ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
Years
  • 1
    facet.materialart.
    Unknown
    In:  Characterization, Prediction and Modelling of Crustal Present-Day In-Situ Stresses | Geological Society special publication
    Publication Date: 2024-04-24
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Geological Society of London
    In:  Geological Society Special Publication
    Publication Date: 2024-04-24
    Language: English
    Type: info:eu-repo/semantics/book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-24
    Description: Multi-archive studies of climate events and archive-specific response times require synchronous time scales. Aligning common variations in the cosmogenic radionuclide production rate via curve fitting methods provides a tool for the continuous synchronization of natural environmental archives down to decadal precision. Based on this approach, we synchronize 10Be records from Western Gotland Basin (WGB, Baltic Sea) and Lake Kälksjön (KKJ, central Sweden) sediments to the 14C production time series from the IntCal20 calibration curve during the Mid-Holocene period ~6400 to 5200 a BP. Before the synchronization, we assess and reduce non-production variability in the 10Be records by using 10Be/9Be ratios and removing common variability with the TOC record from KKJ sediments based on regression analysis. The synchronizations to the IntCal20 14C production time scale suggest decadal to multi-decadal refinements of the WGB and KKJ chronologies. These refinements reduce the previously centennial chronological uncertainties of both archives to about ± 20 (WGB) and ±40 (KKJ) years. Combining proxy time series from the synchronized archives enables us to interpret a period of ventilation in the deep central Baltic Sea basins from ~6250 to 6000 a BP as possibly caused by inter-annual cooling reducing vertical water temperature gradients allowing deep water formation during exceptionally cold winters.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Characterization, Prediction and Modelling of Crustal Present-Day In-Situ Stresses | Geological Society special publication
    Publication Date: 2024-04-24
    Description: Geomechanics has a marked impact on the safe and sustainable use of the subsurface. This Special Publication contains contributions detailing the latest efforts in present-day in-situ stress characterization, prediction and modelling from the borehole to plate-tectonic scale. A particular emphasis is on the uncertainties that are often associated with geomechanics.
    Language: English
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-24
    Description: Supraglacial discharge of limiting micronutrients such as iron (Fe) into high-nutrient low-chlorophyll (HNLC) regions like the Southern Ocean has recently drawn global attention. In this study, we aim to understand the contribution of cryoconite holes (comprising a meltwater column with an underlying layer of sediment) to the discharge of Fe through the glacier runoff. Cryoconite hole meltwater collected from the Larsemann Hills, East Antarctica showed a higher concentration of dissolved Fe (dFe: 71.2 μgL−1) and total Fe extractable from suspended sediments (exFe: 362.1 μgL−1) than in the adjacent streams (dFe: 30.5 μgL−1; exFe: 21.2 μgL−1) and melt pools (dFe: 42.3 μgL−1; exFe: 5.8 μgL−1). Predictive pathways (using PICRUSt2) show that cryoconite hole bacterial communities could acquire Fe and other trace elements using different mechanisms, such as the biosynthesis of siderophores, and transport proteins, therefore influencing the trace metal chemistry in these and other environments that drain cryoconite hole contents. Estimated discharge of dFe (11.4 kg km−2 a−1) and exFe (57.9 kg km−2 a−1) within cryoconite holes are 2 and 17 times higher, respectively than the discharge from the adjacent supraglacial streams, indicating that cryoconite holes are an important source of potentially bioavailable Fe to the HNLC region.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-24
    Description: Die DIN 19700:2004-07 "Stauanlagen fordert für Hochwasserrückhaltebecken und Talsperren die Prüfung der Einwirkung von Erdbeben. Ausgehend von der Erdbebengefahr am Standort müssen Nachweise hinsichtlich der Zuverlässigkeit der Stauanlage im Erdbebenfall geführt werden. Für die Betreiber und die Wasserbehörden gibt das vorliegende Kompendium einen zusammenfassenden Überblick über die Grundlagen der Erdbebennachweisführung entsprechend den DIN-Vorgaben. Die Anforderungen an die Nachweisführung sowie eine Leistungsbeschreibung für die zu beauftragenden Fachbüros werden gegeben. Ferner werden Hinweise zum Betrieb der Stauanlage erläutert. Es wird dargestellt, wie die Stauanlagen in Hinsicht auf eine Erdbebeneinwirkung zu überwachen sind.
