an ideal model system for dissecting the molecular basis of eukaryotic transcription.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805805/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805805/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hirata, Akira -- Klein, Brianna J -- Murakami, Katsuhiko S -- R01 GM071897/GM/NIGMS NIH HHS/ -- R01 GM071897-04/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Feb 14;451(7180):851-4. doi: 10.1038/nature06530. Epub 2008 Jan 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18235446" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; DNA-Directed RNA Polymerases/*chemistry/metabolism ; Iron-Sulfur Proteins/chemistry/metabolism ; Models, Molecular ; Protein Folding ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Saccharomyces cerevisiae/enzymology ; Sulfolobus solfataricus/*enzymology ; Taq Polymerase/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2008-06-20
    Description: In the G-protein-coupled receptor (GPCR) rhodopsin, the inactivating ligand 11-cis-retinal is bound in the seven-transmembrane helix (TM) bundle and is cis/trans isomerized by light to form active metarhodopsin II. With metarhodopsin II decay, all-trans-retinal is released, and opsin is reloaded with new 11-cis-retinal. Here we present the crystal structure of ligand-free native opsin from bovine retinal rod cells at 2.9 angstrom (A) resolution. Compared to rhodopsin, opsin shows prominent structural changes in the conserved E(D)RY and NPxxY(x)(5,6)F regions and in TM5-TM7. At the cytoplasmic side, TM6 is tilted outwards by 6-7 A, whereas the helix structure of TM5 is more elongated and close to TM6. These structural changes, some of which were attributed to an active GPCR state, reorganize the empty retinal-binding pocket to disclose two openings that may serve the entry and exit of retinal. The opsin structure sheds new light on ligand binding to GPCRs and on GPCR activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Jung Hee -- Scheerer, Patrick -- Hofmann, Klaus Peter -- Choe, Hui-Woog -- Ernst, Oliver Peter -- England -- Nature. 2008 Jul 10;454(7201):183-7. doi: 10.1038/nature07063. Epub 2008 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Medizinische Physik und Biophysik (CC2), Charite-Universitatsmedizin Berlin, Chariteplatz 1, D-10117 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18563085" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cattle ; Conserved Sequence ; Crystallography, X-Ray ; Ligands ; Models, Molecular ; Protein Conformation ; Protein Folding ; Receptors, G-Protein-Coupled/*chemistry/metabolism ; Retinal Rod Photoreceptor Cells/chemistry/cytology ; Retinaldehyde/chemistry/metabolism ; Rhodopsin/chemistry ; Rod Opsins/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2008-09-27
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schwartz, Thue W -- Hubbell, Wayne L -- R01 EY005216/EY/NEI NIH HHS/ -- R01 EY005216-26/EY/NEI NIH HHS/ -- England -- Nature. 2008 Sep 25;455(7212):473-4. doi: 10.1038/455473a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18818642" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cattle ; Crystallography, X-Ray ; GTP-Binding Protein alpha Subunits/*chemistry/*metabolism ; Models, Molecular ; Protein Conformation ; Rhodopsin/chemistry/metabolism ; Rod Opsins/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2008-09-06
    Description: Epigenetic inheritance in mammals is characterized by high-fidelity replication of CpG methylation patterns during development. UHRF1 (also known as ICBP90 in humans and Np95 in mouse) is an E3 ligase important for the maintenance of global and local DNA methylation in vivo. The preferential affinity of UHRF1 for hemi-methylated DNA over symmetrically methylated DNA by means of its SET and RING-associated (SRA) domain and its association with the maintenance DNA methyltransferase 1 (DNMT1) suggests a role in replication of the epigenetic code. Here we report the 1.7 A crystal structure of the apo SRA domain of human UHRF1 and a 2.2 A structure of its complex with hemi-methylated DNA, revealing a previously unknown reading mechanism for methylated CpG sites (mCpG). The SRA-DNA complex has several notable structural features including a binding pocket that accommodates the 5-methylcytosine that is flipped out of the duplex DNA. Two specialized loops reach through the resulting gap in the DNA from both the major and the minor grooves to read the other three bases of the CpG duplex. The major groove loop confers both specificity for the CpG dinucleotide and discrimination against methylation of deoxycytidine of the complementary strand. The structure, along with mutagenesis data, suggests how UHRF1 acts as a key factor for DNMT1 maintenance methylation through recognition of a fundamental unit of epigenetic inheritance, mCpG.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Avvakumov, George V -- Walker, John R -- Xue, Sheng -- Li, Yanjun -- Duan, Shili -- Bronner, Christian -- Arrowsmith, Cheryl H -- Dhe-Paganon, Sirano -- Wellcome Trust/United Kingdom -- England -- Nature. 2008 Oct 9;455(7214):822-5. doi: 10.1038/nature07273. Epub 2008 Sep 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Genomics Consortium, University of Toronto, 100 College Street, Toronto, Ontario M5G 1L5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772889" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Binding Sites ; CCAAT-Enhancer-Binding Proteins/*chemistry/*metabolism ; CpG Islands/genetics ; Crystallography, X-Ray ; DNA/*chemistry/genetics/*metabolism ; DNA (Cytosine-5-)-Methyltransferase/metabolism ; *DNA Methylation ; Epigenesis, Genetic ; Humans ; Models, Molecular ; Molecular Conformation ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2008-01-04
    Description: The 'RNA world' hypothesis holds that during evolution the structural and enzymatic functions initially served by RNA were assumed by proteins, leading to the latter's domination of biological catalysis. This progression can still be seen in modern biology, where ribozymes, such as the ribosome and RNase P, have evolved into protein-dependent RNA catalysts ('RNPzymes'). Similarly, group I introns use RNA-catalysed splicing reactions, but many function as RNPzymes bound to proteins that stabilize their catalytically active RNA structure. One such protein, the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (TyrRS; CYT-18), is bifunctional and both aminoacylates mitochondrial tRNA(Tyr) and promotes the splicing of mitochondrial group I introns. Here we determine a 4.5-A co-crystal structure of the Twort orf142-I2 group I intron ribozyme bound to splicing-active, carboxy-terminally truncated CYT-18. The structure shows that the group I intron binds across the two subunits of the homodimeric protein with a newly evolved RNA-binding surface distinct from that which binds tRNA(Tyr). This RNA binding surface provides an extended scaffold for the phosphodiester backbone of the conserved catalytic core of the intron RNA, allowing the protein to promote the splicing of a wide variety of group I introns. The group I intron-binding surface includes three small insertions and additional structural adaptations relative to non-splicing bacterial TyrRSs, indicating a multistep adaptation for splicing function. The co-crystal structure provides insight into how CYT-18 promotes group I intron splicing, how it evolved to have this function, and how proteins could have incrementally replaced RNA structures during the transition from an RNA world to an RNP world.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paukstelis, Paul J -- Chen, Jui-Hui -- Chase, Elaine -- Lambowitz, Alan M -- Golden, Barbara L -- England -- Nature. 2008 Jan 3;451(7174):94-7. doi: 10.1038/nature06413.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, Texas 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18172503" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Introns/*genetics ; Models, Molecular ; Molecular Conformation ; Neurospora crassa/*enzymology ; Protein Binding ; RNA/genetics/metabolism ; *RNA Splicing ; RNA, Catalytic/chemistry/genetics/metabolism ; RNA-Binding Proteins/*chemistry/*metabolism ; Staphylococcus Phages/enzymology/genetics ; Tyrosine-tRNA Ligase/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2008-10-14
