ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Science Ltd
Collection
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford : Blackwell Science Ltd
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: In progressing from a granitoid mylonite to an ultramylonite in the Brevard shear zone in North Carolina, Ca and LOI (H2O) increase, Si, Mg, K, Na, Ba, Sr, Ta, Cs and Th decrease, while changes in Al, Ti, Fe, P, Sc, Rb, REE, Hf, Cr and U are relatively small. A volume loss of 44% is calculated for the Brevard ultramylonite relative to an Al–Ti–Fe isocon. The increase in Ca and LOI is related to a large increase in retrograde epidote and muscovite in the ultramylonite, the decreases in K, Na, Si, Ba and Sr reflect the destruction of feldspars, and the decrease in Mg is related to the destruction of biotite during mylonitization. In an amphibolite facies fault zone separating grey and pink granitic gneisses in the Hope Valley shear zone in New England, compositional similarity suggests the ultramylonite is composed chiefly of the pink gneisses. Utilizing an Al–Ti–Fe isocon for the pink gneisses, Sc, Cr, Hf, Ta, U, Th and M-HREE are relatively unchanged, Si, LOI, K, Mg, Rb, Cs and Ba are enriched, and Ca, Na, P, Sr and LREE are lost during deformation. In contrast to the Brevard mylonite, the Hope Valley mylonite appears to have increased in volume by about 70%, chiefly in response to an introduction of quartz.Chondrite-normalized REE patterns of granitoids from both shear zones are LREE-enriched and have prominent negative Eu anomalies. Although REE increase in abundance in the Brevard ultramylonites (reflecting the volume loss), the shape of the REE pattern remains unchanged. In contrast, REE and especially LREE decrease in abundance with increasing deformation of the Hope Valley gneisses. Mass balance calculations indicate that ≥95% of the REE in the Brevard rocks reside in titanite. In contrast, in the Hope Valley rocks only 15–40% of the REE can be accounted for collectively by titanite, apatite and zircon. Possible sites for the remaining REE are allanite, fluorite or grain boundaries. Loss of LREE from the pink gneisses during deformation may have resulted from decreases in allanite and perhaps apatite or by leaching ofy REE from grain boundaries by fluids moving through the shear zone.Among the element ratios most resistant to change during mylonitization in the Brevard shear zone are La/Yb, Eu/Eu*, Sm/Nd, La/Sc, Th/Sc, Th/Yb, Cr/Th, Th/U and Hf/Ta, whereas the most stable ratios in the Hope Valley shear zone are K/Rb, Rb/Cs, Th/U, Eu/Eu*, Th/Sc, Th/Yb, Sm/Nd, Th/Ta, Hf/Ta and Hf/Yb. However, until more trace element data are available from other shear zones, these ratios should not be used alone to identify protoliths of deformed rocks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford : Blackwell Science Ltd
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Raman spectral analyses of carbonaceous material (CM) extracted from pelitic samples along two sections traversing the metamorphic belt of Taiwan were carried out in the present study. The results show similar spectral variations of CM with metamorphic grade as those documented in the literature. However, continuous sampling from zeolite facies through prehnite–pumpellyite facies to greenschist facies metamorphic rocks in the present study does reveal some interesting features on the Raman spectra of CM that were not noted before. Both the Raman D (disordered-)/O (ordered-) peak area (i.e. integrated intensity) ratio and the D/O peak width (i.e. full width at half maximum, FWHM) ratio of the CM decrease with progressive metamorphism, but the most prominent change in the D/O peak area ratio occurs in samples of lower greenschist facies metamorphic grade, while the most significant decrease in the D/O peak width ratio occurs in samples near the boundary of prehnite–pumpellyite facies and greenschist facies. This phenomenon is interpreted as a result of the decoupling of the changing rates of in-plane crystallite size and degree of defects of CM with progressive metamorphism. It is postulated that the Raman spectrum of CM can serve as a metamorphic grade indicator to distinguish samples of prehnite–pumpellyite facies metamorphic grade from those of greenschist facies metamorphic grade.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford : Blackwell Science Ltd