    Language: German
    Type: info:eu-repo/semantics/book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-24
    Description: Desert environments constitute one of the largest and yet most fragile ecosystems on Earth. Under the absence of regular precipitation, microorganisms are the main ecological component mediating nutrient fluxes by using soil components, like minerals and salts, and atmospheric gases as a source for energy and water. While most of the previous studies on microbial ecology of desert environments have focused on surface environments, little is known about microbial life in deeper sediment layers. Our study is extending the limited knowledge about microbial communities within the deeper subsurface of the hyperarid core of the Atacama Desert. By employing intracellular DNA extraction and subsequent 16S rRNA sequencing of samples collected from a soil pit in the Yungay region of the Atacama Desert, we unveiled a potentially viable microbial subsurface community residing at depths down to 4.20 m. In the upper 80 cm of the playa sediments, microbial communities were dominated by Firmicutes taxa showing a depth-related decrease in biomass correlating with increasing amounts of soluble salts. High salt concentrations are possibly causing microbial colonization to cease in the lower part of the playa sediments between 80 and 200 cm depth. In the underlying alluvial fan deposits, microbial communities reemerge, possibly due to gypsum providing an alternative water source. The discovery of this deeper subsurface community is reshaping our understanding of desert soils, emphasizing the need to consider subsurface environments in future explorations of arid ecosystems.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Geophysical Journal International
    Publication Date: 2024-04-24
    Description: The current crustal stress field is of key importance to understand geodynamic processes and to assess stability aspects during subsurface usage. To provide a 3-D continuous description of the stress state, linear elastic forward geomechanical-numerical models are used. These models solve the equilibrium of forces between gravitational volume forces and surfaces forces im- posed mainly by plate tectonics. The latter are responsible for the horizontal stress anisotropy and impose the inverse problem to estimate horizontal displacement boundary conditions that provide a fit best to horizontal stress magnitude data within the model volume. Ho wever , horizontal stress magnitude data have high uncertainties and they are sparse, clustered and not necessaril y representati ve for a larger rock v olume. Even w hen Bay esian statistics are incor - porated and additional stress information such as borehole failure observations or formation integrity test are used to further constrain the solution space, this approach may result in a low accuracy of the model results, that is the result is not correct. Here, we present an alternative approach that removes the dependence of the solution space based on stress magnitude data to avoid potential low accuracy . Initially , a solution space that contains all stress states that are physically reasonable is defined. Stress magnitude data and the additional stress information are then used in a Bayesian framework to e v aluate which solutions are more likely than others. We first show and validate our approach with a generic truth model and then apply it to a case study of the Molasse foreland basin of the Alps in Southern Germany. The results show that the model’s ability to predict a reliable stress state is increasing while the number of likely solutions may also increase, and that outlier of stress magnitude data can be identified. This alternative approach results in a substantial increase in computational speed as we perform most of the calculations anal yticall y.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-24