    Description: The APOBEC family members are involved in diverse biological functions. APOBEC3G restricts the replication of human immunodeficiency virus (HIV), hepatitis B virus and retroelements by cytidine deamination on single-stranded DNA or by RNA binding. Here we report the high-resolution crystal structure of the carboxy-terminal deaminase domain of APOBEC3G (APOBEC3G-CD2) purified from Escherichia coli. The APOBEC3G-CD2 structure has a five-stranded beta-sheet core that is common to all known deaminase structures and closely resembles the structure of another APOBEC protein, APOBEC2 (ref. 5). A comparison of APOBEC3G-CD2 with other deaminase structures shows a structural conservation of the active-site loops that are directly involved in substrate binding. In the X-ray structure, these APOBEC3G active-site loops form a continuous 'substrate groove' around the active centre. The orientation of this putative substrate groove differs markedly (by 90 degrees) from the groove predicted by the NMR structure. We have introduced mutations around the groove, and have identified residues involved in substrate specificity, single-stranded DNA binding and deaminase activity. These results provide a basis for understanding the underlying mechanisms of substrate specificity for the APOBEC family.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714533/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714533/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holden, Lauren G -- Prochnow, Courtney -- Chang, Y Paul -- Bransteitter, Ronda -- Chelico, Linda -- Sen, Udayaditya -- Stevens, Raymond C -- Goodman, Myron F -- Chen, Xiaojiang S -- R01 AI055926/AI/NIAID NIH HHS/ -- R01 AI055926-05/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Nov 6;456(7218):121-4. doi: 10.1038/nature07357. Epub 2008 Oct 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18849968" target="_blank"〉PubMed〈/a〉
    Keywords: Antiviral Agents ; *Catalytic Domain ; Crystallography, X-Ray ; Cytidine Deaminase/*chemistry/genetics/isolation & purification/*metabolism ; DNA, Single-Stranded/metabolism ; Escherichia coli ; Humans ; Models, Molecular ; Muscle Proteins/chemistry ; Mutant Proteins/chemistry/genetics/metabolism ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Protein Structure, Secondary ; Structural Homology, Protein ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2008-05-24
    Description: The RecA family of ATPases mediates homologous recombination, a reaction essential for maintaining genomic integrity and for generating genetic diversity. RecA, ATP and single-stranded DNA (ssDNA) form a helical filament that binds to double-stranded DNA (dsDNA), searches for homology, and then catalyses the exchange of the complementary strand, producing a new heteroduplex. Here we have solved the crystal structures of the Escherichia coli RecA-ssDNA and RecA-heteroduplex filaments. They show that ssDNA and ATP bind to RecA-RecA interfaces cooperatively, explaining the ATP dependency of DNA binding. The ATP gamma-phosphate is sensed across the RecA-RecA interface by two lysine residues that also stimulate ATP hydrolysis, providing a mechanism for DNA release. The DNA is underwound and stretched globally, but locally it adopts a B-DNA-like conformation that restricts the homology search to Watson-Crick-type base pairing. The complementary strand interacts primarily through base pairing, making heteroduplex formation strictly dependent on complementarity. The underwound, stretched filament conformation probably evolved to destabilize the donor duplex, freeing the complementary strand for homology sampling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Zhucheng -- Yang, Haijuan -- Pavletich, Nikola P -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 May 22;453(7194):489-4. doi: 10.1038/nature06971.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18497818" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Binding Sites ; Crystallography, X-Ray ; DNA/*chemistry/genetics/*metabolism ; DNA, Single-Stranded/chemistry/genetics/metabolism ; Escherichia coli/*enzymology/genetics ; Models, Molecular ; Nucleic Acid Conformation ; Nucleic Acid Heteroduplexes/chemistry/genetics/metabolism ; Protein Conformation ; Rec A Recombinases/*chemistry/*metabolism ; *Recombination, Genetic/genetics ; *Sequence Homology, Nucleic Acid
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2008-09-12
    Description: In bacteria, the intracellular concentration of several amino acids is controlled by riboswitches. One of the important regulatory circuits involves lysine-specific riboswitches, which direct the biosynthesis and transport of lysine and precursors common for lysine and other amino acids. To understand the molecular basis of amino acid recognition by riboswitches, here we present the crystal structure of the 174-nucleotide sensing domain of the Thermotoga maritima lysine riboswitch in the lysine-bound (1.9 angstrom (A)) and free (3.1 A) states. The riboswitch features an unusual and intricate architecture, involving three-helical and two-helical bundles connected by a compact five-helical junction and stabilized by various long-range tertiary interactions. Lysine interacts with the junctional core of the riboswitch and is specifically recognized through shape-complementarity within the elongated binding pocket and through several direct and K(+)-mediated hydrogen bonds to its charged ends. Our structural and biochemical studies indicate preformation of the riboswitch scaffold and identify conformational changes associated with the formation of a stable lysine-bound state, which prevents alternative folding of the riboswitch and facilitates formation of downstream regulatory elements. We have also determined several structures of the riboswitch bound to different lysine analogues, including antibiotics, in an effort to understand the ligand-binding capabilities of the lysine riboswitch and understand the nature of antibiotic resistance. Our results provide insights into a mechanism of lysine-riboswitch-dependent gene control at the molecular level, thereby contributing to continuing efforts at exploration of the pharmaceutical and biotechnological potential of riboswitches.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726722/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726722/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Serganov, Alexander -- Huang, Lili -- Patel, Dinshaw J -- R01 GM073618/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Oct 30;455(7217):1263-7. doi: 10.1038/nature07326. Epub 2008 Sep 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA. serganoa@mskcc.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18784651" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; *Gene Expression Regulation, Bacterial ; Lysine/chemistry/*genetics/*metabolism ; Models, Molecular ; *Nucleic Acid Conformation ; RNA, Bacterial/*chemistry/genetics/*metabolism ; Thermotoga maritima/chemistry/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2008-02-15
