ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
Years
  • 1
    Publication Date: 2024-04-20
    Description: Stable isotopes (δ18O, δD) of wedge ice hold potential to reconstruct past winter climate conditions. Here, we present records of the marine isotope stages (MIS) 3 and 2 including the last Glacial maximum (LGM) from Bol’shoy Lyakhovsky Island (NE Siberia). MIS 3 wedge ice dated from 52 to 40 Kyr b2k varies between −32 and −29‰ in δ18O. Colder LGM conditions are implied by δ18O of −37‰ around 25 Kyr b2k. Similar Deuterium excess values indicate comparable moisture sources during MIS 3 and MIS 2. Regional LGM climate reconstructions depend on the seasonal resolution of the proxies and model simulations. Our wedge-ice record reflects coldest winters during global minima in atmospheric CO2 and sea level. The extreme LGM winter cooling is not represented in model projections of global LGM climate where West Beringia shows noticeably little cooling or even warming in mean annual temperatures compared to the late Holocene.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Russian Academy of Science
    In:  EPIC3Geofizicheskie Protsessy i Biosfera (Geophysical Processes and Biosphere), Russian Academy of Science, 20(2), pp. 75-98, ISSN: 1811-0045
    Publication Date: 2024-04-20
    Description: The bacterial composition of permafrost samples taken during drilling of frozen marine sediments in the area of the Barentsburg coal mine on the east coast of Grønfjord Bay of Western Spitsbergen has been studied. The study was based on the analysis of the V4 region of the 16S rRNA gene, carried out using next generation sequencing, as well as using classical microbiological methods (direct luminescence microscopy and aerobic cultivation).The total cell number in permafrost samples ranges from 6.73±0.73·106 to 3.37±0.19·107 cells per g. The number of cultivable aerobic bacteria in frozen samples on 1/5 TSA and R2A media ranges from 0 to 6.20±0.45·104 CFU/g. Isolates of aerobic bacteria were identifi ed by 16S rRNA gene analysis as representatives of the genera Arthrobacter, Pseudarthrobacter, Psychrobacter, and Rhodoferax. The dominant phyla of the Bacteria domain were Actinobacteria, Proteobacteria, Chlorofl exi, Nitrospirae and Firmicutes As a result of phylogenetic analysis of the dominant operational taxonomic units, representatives of methaneoxidizing, sulfate-reducing bacteria, as well as heterotrophic bacteria involved in the transformation of organic matter were found.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-20
    Description: Nitrogen regulates multiple aspects of the permafrost climate feedback, including plant growth, organic matter decomposition, and the production of the potent greenhouse gas nitrous oxide. Despite its importance, current estimates of permafrost nitrogen are highly uncertain. Here, we compiled a dataset of 〉2000 samples to quantify nitrogen stocks in the Yedoma domain, a region with organic-rich permafrost that contains ~25% of all permafrost carbon. We estimate that the Yedoma domain contains 41.2 gigatons of nitrogen down to ~20 metre for the deepest unit, which increases the previous estimate for the entire permafrost zone by ~46%. Approximately 90% of this nitrogen (37 gigatons) is stored in permafrost and therefore currently immobile and frozen. Here, we show that of this amount, ¾ is stored 〉3 metre depth, but if partially mobilised by thaw, this large nitrogen pool could have continental-scale consequences for soil and aquatic biogeochemistry and global-scale consequences for the permafrost feedback.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-20
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2024-04-20
    Description: Ongoing climate warming in the western Canadian Arctic is leading to thawing of permafrost soils and subsequent mobilization of its organic matter pool. Part of this mobilized terrestrial organic matter enters the aquatic system as dissolved organic matter (DOM) and is laterally transported from land to sea. Mobilized organic matter is an important source of nutrients for ecosystems, as it is available for microbial breakdown, and thus a source of greenhouse gases. We are beginning to understand spatial controls on the release of DOM as well as the quantities and fate of this material in large Arctic rivers. Yet, these processes remain systematically understudied in small, high-Arctic watersheds, despite the fact that these watersheds experience the strongest warming rates in comparison. Here, we sampled soil (active layer and permafrost) and water (porewater and stream water) from a small ice wedge polygon (IWP) catchment along the Yukon coast, Canada, during the summer of 2018. We assessed the organic carbon (OC) quantity (using dissolved (DOC) and particulate OC (POC) concentrations and soil OC content), quality (δ13C DOC, optical properties and source apportionment) and bioavailability (incubations; optical indices such as slope ratio, Sr; and humification index, HIX) along with stream water properties (temperature, T; pH; electrical conductivity, EC; and