    Keywords: 6,9,12,15-Hexadecatetraenoic acid of total fatty acids; 6,9,12-Hexadecatrienoic acid of total fatty acids; 9-Tetradecenoic acid of total fatty acids; all-cis-3,6,9,12,15-Octadecapentaenoic acid of total fatty acids; all-cis-4,7,10,13,16,19-Docosahexaenoic acid of total fatty acids; all-cis-5,8,11,14,17-Eicosapentaenoic acid of total fatty acids; all-cis-5,8,11,14-Eicosatetraenoic acid of total fatty acids; all-cis-6,9,12,15-Octadecatetraenoic acid of total fatty acids; all-cis-7,10,13,16,19-Docosapentaenoic acid of total fatty acids; all-cis-8,11,14,17-Eicosatetraenoic acid of total fatty acids; all-cis-9,12,15-Octadecatrienoic acid of total fatty acids; all-cis-9,12-Octadecadienoic acid of total fatty acids; cis-11-Docosenoic acid of total fatty acids; cis-11-Hexadecenoic acid of total fatty acids (IUPAC: (11Z)-hexadec-11-enoic acid); cis-11-Icosenoic acid of total fatty acids; cis-13-Docosenoic acid of total fatty acids; cis-13-Icosenoic acid of total fatty acids; cis-7-Hexadecenoic acid of total fatty acids; cis-9-Hexadecenoic acid of total fatty acids (IUPAC: (9Z)-hexadec-9-enoic acid); cis-9-Icosanoic acid of total fatty acids; cis-9-Octadecenoic acid of total fatty acids (IUPAC: Octadec-9-enoic acid); CTD, Seabird; CTD-R; DATE/TIME; Docosanoic acid of total fatty acids; Event label; Fatty acids; Fatty acids, standard deviation; Fatty alcohols; Fatty alcohols, standard deviation; Gas chromatography, Agilent 6890 N GC System, Agilent Technologies; Hexadecanoic acid of total fatty acids; Hexadecanol of total fatty alcohols; High Performance Liquid Chromatography (HPLC); Latitude of event; Longitude of event; Octadecanoic acid of total fatty acids; Percentage; Ratio; ReykjanesR_St10; ReykjanesR_St12; ReykjanesR_St18; ReykjanesR_St20; ReykjanesR_St4; ReykjanesR_St8; Sample amount; Sample type; South Atlantic Ocean; Species; Standard deviation; Tetradecanoic acid of total fatty acids; Tetradecanol of total alcohols
    Type: Dataset
    Format: text/tab-separated-values, 468 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-24
    Keywords: Alviniconcha marisindica; Austinograea rodriguezensis; Bathymodiolus septemdierum; Chiridota; File name; INDEX2016; INDEX2016_16ROV; Maractis; Munidopsis pallida; Neolepas marisindica; Phymorhynchus; Pourquoi Pas ? (2005); Rimicaris kairei; South East Indian Ridge; Total counts; Uniform resource locator/link to image; VICTOR; Victor6000 ROV; Zoarcidae
    Type: Dataset
    Format: text/tab-separated-values, 1703 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-04-24
    Keywords: Age; AGE; Atlantic meridional overturning circulation; ATLAS; A Trans-Atlantic assessment and deep-water ecosystem-based spatial management plan for Europe; deep water formation; Depth, composite; DEPTH, sediment/rock; Intercore correlation; Knorr; KNR178; KNR178-56JPC; PC; Piston corer; smoothed; sortable silt; Sortable-silt mean; subsurface ocean temperatures
    Type: Dataset
    Format: text/tab-separated-values, 369 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-04-24
    Keywords: Atlantic meridional overturning circulation; ATLAS; A Trans-Atlantic assessment and deep-water ecosystem-based spatial management plan for Europe; deep water formation; Depth, bottom/max; Depth, corrected; DEPTH, sediment/rock; Depth, top/min; Knorr; KNR178; KNR178-56JPC; PC; Piston corer; sortable silt; Spheroidal carbonaceous particle, per unit sediment dry mass; subsurface ocean temperatures
    Type: Dataset
    Format: text/tab-separated-values, 72 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-04-24
    Keywords: Age, comment; Age, dated; Age, dated standard error; Atlantic meridional overturning circulation; ATLAS; A Trans-Atlantic assessment and deep-water ecosystem-based spatial management plan for Europe; Calendar age; deep water formation; DEPTH, sediment/rock; Fraction modern carbon; Fraction modern carbon, error; Knorr; KNR178; KNR178-48JPC; PC; Piston corer; Sample code/label; Sample ID; sortable silt; subsurface ocean temperatures; Taxon/taxa
    Type: Dataset
    Format: text/tab-separated-values, 44 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-04-24
    Keywords: Aluminium, area, total counts; Aluminium, calibrated elemental proportions; Aluminium, chi-square; Aluminium, standard deviation; AWI_Envi; AWI Arctic Land Expedition; Bismuth, area, total counts; Bismuth, chi-square; Bismuth, proportion; Bismuth, standard deviation; Bromine, area, total counts; Bromine, chi-square; Bromine, proportion; Bromine, standard deviation; Calcium, area, total counts; Calcium, chi-square; Calcium, proportion; Calcium, standard deviation; Calcium/Titanium ratio; Carbon; Carbon, inorganic, total; Carbon, organic, total; Carbon, organic, total/Nitrogen, total ratio; Carbon and Nitrogen and sulfur (CNS) isotope element analyzer, Elementar, Elementar Vario MAX Cube; Chloride, area, total counts; Chlorine, chi-square; Chlorine, proportion; Chlorine, standard deviation; Chromium, area, total