    Description: The transcriptional coactivator p300/CBP (CREBBP) is a histone acetyltransferase (HAT) that regulates gene expression by acetylating histones and other transcription factors. Dysregulation of p300/CBP HAT activity contributes to various diseases including cancer. Sequence alignments, enzymology experiments and inhibitor studies on p300/CBP have led to contradictory results about its catalytic mechanism and its structural relation to the Gcn5/PCAF and MYST HATs. Here we describe a high-resolution X-ray crystal structure of a semi-synthetic heterodimeric p300 HAT domain in complex with a bi-substrate inhibitor, Lys-CoA. This structure shows that p300/CBP is a distant cousin of other structurally characterized HATs, but reveals several novel features that explain the broad substrate specificity and preference for nearby basic residues. Based on this structure and accompanying biochemical data, we propose that p300/CBP uses an unusual 'hit-and-run' (Theorell-Chance) catalytic mechanism that is distinct from other characterized HATs. Several disease-associated mutations can also be readily accounted for by the p300 HAT structure. These studies pave the way for new epigenetic therapies involving modulation of p300/CBP HAT activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Xin -- Wang, Ling -- Zhao, Kehao -- Thompson, Paul R -- Hwang, Yousang -- Marmorstein, Ronen -- Cole, Philip A -- England -- Nature. 2008 Feb 14;451(7180):846-50. doi: 10.1038/nature06546.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Gene Expression and Regulation, The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18273021" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Catalysis ; Crystallography, X-Ray ; Dimerization ; Histone Acetyltransferases/antagonists & inhibitors/chemical ; synthesis/*chemistry/*metabolism ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Tertiary ; Structure-Activity Relationship ; p300-CBP Transcription Factors/antagonists & inhibitors/chemical ; synthesis/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2009-11-26
    Description: Mutations in the enzyme cytosolic isocitrate dehydrogenase 1 (IDH1) are a common feature of a major subset of primary human brain cancers. These mutations occur at a single amino acid residue of the IDH1 active site, resulting in loss of the enzyme's ability to catalyse conversion of isocitrate to alpha-ketoglutarate. However, only a single copy of the gene is mutated in tumours, raising the possibility that the mutations do not result in a simple loss of function. Here we show that cancer-associated IDH1 mutations result in a new ability of the enzyme to catalyse the NADPH-dependent reduction of alpha-ketoglutarate to R(-)-2-hydroxyglutarate (2HG). Structural studies demonstrate that when arginine 132 is mutated to histidine, residues in the active site are shifted to produce structural changes consistent with reduced oxidative decarboxylation of isocitrate and acquisition of the ability to convert alpha-ketoglutarate to 2HG. Excess accumulation of 2HG has been shown to lead to an elevated risk of malignant brain tumours in patients with inborn errors of 2HG metabolism. Similarly, in human malignant gliomas harbouring IDH1 mutations, we find markedly elevated levels of 2HG. These data demonstrate that the IDH1 mutations result in production of the onco-metabolite 2HG, and indicate that the excess 2HG which accumulates in vivo contributes to the formation and malignant progression of gliomas.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818760/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818760/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dang, Lenny -- White, David W -- Gross, Stefan -- Bennett, Bryson D -- Bittinger, Mark A -- Driggers, Edward M -- Fantin, Valeria R -- Jang, Hyun Gyung -- Jin, Shengfang -- Keenan, Marie C -- Marks, Kevin M -- Prins, Robert M -- Ward, Patrick S -- Yen, Katharine E -- Liau, Linda M -- Rabinowitz, Joshua D -- Cantley, Lewis C -- Thompson, Craig B -- Vander Heiden, Matthew G -- Su, Shinsan M -- P01 CA104838/CA/NCI NIH HHS/ -- P01 CA104838-05/CA/NCI NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- R01 CA105463-06/CA/NCI NIH HHS/ -- R21 CA128620/CA/NCI NIH HHS/ -- England -- Nature. 2009 Dec 10;462(7274):739-44. doi: 10.1038/nature08617. Epub .〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Agios Pharmaceuticals, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19935646" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/genetics ; Brain Neoplasms/*genetics/*metabolism/pathology ; Catalytic Domain ; Cell Line ; Crystallography, X-Ray ; Disease Progression ; Enzyme Assays ; Glioma/genetics/metabolism/pathology ; Glutarates/*metabolism ; Histidine/genetics/metabolism ; Humans ; Isocitrate Dehydrogenase/*genetics/*metabolism ; Ketoglutaric Acids/metabolism ; Models, Molecular ; Mutant Proteins/*genetics/*metabolism ; Mutation/genetics ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2009-07-31
    Description: P2X receptors are cation-selective ion channels gated by extracellular ATP, and are implicated in diverse physiological processes, from synaptic transmission to inflammation to the sensing of taste and pain. Because P2X receptors are not related to other ion channel proteins of known structure, there is at present no molecular foundation for mechanisms of ligand-gating, allosteric modulation and ion permeation. Here we present crystal structures of the zebrafish P2X(4) receptor in its closed, resting state. The chalice-shaped, trimeric receptor is knit together by subunit-subunit contacts implicated in ion channel gating and receptor assembly. Extracellular domains, rich in beta-strands, have large acidic patches that may attract cations, through fenestrations, to vestibules near the ion channel. In the transmembrane pore, the 'gate' is defined by an approximately 8 A slab of protein. We define the location of three non-canonical, intersubunit ATP-binding sites, and suggest that ATP binding promotes subunit rearrangement and ion channel opening.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720809/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720809/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawate, Toshimitsu -- Michel, Jennifer Carlisle -- Birdsong, William T -- Gouaux, Eric -- U54 GM075026/GM/NIGMS NIH HHS/ -- U54 GM075026-04/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jul 30;460(7255):592-8. doi: 10.1038/nature08198.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Oregon 97239, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19641588" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; Gadolinium/metabolism ; Humans ; Ion Channels/antagonists & inhibitors/*chemistry ; Membrane Proteins/chemistry ; *Models, Molecular ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; Purinergic P2 Receptor Antagonists ; Receptors, Purinergic P2/*chemistry ; Receptors, Purinergic P2X4 ; Zebrafish/*physiology ; Zebrafish Proteins/antagonists & inhibitors/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2009-03-06