water isotopes). We classify and compare different landscape units and their soil horizons that differ in microtopography and hydrological connectivity, giving rise to differences in drainage capacity. Our results show that porewater DOC concentrations and yield reflect drainage patterns and waterlogged conditions in the watershed. DOC yield (in mg DOC g−1 soil OC) generally increases with depth but shows a large variability near the transition zone (around the permafrost table). Active-layer porewater DOC generally is more labile than permafrost DOC, due to various reasons (heterogeneity, presence of a paleo-active-layer and sampling strategies). Despite these differences, the very long transport times of porewater DOC indicate that substantial processing occurs in soils prior to release into streams. Within the stream, DOC strongly dominates over POC, illustrated by ratios around 50, yet storm events decrease that ratio to around 5. Source apportionment of stream DOC suggests a contribution of around 50 % from permafrost/deep-active-layer OC, which contrasts with patterns observed in large Arctic rivers (12 ± 8 %; Wild et al., 2019). Our 10 d monitoring period demonstrated temporal DOC patterns on multiple scales (i.e., diurnal patterns, storm events and longer-term trends), underlining the need for high-resolution long-term monitoring. First estimates of Black Creek annual DOC (8.2 ± 6.4 t DOC yr−1) and POC (0.21 ± 0.20 t yr−1) export allowed us to make a rough upscaling towards the entire Yukon Coastal Plain (34.51 ± 2.7 kt DOC yr−1 and 8.93 ± 8.5 kt POC yr−1). Rising Arctic temperatures, increases in runoff, soil organic matter (OM) leaching, permafrost thawing and primary production are likely to increase the net lateral OC flux. Consequently, altered lateral fluxes may have strong impacts on Arctic aquatic ecosystems and Arctic carbon cycling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  EPIC3Earth System Science Data, 14(1), pp. 57-63
    Publication Date: 2024-04-20
    Description: The paper presents a new local meteoric water line (LMWL) of stable oxygen and hydrogen isotopes in precipitation from Inuvik in the western Canadian Arctic. Data were obtained over 37 months between August 2015 and August 2018 resulting in 134 measurements of the isotopic composition of both types of precipitation, snow and rain. For 33 months of the sampling period each month is represented at least two times from different years. The new LMWL from Inuvik is characterized by a slope of 7.39 and an intercept of −6.70 and fills a data gap in the western Arctic, where isotopic composition data of precipitation are scarce and stem predominantly from before the year 1990. Regional studies of meteorology, hydrology, environmental geochemistry and paleoclimate will likely benefit from the new Inuvik LMWL. Data are available on the PANGAEA repository under https://doi.org/10.1594/PANGAEA.935027 (Fritz et al., 2021).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-20
    Description: The Arctic is greatly affected by climate change. Increasing air temperatures drive permafrost thaw and an increase in coastal erosion and river discharge. This results in a greater input of sediment and organic matter into nearshore waters, impacting ecosystems by reducing light transmission through the water column and altering biogeochemistry. This potentially results in impacts on the subsistence economy of local people as well as the climate due to the transformation of suspended organic matter into greenhouse gases. Even though the impacts of increased suspended sediment concentrations and turbidity in the Arctic nearshore zone are well-studied, the mechanisms underpinning this increase are largely unknown. Wave energy and tides drive the level of turbidity in the temperate and tropical parts of the world, and this is generally assumed to also be the case in the Arctic. However, the tidal range is considerably lower in the Arctic, and processes related to the occurrence of permafrost have the potential to greatly contribute to nearshore turbidity. In this study, we use high-resolution satellite imagery alongside in situ and ERA5 reanalysis data of ocean and climate variables in order to identify the drivers of nearshore turbidity, along with its seasonality in the nearshore waters of Herschel Island Qikiqtaruk, in the western Canadian Arctic. Nearshore turbidity correlates well to wind direction, wind speed, significant wave height, and wave period. Nearshore turbidity is superiorly correlated to wind speed at the Beaufort Shelf compared to in situ measurements at Herschel Island Qikiqtaruk, showing that nearshore turbidity, albeit being of limited spatial extent, is influenced by large-scale weather and ocean phenomenons. We show that, in contrast to the temperate and tropical ocean, freshly eroded material is the predominant driver of nearshore turbidity in the Arctic, rather than resuspension, which is caused by the vulnerability of permafrost coasts to thermo-erosion.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Frontiers Media S.A.