counts; Chromium, chi-square; Chromium, proportion; Chromium, standard deviation; COMPCORE; Composite Core; Copper, area, total counts; Copper, chi-square; Copper, proportion; Copper, standard deviation; Density; Density, dry bulk; DEPTH, sediment/rock; Elemental analyzer, Vario SoilTOC cube; File name; Gallium, area, total counts; Gallium, chi-square; Gallium, proportion; Gallium, standard deviation; Holocene; Iron, area, total counts; Iron, chi-square; Iron, proportion; Iron, standard deviation; Iron/Calcium ratio; Iron/Manganese ratio; Iron/Titanium ratio; Lake Malaya Chabyda, Yakutia, Russia; Lake sediment core; Late Pleistocene; Lead, area, total counts; Lead, chi-square; Lead, proportion; Lead, standard deviation; Manganese, area, total counts; Manganese, chi-square; Manganese, proportion; Manganese, standard deviation; Manganese/Iron ratio; Manganese/Titanium ratio; Mass; Mass spectrometer ThermoFisher Delta V Advantage; Molybdenum, area, total counts; Molybdenum, chi-square; Molybdenum, proportion; Molybdenum, standard deviation; Niobium, area, total counts; Niobium, chi-square; Niobium, proportion; Niobium, standard deviation; Nitrogen, total; organic carbon; Paleolimnology; PG2201_site; Phosphorus, area, total counts; Phosphorus, chi-square; Phosphorus, proportion; Phosphorus, standard deviation; Polar Terrestrial Environmental Systems @ AWI; Porosity, fractional; Potassium, area, total counts; Potassium, chi-square; Potassium, proportion; Potassium, standard deviation; Rhenium, area, total counts; Rhenium, chi-square; Rhenium, proportion; Rhenium, standard deviation; Rubidium, area, total counts; Rubidium, chi-square; Rubidium, standard deviation; RU-Land_2013_Yakutia; Sample code/label; Sample mass; Sample volume; Siberian permafrost; Silicon, area, total counts; Silicon, chi-square; Silicon, proportion; Silicon, standard deviation; Silicon/Titanium ratio; stable carbon isotopes δ13C; Strontium, area, total counts; Strontium, chi-square; Strontium, proportion; Strontium, standard deviation; Sulfur, area, total counts; Sulfur, chi-square; Sulfur, proportion; Sulfur, standard deviation; Titanium, area, total counts; Titanium, chi-square; Titanium, proportion; Titanium, standard deviation; Water content, wet mass; X-ray fluorescence (XRF); X-ray fluorescence core scanner (XRF), Avaatech; Yakutia2013; Yttrium, area, total counts; Yttrium, chi-square; Yttrium, proportion; Yttrium, standard deviation; Zinc, area, total counts; Zinc, chi-square; Zinc, proportion; Zinc, standard deviation; Zirconium, area, total counts; Zirconium, chi-square; Zirconium, standard deviation; Zirconium/Rubidium ratio; δ13C, organic carbon
    Type: Dataset
    Format: text/tab-separated-values, 68144 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-04-24
    Description: A number of studies expect an increase of carbon export by rivers to the Arctic Ocean due to rapidly changing climate in the Arctic One possible reason for the increase of carbon export is thawing permafrost, which can lead to a mobilization of previously frozen dissolved organic matter (DOM). Scarce measurements of DOC and the coloured fraction of DOM (CDOM) (〈 8 samples/year) were previously used to estimate fluxes to the Arctic Ocean for the whole year. Here, we present a new high frequency sampling program and its viability to monitor export fluxes of DOM and its biogeochemistry in the Lena River. This dataset includes measurements of several water parameters, such as temperature, electric conductivity, dissolved organic carbon (DOC), spectral CDOM absorption (aCDOM), stable water isotopes and major ions. The high sampling frequency throughout the whole year facilitats the identification of the main drivers behind the seasonality of DOM concentration and biogeochemistry of the Lena River. The high number of samples throughout the whole year allows flux calculations that are independently from load models that likely lead to a large variation of earlier studies. Optical indices reveal changing composition and sources of DOM throughout the year. This dataset represents the first year (April 2018 to April 2019) of a planned long-term monitoring program at the Research Station Samoylov Island and provides a baseline data set against which future change of this large integrative system may be measured. A continuous sampling of Arctic River water will facilitate to identify intra and inter-annual trends with ongoing climate change.