    Description: Osmoregulated transporters sense intracellular osmotic pressure and respond to hyperosmotic stress by accumulation of osmolytes to restore normal hydration levels. Here we report the determination of the X-ray structure of a member of the family of betaine/choline/carnitine transporters, the Na(+)-coupled symporter BetP from Corynebacterium glutamicum, which is a highly effective osmoregulated uptake system for glycine betaine. Glycine betaine is bound in a tryptophan box occluded from both sides of the membrane with aromatic side chains lining the transport pathway. BetP has the same overall fold as three unrelated Na(+)-coupled symporters. Whereas these are crystallized in either the outward-facing or the inward-facing conformation, the BetP structure reveals a unique intermediate conformation in the Na(+)-coupled transport cycle. The trimeric architecture of BetP and the break in three-fold symmetry by the osmosensing C-terminal helices suggest a regulatory mechanism of Na(+)-coupled osmolyte transport to counteract osmotic stress.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ressl, Susanne -- Terwisscha van Scheltinga, Anke C -- Vonrhein, Clemens -- Ott, Vera -- Ziegler, Christine -- England -- Nature. 2009 Mar 5;458(7234):47-52. doi: 10.1038/nature07819.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Biophysics, Department of Structural Biology, 60438 Frankfurt am Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19262666" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/genetics/*metabolism ; Betaine/*metabolism ; Binding Sites ; Carrier Proteins/*chemistry/genetics/*metabolism ; Corynebacterium glutamicum/*chemistry/genetics ; Crystallography, X-Ray ; Ion Transport ; Models, Molecular ; Protein Binding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Sodium/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2009-11-20
    Description: Glutamate transporters are integral membrane proteins that catalyse a thermodynamically uphill uptake of the neurotransmitter glutamate from the synaptic cleft into the cytoplasm of glia and neuronal cells by harnessing the energy of pre-existing electrochemical gradients of ions. Crucial to the reaction is the conformational transition of the transporters between outward and inward facing states, in which the substrate binding sites are accessible from the extracellular space and the cytoplasm, respectively. Here we describe the crystal structure of a double cysteine mutant of a glutamate transporter homologue from Pyrococcus horikoshii, Glt(Ph), which is trapped in the inward facing state by cysteine crosslinking. Together with the previously determined crystal structures of Glt(Ph) in the outward facing state, the structure of the crosslinked mutant allows us to propose a molecular mechanism by which Glt(Ph) and, by analogy, mammalian glutamate transporters mediate sodium-coupled substrate uptake.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2934767/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2934767/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reyes, Nicolas -- Ginter, Christopher -- Boudker, Olga -- R01 NS064357/NS/NINDS NIH HHS/ -- R01 NS064357-01A1/NS/NINDS NIH HHS/ -- England -- Nature. 2009 Dec 17;462(7275):880-5. doi: 10.1038/nature08616. Epub 2009 Nov 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, Box 75, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19924125" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Transport System X-AG/*chemistry/genetics/*metabolism ; Binding Sites ; Biological Transport ; Cross-Linking Reagents ; Crystallography, X-Ray ; Cysteine/genetics/metabolism ; Models, Molecular ; Movement ; Mutant Proteins/chemistry/genetics/metabolism ; Protein Structure, Tertiary ; Pyrococcus horikoshii/*chemistry ; Sodium/metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2009-02-06
    Description: The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Puwei -- Bartlam, Mark -- Lou, Zhiyong -- Chen, Shoudeng -- Zhou, Jie -- He, Xiaojing -- Lv, Zongyang -- Ge, Ruowen -- Li, Xuemei -- Deng, Tao -- Fodor, Ervin -- Rao, Zihe -- Liu, Yingfang -- G0700848/Medical Research Council/United Kingdom -- England -- Nature. 2009 Apr 16;458(7240):909-13. doi: 10.1038/nature07720. Epub 2009 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19194458" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/virology ; Catalytic Domain ; Crystallography, X-Ray ; Endonucleases/*chemistry/genetics/*metabolism ; Influenza A Virus, H5N1 Subtype/*enzymology ; Influenza in Birds/*virology ; Models, Molecular ; Protein Subunits/chemistry/genetics/metabolism ; RNA Replicase/*chemistry/genetics/*metabolism ; Viral Proteins/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2009-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knepper, Mark A -- Mindell, Joseph A -- England -- Nature. 2009 Dec 10;462(7274):733-4. doi: 10.1038/462733a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20010678" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Desulfovibrio vulgaris/*chemistry ; Humans ; Kidney/metabolism ; Membrane Transport Proteins/*chemistry/*metabolism ; Protein Structure, Quaternary ; Structure-Activity Relationship ; Urea/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2009-09-04
    Description: We live in a macroscopic three-dimensional (3D) world, but our best description of the structure of matter is at the atomic and molecular scale. Understanding the relationship between the two scales requires a bridge from the molecular world to the macroscopic world. Connecting these two domains with atomic precision is a central goal of the natural sciences, but it requires high spatial control of the 3D structure of matter. The simplest practical route to producing precisely designed 3D macroscopic objects is to form a crystalline arrangement by self-assembly, because such a periodic array has only conceptually simple requirements: a motif that has a robust 3D structure, dominant affinity interactions between parts of the motif when it self-associates, and predictable structures for these affinity interactions. Fulfilling these three criteria to produce a 3D periodic system is not easy, but should readily be achieved with well-structured branched DNA motifs tailed by sticky ends. Complementary sticky ends associate with each other preferentially and assume the well-known B-DNA structure when they do so; the helically repeating nature of DNA facilitates the construction of a periodic array. It is essential that the directions of propagation associated with the sticky ends do not share the same plane, but extend to form a 3D arrangement of matter. Here we report the crystal structure at 4 A resolution of a designed, self-assembled, 3D crystal based on the DNA tensegrity triangle. The data demonstrate clearly that it is possible to design and self-assemble a well-ordered macromolecular 3D crystalline lattice with precise control.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2764300/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2764300/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, Jianping -- Birktoft, Jens J -- Chen, Yi -- Wang, Tong -- Sha, Ruojie -- Constantinou, Pamela E -- Ginell, Stephan L -- Mao, Chengde -- Seeman, Nadrian C -- 1R21EB007472/EB/NIBIB NIH HHS/ -- R21 EB007472/EB/NIBIB NIH HHS/ -- R21 EB007472-03/EB/NIBIB NIH HHS/ -- England -- Nature. 2009 Sep 3;461(7260):74-7. doi: 10.1038/nature08274.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, New York University, New York 10003, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19727196" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Crystallization ; Crystallography, X-Ray ; DNA/*chemistry/genetics ; *Drug Design ; Molecular Sequence Data ; *Nucleic Acid Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2009-04-17