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Moderately manganiferous siliceous pelagites near Meyers Pass, Torlesse Terrane, South Canterbury, New Zealand, have been metamorphosed in the prehnite–pumpellyite facies. A conodont colour index measurement suggests T max in the range 190–300 °C. Porphyroblastic manganaxinite, manganoan pumpellyite, manganoan chlorite and trace spessartine-rich garnet and sphalerite have formed in an extremely fine-grained quartz–albite–berthierine–phengite–titanite groundmass. Porphyroblastic manganaxinite semischists and schists are distinctive rocks in prehnite–pumpellyite to lower-grade greenschist and blueschist facies of New Zealand and Japan. Mn in the manganoan pumpellyites substitutes for Ca in W sites. Total Fe/(Fe+Mg) ratios in chlorite are dependent on oxidation state, being ≤0.22 in red hematitic hemipelagites, and ≥0.61 in low-f O2 grey metapelagites. In the low-f O2 metapelagites, manganoan berthierine with little or no chlorite is inferred in the groundmass and iron-rich chlorite occurs as porphyroblasts and veinlets, whereas in the red rocks, Mg-rich chlorite occurs both in groundmasses and veinlets. Variably high Si in the manganoan chlorites correlates with evidence for contaminant phases. The Mn content of chlorite contributing to garnet growth is dependent on metamorphic grade; incipient spessartine indicates a saturation value of 6–8% MnO in chlorite in low-f O2 rocks at Meyers Pass. Lower MnO contents are recorded for otherwise analogous rocks with increasing metamorphic grade, but at a given grade coexisting chlorite and garnet are richer in Mn where f O2 is high. Manganaxinite and manganoan pumpellyite also contributed to reactions forming grossular–spessartine solid solutions. Formation of garnet in siliceous pelagites is dependent on both Mn and Ca content. The spessartine component increases with grade into the greenschist facies. Partial recrystallization of berthierine to chlorite and the growth of porphyroblastic patches of other minerals was facilitated by brittle fracture and access of fluids to an otherwise impermeable matrix; to this extent the very low-grade metamorphism was episodic.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford : Blackwell Science Ltd
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Carbon isotope fractionations between calcite and graphite in the Panamint Mountains, California, USA, demonstrate the importance of mass balance on carbon isotope values in metamorphosed carbon-bearing minerals while recording the thermal conditions during peak regional metamorphism. Interbedded graphitic marbles and graphitic calcareous schists in the Kingston Peak Formation define distinct populations on a δ13C(gr)–δ13C(cc) diagram. The δ13C values of both graphite and calcite in the marbles are higher than the values of the respective minerals in the schists. δ13C values in both rock types were controlled by the relative proportions of the carbon-bearing minerals: calcite, the dominant carbon reservoir in the marble, largely controlled the δ13C values in this lithology, whereas the δ13C values in the schists were largely controlled by the dominant graphite. This is in contrast to graphite-poor calcsilicate systems where carbon isotope shifts in carbonate minerals are controlled by decarbonation reactions.The marbles record a peak temperature of 531±30 °C of a Jurassic low-pressure regional metamorphic event above the tremolite isograd. In the schists there is a much wider range of recorded temperatures. However, there is a mode of temperatures at c. 435 °C, which approximately corresponds to the temperatures of the principal decarbonation metamorphic reactions in the schists, suggesting that the carbon exchange was set by loss of calcite and armouring of graphite by newly formed silicate minerals. The armouring may explain the relatively large spread of apparent temperatures. Although the modal temperature also corresponds to the approximate temperature of the Cretaceous retrograde event, retrograde exchange is thought less likely due to very slow exchange rates involving well-crystallized graphite, armouring of graphite by silicates during the earlier event, and because of other barriers to retrograde carbon exchange. Thus, only the calcite–graphite carbon isotope fractionations recorded by the marbles demonstrate the high-temperature conditions of the low-pressure Jurassic metamorphic event that was associated with the emplacement of granitic plutons to the west of the Panamint Mountains.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford : Blackwell Science Ltd
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Microstructural evidence commonly is used to infer metamorphic reactions, which are used to infer pressure–temperature–time (P–T–t) paths. However, this approach in low-P/high-T  (LPHT) granulite facies metamorphic terranes has two main problems. (1) Microstructural evidence may be inconclusive, so that reactions cannot be inferred with confidence. In particular, relative timing of mineral growth inferred from inclusions, moulding relationships and foliation–porphyroblast relationships is commonly ambiguous or invalid. The most reliable indicators of metamorphic reactions are partial pseudomorphs and corona structures, especially if symplectic intergrowths (indicating simultaneous growth of two or more minerals) are involved. (2) Even reactions that can be inferred with confidence do not indicate unique P–T  trends, owing