    Keywords: Absorption coefficient, colored dissolved organic matter at given wavelength; Aluminium; AWI Arctic Land Expedition; Barium 2+; biogeochemistry; Bromide; Calcium; Calculated; Carbon, organic, dissolved; CDOM; Chloride; Conductivity, electrical; DATE/TIME; DEPTH, water; Deuterium excess; DOC; DOM; Fluoride; Handheld meter, WTW, 340i, Conductivity; Identification; Inductively coupled plasma optical emission spectrometry (ICP-OES), Perkin-Elmer, Optima 8300DV; Ion chromatography (Thermo-Fischer ICS 2100); Iron; Latitude of event; Lena 2018; Lena 2019; Longitude of event; Magnesium; major ions; Manganese; Mass spectrometer Finnigan Delta-S/equilibration device; Nitrate; Olenekskaya_Ch; Phosphate; Phosphorus; Potassium; RIVER; RU-Land_2018_Lena; RU-Land_2018_Lena_Olenekskaya; RU-Land_2019_Lena; RU-Land_2019_Lena_Olenekskaya; Sampling river; Shimadzu TOC-VCPH total organic carbon analyzer; Silicon; Sodium; Specific ultraviolet absorbance normalized to DOC; Spectrophotometer UV/VIS (PerkinElmer Lambda 950); stable water isotopes; Strontium 2+; Sulfate; Temperature, water; δ18O, water; δ Deuterium, water
    Type: Dataset
    Format: text/tab-separated-values, 42031 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: 20191130_01; Airborne laser scanning; Arctic; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_9-98; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 44 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: 20191119_01; Airborne laser scanning; Arctic; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_8-23; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 102 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: 20191228_01; Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_17-101; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 282 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: 20191224_01; Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_17-98; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 390 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: Airborne laser scanning; Arctic; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122_1_2_45_2019092801; PS122/1; PS122/1_2-45; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 58 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: 20191002_01; Airborne laser scanning; Arctic; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_2-57; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 144 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: 20191029_01; Airborne laser scanning; Arctic; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_5-9; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 172 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: 20191105_01; Airborne laser scanning; Arctic; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_6-11; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 48 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: 20191112_01; Airborne laser scanning; Arctic; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_7-24; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 194 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: 20191112_02; Airborne laser scanning; Arctic; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_7-25; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 50 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: 20200108_01; Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_19-46; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 166 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: 20200108_04; Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_19-53; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 178 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2024-04-24
    Description: Radio-echo sounding (RES) data from Jutulstraumen Glacier in western Dronning Maud Land (East Antarctica) recorded with the Alfred Wegener Institutes multi-channel ultra-wideband (AWI UWB) radar system in the Austral summer season 2018/19. The survey region is centered on the initiation zone of accelerating ice flow (~ 5 to 50 meters per year) at the onset of the Jutulstraumen Ice Stream, located within the Jutulstraumen drainage basin in western Dronning Maud Land, East Antarctica. This region marks the a transition from the thick ice sheet of the central plateau to the dynamic convergent ice flow regime leading through the Jutulstraumen Graben, which ultimately feeds into the Fimbul Ice Shelf. The RES profiles are organized into two distinct sets, each aligned approximately perpendicular to ice flow and spaced at intervals of 7.5 km. The data was mainly recorded in a frequency range between 180-210 MHz and is SAR processed. For further details see Franke et al., 2021 (https://doi.org/10.1002/esp.5203).