    Description: Biosynthesis of the DNA base thymine depends on activity of the enzyme thymidylate synthase to catalyse the methylation of the uracil moiety of 2'-deoxyuridine-5'-monophosphate. All known thymidylate synthases rely on an active site residue of the enzyme to activate 2'-deoxyuridine-5'-monophosphate. This functionality has been demonstrated for classical thymidylate synthases, including human thymidylate synthase, and is instrumental in mechanism-based inhibition of these enzymes. Here we report an example of thymidylate biosynthesis that occurs without an enzymatic nucleophile. This unusual biosynthetic pathway occurs in organisms containing the thyX gene, which codes for a flavin-dependent thymidylate synthase (FDTS), and is present in several human pathogens. Our findings indicate that the putative active site nucleophile is not required for FDTS catalysis, and no alternative nucleophilic residues capable of serving this function can be identified. Instead, our findings suggest that a hydride equivalent (that is, a proton and two electrons) is transferred from the reduced flavin cofactor directly to the uracil ring, followed by an isomerization of the intermediate to form the product, 2'-deoxythymidine-5'-monophosphate. These observations indicate a very different chemical cascade than that of classical thymidylate synthases or any other known biological methylation. The findings and chemical mechanism proposed here, together with available structural data, suggest that selective inhibition of FDTSs, with little effect on human thymine biosynthesis, should be feasible. Because several human pathogens depend on FDTS for DNA biosynthesis, its unique mechanism makes it an attractive target for antibiotic drugs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759699/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759699/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koehn, Eric M -- Fleischmann, Todd -- Conrad, John A -- Palfey, Bruce A -- Lesley, Scott A -- Mathews, Irimpan I -- Kohen, Amnon -- GM08270/GM/NIGMS NIH HHS/ -- R01 GM065368/GM/NIGMS NIH HHS/ -- R01 GM065368-05/GM/NIGMS NIH HHS/ -- R01 GM61087/GM/NIGMS NIH HHS/ -- U54GM074898/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Apr 16;458(7240):919-23. doi: 10.1038/nature07973.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19370033" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Deoxyuracil Nucleotides/chemistry/metabolism ; Deuterium/metabolism ; Electrons ; Flavin-Adenine Dinucleotide/chemistry/metabolism ; Flavins/chemistry/*metabolism ; Helicobacter pylori/enzymology ; Humans ; Magnetic Resonance Spectroscopy ; Methylation ; Models, Molecular ; Mycobacterium tuberculosis/enzymology ; Protons ; Thermotoga maritima/*enzymology/*metabolism ; Thymidine/analogs & derivatives/metabolism ; Thymidine Monophosphate/*biosynthesis ; Thymidylate Synthase/antagonists & inhibitors/*genetics/*metabolism ; Uracil/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2009-10-02
    Description: A key step in many chromatin-related processes is the recognition of histone post-translational modifications by effector modules such as bromodomains and chromo-like domains of the Royal family. Whereas effector-mediated recognition of single post-translational modifications is well characterized, how the cell achieves combinatorial readout of histones bearing multiple modifications is poorly understood. One mechanism involves multivalent binding by linked effector modules. For example, the tandem bromodomains of human TATA-binding protein-associated factor-1 (TAF1) bind better to a diacetylated histone H4 tail than to monoacetylated tails, a cooperative effect attributed to each bromodomain engaging one acetyl-lysine mark. Here we report a distinct mechanism of combinatorial readout for the mouse TAF1 homologue Brdt, a testis-specific member of the BET protein family. Brdt associates with hyperacetylated histone H4 (ref. 7) and is implicated in the marked chromatin remodelling that follows histone hyperacetylation during spermiogenesis, the stage of spermatogenesis in which post-meiotic germ cells mature into fully differentiated sperm. Notably, we find that a single bromodomain (BD1) of Brdt is responsible for selectively recognizing histone H4 tails bearing two or more acetylation marks. The crystal structure of BD1 bound to a diacetylated H4 tail shows how two acetyl-lysine residues cooperate to interact with one binding pocket. Structure-based mutagenesis that reduces the selectivity of BD1 towards diacetylated tails destabilizes the association of Brdt with acetylated chromatin in vivo. Structural analysis suggests that other chromatin-associated proteins may be capable of a similar mode of ligand recognition, including yeast Bdf1, human TAF1 and human CBP/p300 (also known as CREBBP and EP300, respectively). Our findings describe a new mechanism for the combinatorial readout of histone modifications in which a single effector module engages two marks on a histone tail as a composite binding epitope.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moriniere, Jeanne -- Rousseaux, Sophie -- Steuerwald, Ulrich -- Soler-Lopez, Montserrat -- Curtet, Sandrine -- Vitte, Anne-Laure -- Govin, Jerome -- Gaucher, Jonathan -- Sadoul, Karin -- Hart, Darren J -- Krijgsveld, Jeroen -- Khochbin, Saadi -- Muller, Christoph W -- Petosa, Carlo -- England -- Nature. 2009 Oct 1;461(7264):664-8. doi: 10.1038/nature08397.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, BP 181, 38042 Grenoble Cedex 9, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19794495" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Allosteric Regulation ; Animals ; Binding Sites ; COS Cells ; Cercopithecus aethiops ; Chromatin/chemistry/metabolism ; Crystallography, X-Ray ; Histones/*chemistry/*metabolism ; Lysine/metabolism ; Mice ; Models, Molecular ; Nuclear Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2008-12-17
    Description: Aberrant folding of proteins in the endoplasmic reticulum activates the bifunctional transmembrane kinase/endoribonuclease Ire1. Ire1 excises an intron from HAC1 messenger RNA in yeasts and Xbp1 messenger RNA in metozoans encoding homologous transcription factors. This non-conventional mRNA splicing event initiates the unfolded protein response, a transcriptional program that relieves the endoplasmic reticulum stress. Here we show that oligomerization is central to Ire1 function and is an intrinsic attribute of its cytosolic domains. We obtained the 3.2-A crystal structure of the oligomer of the Ire1 cytosolic domains in complex with a kinase inhibitor that acts as a potent activator of the Ire1 RNase. The structure reveals a rod-shaped assembly that has no known precedence among kinases. This assembly positions the kinase domain for trans-autophosphorylation, orders the RNase domain, and creates an interaction surface for binding of the mRNA substrate. Activation of Ire1 through oligomerization expands the mechanistic repertoire of kinase-based signalling receptors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846394/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846394/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Korennykh, Alexei V -- Egea, Pascal F -- Korostelev, Andrei A -- Finer-Moore, Janet -- Zhang, Chao -- Shokat, Kevan M -- Stroud, Robert M -- Walter, Peter -- R01 GM060641/GM/NIGMS NIH HHS/ -- R01 GM060641-01/GM/NIGMS NIH HHS/ -- R01 GM60641/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Feb 5;457(7230):687-93. doi: 10.1038/nature07661. Epub 2008 Dec 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA. alexei.korennykh@ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19079236" target="_blank"〉PubMed〈/a〉