    In:  EPIC3Frontiers in Earth Science, Frontiers Media S.A., 10(757629), pp. 1-21, ISSN: 2296-6463
    Publication Date: 2024-04-20
    Description: The Yedoma Ice Complex in northern Yakutia provides perfect preservation conditions for frozen remains of vertebrate animals. Even complete mummified specimens of the late Pleistocene Beringian Mammoth fauna such as woolly mammoth, woolly rhinoceros, horse, and bison are occasionally found in permafrost deposits across eastern Siberia, i.e., in West Beringia, although bones are much more commonly found. The present study characterizes mammal bones from late Pleistocene and Holocene permafrost deposits exposed on the Oyogos Yar coast, part of the southern shore of the Dmitry Laptev Strait that connects the Laptev and East Siberian seas. The study applies a method to characterize fossil bone samples by the location of their discovery and by the accuracy of their relation to a depositional horizon. We analyzed a total of 38 finite radiocarbon ages of bone material from mammoth, horse, and musk ox, spanning from about 48.8 to 4.5 ka BP and including both our own data and data from the literature, in addition to previous publications that reported numerous bones with infinite ages from the Oyogos Yar coast. The distribution of bones and tooth along the coastal permafrost exposure is not uniform; it depends upon whether the material was found in situ, on thermo-terraces, or on the shore. The overall bone collection consists of 13 species of which Mammuthus primigenius (woolly mammoth, 41%), Bison priscus (bison, 19%), Equus ex gr., caballus (horse, 19%), and Rangifer tarandus (reindeer, 16%) predominate. The fossil bone species distribution is similar to those of other prominent Yedoma outcrops in the region, i.e., on Bykovsky Peninsula and on Bol’shoy Lyakhovsky Island. Correlation analysis shows that the Oyogos Yar bone sampling sites of different geomorphological settings are similar to each other but not to all sampling sites within the other two locations on Bykovsky Peninsula and on Bol’shoy Lykahovsky Island. High similarities in terms of correlation coefficients between specific sampling sites are often not represented in the cluster analysis.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Russian Academy of Science
    In:  EPIC3Geofizicheskie Protsessy i Biosfera (Geophysical Processes and Biosphere), Russian Academy of Science, 20(3), pp. 20-38, ISSN: 1811-0045, 2311-9578
    Publication Date: 2024-04-20
    Description: The archaeal composition of permafrost samples taken during drilling of frozen marine sediments in the area of the Barentsburg coal mine on the east coast of Grønfjord Bay of Western Spitsbergen has been studied. The study was based on the analysis of the V4 region of the 16S rRNA gene, carried out using next generation sequencing. This is the second part of the work dedicated to the prokaryotic composition of the Western Spitsbergen, the fi rst part was devoted to the domain of Bacteria. The general phyla of the the Archaea domain were Euryarchaeota, Bathyarchaeota, Thaumarchaeota and Asgardarchaeota. As a result of phylogenetic analysis of the dominant operational taxonomic units, representatives of methanogenic methane- and ammonium-oxidizing archaea, as well as heterotrophic archaea were found. Methanobacteria class of methanogenic archaea was found in the controversial genesis, while methane-oxidizing archaea of the Methanomicrobia class of Methanosarcinales order were found in the marine permafrost of Cape Finneset: ANME-2a, -2b group was found in layers 8.6 and 11.7 m, and a group ANME-2d (Candidatus Methanoperedens) – in a layer of 6.5 m. Ammonium-oxidizing archaea of the phylum Thaumarchaeota was present in all types of permafrost, while Nitrososphaerales was detected in controversial genesis permafrost, and the order-Nitrosopumilales in the marine permafrost or controversial genesis ones. Representatives of phylum Bathyarchaeota were found in the stratigraphicly most ancient samples under this study. Superphylum Asgardarchaeota was met exclusively in the layers of permafrost with marine genesis and was represented by phyla Lokiarchaeota, Thorarchaeota and another group belonging to this superphylum that was not identified by us. The presence in the marine permafrost terrace of Cape Finneset at 11.7 m depth of methane, ethylene and ethane, as well as the composition of the archaeal community gives this layer to assume in it the presence of microbiological processes of the anaerobic oxidation of methane, probably received from Tertiary deposits before freezing. The results obtained are represented the permafrost of Spitsbergen as a rich archive of genetic information of little studied prokaryotic groups.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...