    Keywords: AC; Aircraft; AWI UWB; Date/Time of event; Dronning Maud Land; East Antarctica; Event label; GIS file; JuRaS, CHIRP; Jutulstraumen; netCDF file; P6_215_UWB_2018; P6_215_UWB_2018_1812220301; P6_215_UWB_2018_1812260501; P6_215_UWB_2018_1812260602; P6_215_UWB_2018_1812270701; P6_215_UWB_2018_1812270802; P6_215_UWB_2018_1812300901; POLAR 6; Profile; radar; radio-echo sounding; Stratigraphy; Ultra-wideband radar (UWB), MCoRDS 5
    Type: Dataset
    Format: text/tab-separated-values, 348 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/5; PS122/5_63-3; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 448 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: 20191225_01; Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_17-99; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 374 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: 20200121_01; Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_21-41; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 456 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: 20200123_02; Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_21-78; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 214 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: 20200209_01; Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_23-109; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 352 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: 20200204_01; Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_23-14; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 466 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: 20200217_01; Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_25-7; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 352 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: 20200217_02; Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_25-8; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 442 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: 20200321_01; Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/3; PS122/3_32-70; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 466 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: 20200321_02; Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/3; PS122/3_32-71; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 340 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: 20200423_01; Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/3; PS122/3_37-63; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 434 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122_4_44_65_2020061502; PS122/4; PS122/4_44-65; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 290 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/5; PS122/5_63-118; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 258 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.
    Keywords: Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/5; PS122/5_62-67; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 380 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2024-04-24
    Description: This data set provides high-resolution geolocated point clouds of sea-ice or snow surface elevation for mapping temporal and spatial evolution of sea-ice conditions such as freeboard, roughness, or the size and spatial distributions of surface features. The surface elevation data are referenced to the DTU21 mean sea surface height and are not corrected for sea-ice drift during acquisition. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The point cloud data are stored in 5-min along-track segments in a custom binary format, for which we provide a python-based parsing tool in awi-als-toolbox (https://github.com/awi-als-toolbox/awi-als-toolbox), together with corresponding metadata json and line-shot quicklook png files. The point cloud data includes as variables: surface elevation (referenced to DTU mean sea surface height), surface reflectance, and echo width. The degraded GPS altitude data 〉85°N may cause undulations in the along-track surface elevations, which are not corrected for in this data product.
    Keywords: 20191105_01; Airborne laser scanning; Arctic; Binary Object; DATE/TIME; Flight number; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_6-11; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 18 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2024-04-24
    Description: This data set provides high-resolution geolocated point clouds of sea-ice or snow surface elevation for mapping temporal and spatial evolution of sea-ice conditions such as freeboard, roughness, or the size and spatial distributions of surface features. The surface elevation data are referenced to the DTU21 mean sea surface height and are not corrected for sea-ice drift during acquisition. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The point cloud data are stored in 5-min along-track segments in a custom binary format, for which we provide a python-based parsing tool in awi-als-toolbox (https://github.com/awi-als-toolbox/awi-als-toolbox), together with corresponding metadata json and line-shot quicklook png files. The point cloud data includes as variables: surface elevation (referenced to DTU mean sea surface height), surface reflectance, and echo width. The degraded GPS altitude data 〉85°N may cause undulations in the along-track surface elevations, which are not corrected for in this data product.