    Keywords: Basic-Leucine Zipper Transcription Factors/genetics ; Binding Sites ; Crystallography, X-Ray ; Cytosol/metabolism ; Enzyme Activation/drug effects ; Introns/genetics ; Membrane Glycoproteins/antagonists & inhibitors/*chemistry/*metabolism ; Models, Molecular ; Phosphorylation/drug effects ; Protein Binding/drug effects ; Protein Denaturation ; *Protein Folding ; Protein Kinase Inhibitors/chemistry/metabolism/pharmacology ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/*chemistry/*metabolism ; Repressor Proteins/genetics ; Ribonucleases/chemistry/metabolism ; Saccharomyces cerevisiae/*chemistry/*enzymology ; Saccharomyces cerevisiae Proteins/antagonists & ; inhibitors/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2009-05-08
    Description: Pore-forming toxins (PFTs) are a class of potent virulence factors that convert from a soluble form to a membrane-integrated pore. They exhibit their toxic effect either by destruction of the membrane permeability barrier or by delivery of toxic components through the pores. Among the group of bacterial PFTs are some of the most dangerous toxins, such as diphtheria and anthrax toxin. Examples of eukaryotic PFTs are perforin and the membrane-attack complex, proteins of the immune system. PFTs can be subdivided into two classes, alpha-PFTs and beta-PFTs, depending on the suspected mode of membrane integration, either by alpha-helical or beta-sheet elements. The only high-resolution structure of a transmembrane PFT pore is available for a beta-PFT--alpha-haemolysin from Staphylococcus aureus. Cytolysin A (ClyA, also known as HlyE), an alpha-PFT, is a cytolytic -helical toxin responsible for the haemolytic phenotype of several Escherichia coli and Salmonella enterica strains. ClyA is cytotoxic towards cultured mammalian cells, induces apoptosis of macrophages and promotes tissue pervasion. Electron microscopic reconstructions demonstrated that the soluble monomer of ClyA must undergo large conformational changes to form the transmembrane pore. Here we report the 3.3 A crystal structure of the 400 kDa dodecameric transmembrane pore formed by ClyA. The tertiary structure of ClyA protomers in the pore is substantially different from that in the soluble monomer. The conversion involves more than half of all residues. It results in large rearrangements, up to 140 A, of parts of the monomer, reorganization of the hydrophobic core, and transitions of -sheets and loop regions to -helices. The large extent of interdependent conformational changes indicates a sequential mechanism for membrane insertion and pore formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mueller, Marcus -- Grauschopf, Ulla -- Maier, Timm -- Glockshuber, Rudi -- Ban, Nenad -- England -- Nature. 2009 Jun 4;459(7247):726-30. doi: 10.1038/nature08026.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19421192" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/chemistry ; Crystallography, X-Ray ; Escherichia coli K12/*chemistry ; Escherichia coli Proteins/*chemistry ; Hemolysin Proteins/*chemistry ; Membrane Proteins/*chemistry ; *Models, Molecular ; *Protein Folding ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2009-04-03
    Description: CRM1 (also known as XPO1 and exportin 1) mediates nuclear export of hundreds of proteins through the recognition of the leucine-rich nuclear export signal (LR-NES). Here we present the 2.9 A structure of CRM1 bound to snurportin 1 (SNUPN). Snurportin 1 binds CRM1 in a bipartite manner by means of an amino-terminal LR-NES and its nucleotide-binding domain. The LR-NES is a combined alpha-helical-extended structure that occupies a hydrophobic groove between two CRM1 outer helices. The LR-NES interface explains the consensus hydrophobic pattern, preference for intervening electronegative residues and inhibition by leptomycin B. The second nuclear export signal epitope is a basic surface on the snurportin 1 nucleotide-binding domain, which binds an acidic patch on CRM1 adjacent to the LR-NES site. Multipartite recognition of individually weak nuclear export signal epitopes may be common to CRM1 substrates, enhancing CRM1 binding beyond the generally low affinity LR-NES. Similar energetic construction is also used in multipartite nuclear localization signals to provide broad substrate specificity and rapid evolution in nuclear transport.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437623/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437623/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, Xiuhua -- Biswas, Anindita -- Suel, Katherine E -- Jackson, Laurie K -- Martinez, Rita -- Gu, Hongmei -- Chook, Yuh Min -- 5-T32-GM008297/GM/NIGMS NIH HHS/ -- R01 GM069909/GM/NIGMS NIH HHS/ -- R01GM069909/GM/NIGMS NIH HHS/ -- R01GM069909-03S1/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Apr 30;458(7242):1136-41. doi: 10.1038/nature07975. Epub 2009 Apr 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park, Dallas, Texas 75390-9041, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19339969" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Crystallography, X-Ray ; Epitopes ; Fatty Acids, Unsaturated/pharmacology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Karyopherins/*chemistry/*metabolism ; Leucine/*metabolism ; Models, Molecular ; Nuclear Export Signals/*physiology ; Protein Binding/drug effects ; Protein Conformation ; Receptors, Cytoplasmic and Nuclear/*chemistry/*metabolism ; Structure-Activity Relationship ; Substrate Specificity ; snRNP Core Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2009-10-23
    Description: Maturation of precursor transfer RNA (pre-tRNA) includes excision of the 5' leader and 3' trailer sequences, removal of introns and addition of the CCA terminus. Nucleotide modifications are incorporated at different stages of tRNA processing, after the RNA molecule adopts the proper conformation. In bacteria, tRNA(Ile2) lysidine synthetase (TilS) modifies cytidine into lysidine (L; 2-lysyl-cytidine) at the first anticodon of tRNA(Ile2) (refs 4-9). This modification switches tRNA(Ile2) from a methionine-specific to an isoleucine-specific tRNA. However, the aminoacylation of tRNA(Ile2) by methionyl-tRNA synthetase (MetRS), before the modification by TilS, might lead to the misincorporation of methionine in response to isoleucine codons. The mechanism used by bacteria to avoid this pitfall is unknown. Here we show that the TilS enzyme specifically recognizes and modifies tRNA(Ile2) in its precursor form, thereby avoiding translation errors. We identified the lysidine modification in pre-tRNA(Ile2) isolated from RNase-E-deficient Escherichia coli and did not detect mature tRNA(Ile2) lacking this modification. Our kinetic analyses revealed that TilS can modify both types of RNA molecule with comparable efficiencies. X-ray crystallography and mutational analyses revealed that TilS specifically recognizes the entire L-shape structure in pre-tRNA(Ile2) through extensive interactions coupled with sequential domain movements. Our results demonstrate how TilS prevents the recognition of tRNA(Ile2) by MetRS and achieves high specificity for its substrate. These two key points form the basis for maintaining the fidelity of isoleucine codon translation in bacteria. Our findings also provide a rationale for the necessity of incorporating specific modifications at the precursor level during tRNA biogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakanishi, Kotaro -- Bonnefond, Luc -- Kimura, Satoshi -- Suzuki, Tsutomu -- Ishitani, Ryuichiro -- Nureki, Osamu -- England -- Nature. 