to P–T  slopes of reaction curves. Where successive reactions can be shown to have occurred in the same rock, a line or curve joining reaction-curve intersections gives an apparent single-event path. However, isotopic evidence is needed to prove that polymetamorphism (involving more complex paths making fortuitous intersections with the apparent single-event path) did not occur. Although these problems are well known, their importance is not always emphasized in metamorphic investigations.The difficulties are illustrated by published work on P–T–t paths for Proterozoic LPHT granulite facies rocks of central Australia and Antarctica. Recent work in Antarctica has shown that P–T–t paths may be episodic and more complex than the simple, single-event paths commonly inferred from microstructural evidence alone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A complete Barrovian sequence ranging from unmetamorphosed shales to sillimanite–K-feldspar zone metapelitic gneisses crops out in a region extending from the Hudson River in south-eastern New York state, USA, to the high-grade core of the Taconic range in western Connecticut. NNE-trending subparallel biotite, garnet, staurolite, kyanite, sillimanite and sillimanite–K-feldspar isograds have been identified, although the assignment of Barrovian zones in the high-grade rocks is complicated by the appearance of fibrolitic sillimanite at the kyanite isograd.Thermobarometric results and reaction textures are used to characterize the metamorphic history of the sequence. Pressure–temperature estimates indicate maximum metamorphic conditions of 475 °C, c. 3–4 kbar in the garnet zone to 〉720 °C, c. 5–6 kbar in the highest grade rocks exposed. Some samples in the kyanite zone record anomalous (low) peak conditions because garnet composition has been modified by fluid-assisted reactions.There is abundant petrographic and mineral chemical information indicating that the sequence (with the possible exception of the granulite facies zone) was infiltrated by a water-rich fluid after garnet growth was nearly completed. The truncation of fluid inclusion trails in garnet by rim growth or recrystallization, however, indicates that metamorphic reactions involving garnet continued subsequent to initial infiltration.The presence of these textures in some zones of a well-constrained Barrovian sequence allows determination of the timing of fluid infiltration relative to the P–T  paths. Thermobarometric results obtained using garnet compositions at the boundary between fluid–inclusion-rich and inclusion-free regions of the garnet are interpreted to represent peak metamorphic conditions, whereas rim compositions record slightly lower pressures and temperatures. Assuming that garnet grew during a single metamorphic event, infiltration must have occurred at or slightly after the peak of metamorphism, i.e. 4–5 kbar and a temperature of c. 525–550 °C for staurolite and kyanite zone rocks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford : Blackwell Science Ltd
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Samples of the calcite-rich Shelburne Marble collected at the Pfizer Quarry in Adams, Massachusetts, show an order of magnitude variation in grain size. Calcite grain size ranges from 94 to 1101 μm. Because these calcite marbles share the same pressure, temperature and strain histories, some other factor must be responsible for the grain size variation.Grain size appears to be controlled by the concentration of impurity or second-phase particles. Large calcite grain size occurs where the volume fraction of second-phase particles is low and grain size decreases as second-phase volume fraction increases. The relationship between calcite grain size (D), second-phase grain size (d ) and second-phase volume fraction ( f ) can be described by the power law D/d=1.4/f  0.36, a result that is consistent with models based upon short-term (hours or days) laboratory experiments with metals and ceramics and computer simulations of grain growth. Grain growth appears to be greatly restricted by as little as a few per cent of second-phase particles, with a transition from highly restricted to almost unrestricted grain growth occurring at ≈5% volume of second-phase particles. These results indicate that second-phase particles exercise an important control on grain size and can effectively inhibit grain growth in metamorphic rocks. The behaviour of second-phases in short-term laboratory experiments may closely approximate the behaviour of second-phases in grain growth lasting several orders of magnitude longer in the metamorphic environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford : Blackwell Science Ltd