2009 Oct 22;461(7267):1144-8. doi: 10.1038/nature08474.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa 225-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19847269" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acyl-tRNA Synthetases/*chemistry/genetics/*metabolism ; Apoproteins/genetics/metabolism ; Bacillus subtilis ; Bacterial Proteins/*chemistry/genetics/*metabolism ; Base Sequence ; Catalytic Domain ; Crystallography, X-Ray ; Escherichia coli ; Geobacillus ; Kinetics ; Lysine/analogs & derivatives/metabolism ; Mass Spectrometry ; Models, Molecular ; Molecular Sequence Data ; *Protein Biosynthesis ; Pyrimidine Nucleosides/metabolism ; RNA, Transfer, Ile/genetics/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2009-06-12
    Description: Alkyltransferase-like proteins (ATLs) share functional motifs with the cancer chemotherapy target O(6)-alkylguanine-DNA alkyltransferase (AGT) and paradoxically protect cells from the biological effects of DNA alkylation damage, despite lacking the reactive cysteine and alkyltransferase activity of AGT. Here we determine Schizosaccharomyces pombe ATL structures without and with damaged DNA containing the endogenous lesion O(6)-methylguanine or cigarette-smoke-derived O(6)-4-(3-pyridyl)-4-oxobutylguanine. These results reveal non-enzymatic DNA nucleotide flipping plus increased DNA distortion and binding pocket size compared to AGT. Our analysis of lesion-binding site conservation identifies new ATLs in sea anemone and ancestral archaea, indicating that ATL interactions are ancestral to present-day repair pathways in all domains of life. Genetic connections to mammalian XPG (also known as ERCC5) and ERCC1 in S. pombe homologues Rad13 and Swi10 and biochemical interactions with Escherichia coli UvrA and UvrC combined with structural results reveal that ATLs sculpt alkylated DNA to create a genetic and structural intersection of base damage processing with nucleotide excision repair.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729916/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729916/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tubbs, Julie L -- Latypov, Vitaly -- Kanugula, Sreenivas -- Butt, Amna -- Melikishvili, Manana -- Kraehenbuehl, Rolf -- Fleck, Oliver -- Marriott, Andrew -- Watson, Amanda J -- Verbeek, Barbara -- McGown, Gail -- Thorncroft, Mary -- Santibanez-Koref, Mauro F -- Millington, Christopher -- Arvai, Andrew S -- Kroeger, Matthew D -- Peterson, Lisa A -- Williams, David M -- Fried, Michael G -- Margison, Geoffrey P -- Pegg, Anthony E -- Tainer, John A -- CA018137/CA/NCI NIH HHS/ -- CA097209/CA/NCI NIH HHS/ -- CA59887/CA/NCI NIH HHS/ -- GM070662/GM/NIGMS NIH HHS/ -- R01 CA059887/CA/NCI NIH HHS/ -- R01 CA059887-12/CA/NCI NIH HHS/ -- R01 CA059887-13/CA/NCI NIH HHS/ -- R01 GM070662/GM/NIGMS NIH HHS/ -- R01 GM070662-01/GM/NIGMS NIH HHS/ -- R01 GM070662-02/GM/NIGMS NIH HHS/ -- R01 GM070662-03/GM/NIGMS NIH HHS/ -- R01 GM070662-04/GM/NIGMS NIH HHS/ -- R01 GM070662-05/GM/NIGMS NIH HHS/ -- R01 GM070662-06/GM/NIGMS NIH HHS/ -- Cancer Research UK/United Kingdom -- England -- Nature. 2009 Jun 11;459(7248):808-13. doi: 10.1038/nature08076.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19516334" target="_blank"〉PubMed〈/a〉
    Keywords: Alkyl and Aryl Transferases/*chemistry/*metabolism ; Alkylation ; Binding Sites ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; *DNA Damage ; *DNA Repair ; Guanine/analogs & derivatives/chemistry/metabolism ; Humans ; Models, Molecular ; Protein Binding ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-02-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nicchitta, Christopher V -- England -- Nature. 2009 Feb 5;457(7230):668-9. doi: 10.1038/457668a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19194438" target="_blank"〉PubMed〈/a〉
    Keywords: Basic-Leucine Zipper Transcription Factors/*genetics ; Crystallography, X-Ray ; Endoplasmic Reticulum/*metabolism ; Membrane Glycoproteins/chemistry/*metabolism ; Protein Biosynthesis ; Protein-Serine-Threonine Kinases/chemistry/*metabolism ; RNA, Fungal/genetics/metabolism ; RNA, Messenger/genetics/*metabolism ; Repressor Proteins/*genetics ; Saccharomyces cerevisiae/*cytology/*genetics ; Saccharomyces cerevisiae Proteins/chemistry/*genetics/*metabolism ; *Stress, Physiological/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2009-09-01
    Description: The orphan receptor tyrosine kinase ErbB2 (also known as HER2 or Neu) transforms cells when overexpressed, and it is an important therapeutic target in human cancer. Structural studies have suggested that the oncogenic (and ligand-independent) signalling properties of ErbB2 result from the absence of a key intramolecular 'tether' in the extracellular region that autoinhibits other human ErbB receptors, including the epidermal growth factor (EGF) receptor. Although ErbB2 is unique among the four human ErbB receptors, here we show that it is the closest structural relative of the single EGF receptor family member in Drosophila melanogaster (dEGFR). Genetic and biochemical data show that dEGFR is tightly regulated by growth factor ligands, yet a crystal structure shows that it, too, lacks the intramolecular tether seen in human EGFR, ErbB3 and ErbB4. Instead, a distinct set of autoinhibitory interdomain interactions hold unliganded dEGFR in an inactive state. All of these interactions are maintained (and even extended) in ErbB2, arguing against the suggestion that ErbB2 lacks autoinhibition. We therefore suggest that normal and pathogenic ErbB2 signalling may be regulated by ligands in the same way as dEGFR. Our findings have important implications for ErbB2 regulation in human cancer, and for developing therapeutic approaches that target novel aspects of this orphan receptor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762480/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762480/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alvarado, Diego -- Klein, Daryl E -- Lemmon, Mark A -- R01 CA079992/CA/NCI NIH HHS/ -- R01 CA079992-09/CA/NCI NIH HHS/ -- R01 CA079992-10/CA/NCI NIH HHS/ -- R01 CA125432/CA/NCI NIH HHS/ -- R01 CA125432-01A1/CA/NCI NIH HHS/ -- R01 CA125432-02/CA/NCI NIH HHS/ -- R01 CA125432-03/CA/NCI NIH HHS/ -- England -- Nature. 2009 Sep 10;461(7261):287-91. doi: 10.1038/nature08297. Epub 2009 Aug 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 809C Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104-6059, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19718021" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Crystallography, X-Ray ; Drosophila Proteins/*antagonists & inhibitors/chemistry/genetics/*metabolism ; Drosophila melanogaster/chemistry/*metabolism ; Enzyme Activation ; Humans ; Ligands ; Models, Molecular ; Protein Structure, Tertiary ; Receptor, Epidermal Growth Factor/*antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Receptor, ErbB-2/antagonists & inhibitors/*chemistry/*metabolism ; Receptors, Invertebrate Peptide/*antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Scattering, Small Angle ; Solubility ; X-Ray Diffraction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2009-07-07
    Description: To reach the mammalian gut, enteric bacteria must pass through the stomach. Many such organisms survive exposure to the harsh gastric environment (pH 1.5-4) by mounting extreme acid-resistance responses, one of which, the arginine-dependent system of Escherichia coli, has been studied at levels of cellular physiology, molecular genetics and protein biochemistry. This multiprotein system keeps the cytoplasm above pH 5 during acid challenge by continually pumping protons out of the cell using the free energy of arginine decarboxylation. At the heart of the process is a 'virtual proton pump' in the inner membrane, called AdiC, that imports L-arginine from the gastric juice and exports its decarboxylation product agmatine. AdiC belongs to the APC superfamily of membrane proteins, which transports amino acids, polyamines and organic cations in a multitude of biological roles, including delivery of arginine for nitric oxide synthesis, facilitation of insulin release from pancreatic beta-cells, and, when inappropriately overexpressed, provisioning of certain fast-growing neoplastic cells with amino acids. High-resolution structures and detailed transport mechanisms of APC transporters are currently unknown. Here we describe a crystal structure of AdiC at 3.2 A resolution. The protein is captured in an outward-open, substrate-free conformation with transmembrane architecture remarkably similar to that seen in four other families of apparently unrelated transport proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745212/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745212/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fang, Yiling -- Jayaram, Hariharan -- Shane, Tania -- Kolmakova-Partensky, Ludmila -- Wu, Fang -- Williams, Carole -- Xiong, Yong -- Miller, Christopher -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM031768/GM/NIGMS NIH HHS/ -- R01 GM031768-26/GM/NIGMS NIH HHS/ -- R01 GM089688/GM/NIGMS NIH HHS/ -- T32 NS 07292/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Aug 20;460(7258):1040-3. doi: 10.1038/nature08201. Epub 2009 Jul 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19578361" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Transport Systems/*chemistry/metabolism ; Antiporters/*chemistry/metabolism ; Bacterial Proteins/*chemistry ; Crystallography, X-Ray ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Multigene Family ; Protein Conformation ; Salmonella typhi/*chemistry ; Structural Homology, Protein
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2009-11-06
    Description: Recent earth science studies have pointed out that massive acceleration of the global nitrogen cycle by anthropogenic addition of bio-available nitrogen has led to a host of environmental problems. Nitrous oxide (N(2)O) is a greenhouse gas that is an intermediate during the biological process known as denitrification. Copper-containing nitrite reductase (CuNIR) is a key enzyme in the process; it produces a precursor for N(2)O by catalysing the one-electron reduction of nitrite (NO2-) to nitric oxide (NO). The reduction step is performed by an efficient electron-transfer reaction with a redox-partner protein. However, details of the mechanism during the electron-transfer reaction are still unknown. Here we show the high-resolution crystal structure of the electron-transfer complex for CuNIR with its cognate cytochrome c as the electron donor. The hydrophobic electron-transfer path is formed at the docking interface by desolvation owing to close contact between the two proteins. Structural analysis of the interface highlights an essential role for the loop region with a hydrophobic patch for protein-protein recognition; it also shows how interface construction allows the variation in atomic components to achieve diverse biological electron transfers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nojiri, Masaki -- Koteishi, Hiroyasu -- Nakagami, Takuya -- Kobayashi, Kazuo -- Inoue, Tsuyoshi -- Yamaguchi, Kazuya -- Suzuki, Shinnichiro -- England -- Nature. 2009 Nov 5;462(7269):117-20. doi: 10.1038/nature08507.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan. nojiri@ch.wani.osaka-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19890332" target="_blank"〉PubMed〈/a〉
    Keywords: Achromobacter denitrificans/*enzymology ; Crystallography, X-Ray ; Cytochromes c/chemistry/metabolism ; Electron Transport ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Nitric Oxide/metabolism ; Nitrite Reductases/*chemistry/*metabolism ; Nitrites/metabolism ; Nitrous Oxide/metabolism ; Protein Conformation ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2009-02-03
    Description: Membrane proteins that transport hydrophobic compounds have important roles in multi-drug resistance and can cause a number of diseases, underscoring the importance of protein-mediated transport of hydrophobic compounds. Hydrophobic compounds readily partition into regular membrane lipid bilayers, and their transport through an aqueous protein channel is energetically unfavourable. Alternative transport models involving acquisition from the lipid bilayer by lateral diffusion have been proposed for hydrophobic substrates. So far, all transport proteins for which a lateral diffusion mechanism has been proposed function as efflux pumps. Here we present the first example of a lateral diffusion mechanism for the uptake of hydrophobic substrates by the Escherichia coli outer membrane long-chain fatty acid transporter FadL. A FadL mutant in which a lateral opening in the barrel wall is constricted, but which is otherwise structurally identical to wild-type FadL, does not transport substrates. A crystal structure of FadL from Pseudomonas aeruginosa shows that the opening in the wall of the beta-barrel is conserved and delineates a long, hydrophobic tunnel that could mediate substrate passage from the extracellular environment, through the polar lipopolysaccharide layer and, by means of the lateral opening in the barrel wall, into the lipid bilayer from where the substrate can diffuse into the periplasm. Because FadL homologues are found in pathogenic and biodegrading bacteria, our results have implications for combating bacterial infections and bioremediating xenobiotics in the environment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658730/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658730/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hearn, Elizabeth M -- Patel, Dimki R -- Lepore, Bryan W -- Indic, Mridhu -- van den Berg, Bert -- 1R01GM074824/GM/NIGMS NIH HHS/ -- F32 GM079820-01/GM/NIGMS NIH HHS/ -- F32 GM079820-02/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM074824/GM/NIGMS NIH HHS/ -- R01 GM074824-01/GM/NIGMS NIH HHS/ -- R01 GM074824-02/GM/NIGMS NIH HHS/ -- R01 GM074824-03/GM/NIGMS NIH HHS/ -- R01 GM074824-04/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Mar 19;458(7236):367-70. doi: 10.1038/nature07678. Epub 2009 Feb 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19182779" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/*chemistry/genetics/*metabolism ; Cloning, Molecular ; Crystallography, X-Ray ; Diffusion ; Escherichia coli/*chemistry/genetics ; Escherichia coli Proteins/*chemistry/genetics/*metabolism ; Fatty Acid Transport Proteins/*chemistry/genetics/*metabolism ; Hydrophobic and Hydrophilic Interactions ; Lipid Bilayers/metabolism ; Models, Molecular ; Pseudomonas aeruginosa/*chemistry/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...