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Phase analysis in the model K2O-poor aluminous rock system (FMASH) illustrates the following sequence of reactions during retrograde metamorphism in the Botswanan Limpopo Central Zone:Opx+Sil+Qtz=Crd ,Opx+Sil=Spr+Crd ,Grt+Qtz=Opx+Crd ;Opx+Crd+W=Ged+Qtz ,Grt+Opx+Crd+W=Ged ;andGrt+Qtz+W=Ged+Crd .A quantitative petrogenetic grid with phase relations shows that sapphirine results from nearly isothermal decompression in the quartz-undersaturated portions of the grid, and that gedrite formation by reactions (4)–(6) records isobaric cooling from high temperature (c. 800° C) after the decompression. Conditions for hydration in the western part of the area were 700–800° C and c. 6 kbar, based on microthermometric data and the available garnet–cordierite geothermometer. On the basis of these conditions and predicted thermodynamic properties of gedrite, phase relations in T–XMg space were constructed to investigate the isobaric cooling event. The results are in good agreement with the hydration P–T  path. Further, the T–XMg topologies show that hydration of orthopyroxene in the central part of the area (reaction 4) occurred at about 800° C and c. 5 kbar. Therefore, we conclude that the Botswanan Limpopo Central Zone has suffered isothermal decompression, similar to the Central Zone in South Africa and Zimbabwe, followed by isobaric cooling. The isobaric cooling event in the western (at c. 6 kbar) and central (at c. 5 kbar) parts of the area commenced at nearly the same temperature (c. 800° C), and appear to be consistent with a tectonic model that involved westward movement (thrusting) of the Central Zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford : Blackwell Science Ltd
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: We investigated the metamorphic cooling history of underplated magmatic rocks at midcrustal depth. Granulites and amphibolites occur within the Jurassic magmatic belt of the Coast Range south of Antofagasta in northern Chile between 23°25′ and 24°20′ S. The protoliths of the metamorphic rocks are basic intrusions of Early Mesozoic age. They are part of the magmatically formed crust, and the essentially dry magmas were emplaced in an extensional regime. The granulites (clinopyroxene–orthopyroxene–plagioclase) show all stages of fabric development from magmatic to granoblastic fabrics. Pyroxene compositions were reset at temperatures around 800° C independent of the stage of textural equilibration. The granulites were partially amphibolitized at upper amphibolite facies temperatures of 600–700° C. Following cooling, a possible reheating to greenschist facies temperatures around 500° C is indicated by prograde zoning in magnetite–ilmenite pairs. Mineral assemblages are not suitable for barometry, but a conservative estimation of the garnet-in reaction at given whole-rock compositions suggests maximum pressures in the granulite facies of around 5 kbar, and similar pressures are indicated by phengite barometry for the greenschist facies. The P–T  path of granulite–amphibolite metamorphism is one of slow cooling from magmatic temperatures with heterogeneous deformation. The thinning of the pre-Andean (Precambrian–Triassic) crust was apparently compensated by the magmatic underplating and this special tectonomagmatic setting caused the prolonged residence of the accreted rocks at midcrustal levels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    International journal of consumer studies 29 (2005), S. 0 
    ISSN: 1470-6431
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Economics
    Notes: The purpose of the study was to investigate consumers’ perception of food packaging and its impact on food choices. The study population comprised 82 people who were ultimately consumers of packaged food products. The sample was drawn from six major supermarkets located in different geographical areas in Trinidad, West Indies. Data collection was carried out by using a questionnaire based on five topics: visual impact or attractiveness of the packaging; type of packaging material; labelling and nutritional information; new products; and fruit preserves. The packaging feature that influenced most of the respondents’ choice of products was information on the label (41.5%); it was followed by quality and type of packaging (24.4%), brand name/popularity (22.0%) and visual impact (12.2%). When asked if they would purchase a product that was most attractively packaged, 85.4% responded in the affirmative. Most respondents (92.7%) believed that packaging material could adversely affect the quality of performance of a food product. Also, 92.7% of respondents agreed that nutrition information should be shown on all food products, although 36.6% admitted that they do not read the label because of its complexity. Influence of gender was not significant (P 〈 0.05) on consumer perception of food packaging and on food choices. Although the sample was small, the data highlighted the need to educate consumers of packaged foods, so that informed decisions could be taken in respect to food quality, safety and nutrition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...