    Keywords: 20191112_02; Airborne laser scanning; Arctic; Binary Object; DATE/TIME; Flight number; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_7-25; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2024-04-24
    Description: This data set provides high-resolution geolocated point clouds of sea-ice or snow surface elevation for mapping temporal and spatial evolution of sea-ice conditions such as freeboard, roughness, or the size and spatial distributions of surface features. The surface elevation data are referenced to the DTU21 mean sea surface height and are not corrected for sea-ice drift during acquisition. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The point cloud data are stored in 5-min along-track segments in a custom binary format, for which we provide a python-based parsing tool in awi-als-toolbox (https://github.com/awi-als-toolbox/awi-als-toolbox), together with corresponding metadata json and line-shot quicklook png files. The point cloud data includes as variables: surface elevation (referenced to DTU mean sea surface height), surface reflectance, and echo width. The degraded GPS altitude data 〉85°N may cause undulations in the along-track surface elevations, which are not corrected for in this data product.
    Keywords: 20191230_01; Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_18-7; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 38 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2024-04-24
    Description: This data set provides high-resolution geolocated point clouds of sea-ice or snow surface elevation for mapping temporal and spatial evolution of sea-ice conditions such as freeboard, roughness, or the size and spatial distributions of surface features. The surface elevation data are referenced to the DTU21 mean sea surface height and are not corrected for sea-ice drift during acquisition. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The point cloud data are stored in 5-min along-track segments in a custom binary format, for which we provide a python-based parsing tool in awi-als-toolbox (https://github.com/awi-als-toolbox/awi-als-toolbox), together with corresponding metadata json and line-shot quicklook png files. The point cloud data includes as variables: surface elevation (referenced to DTU mean sea surface height), surface reflectance, and echo width. The degraded GPS altitude data 〉85°N may cause undulations in the along-track surface elevations, which are not corrected for in this data product.
    Keywords: 20200108_01; Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_19-46; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 18 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2024-04-24
    Description: This data set provides high-resolution geolocated point clouds of sea-ice or snow surface elevation for mapping temporal and spatial evolution of sea-ice conditions such as freeboard, roughness, or the size and spatial distributions of surface features. The surface elevation data are referenced to the DTU21 mean sea surface height and are not corrected for sea-ice drift during acquisition. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The point cloud data are stored in 5-min along-track segments in a custom binary format, for which we provide a python-based parsing tool in awi-als-toolbox (https://github.com/awi-als-toolbox/awi-als-toolbox), together with corresponding metadata json and line-shot quicklook png files. The point cloud data includes as variables: surface elevation (referenced to DTU mean sea surface height), surface reflectance, and echo width. The degraded GPS altitude data 〉85°N may cause undulations in the along-track surface elevations, which are not corrected for in this data product.
    Keywords: 20200116_02; Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_20-53; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 36 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2024-04-24
    Description: This data set provides high-resolution geolocated point clouds of sea-ice or snow surface elevation for mapping temporal and spatial evolution of sea-ice conditions such as freeboard, roughness, or the size and spatial distributions of surface features. The surface elevation data are referenced to the DTU21 mean sea surface height and are not corrected for sea-ice drift during acquisition. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The point cloud data are stored in 5-min along-track segments in a custom binary format, for which we provide a python-based parsing tool in awi-als-toolbox (https://github.com/awi-als-toolbox/awi-als-toolbox), together with corresponding metadata json and line-shot quicklook png files. The point cloud data includes as variables: surface elevation (referenced to DTU mean sea surface height), surface reflectance, and echo width. The degraded GPS altitude data 〉85°N may cause undulations in the along-track surface elevations, which are not corrected for in this data product.
    Keywords: 20200123_01; Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_21-77; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 50 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2024-04-24
    Description: This data set provides high-resolution geolocated point clouds of sea-ice or snow surface elevation for mapping temporal and spatial evolution of sea-ice conditions such as freeboard, roughness, or the size and spatial distributions of surface features. The surface elevation data are referenced to the DTU21 mean sea surface height and are not corrected for sea-ice drift during acquisition. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The point cloud data are stored in 5-min along-track segments in a custom binary format, for which we provide a python-based parsing tool in awi-als-toolbox (https://github.com/awi-als-toolbox/awi-als-toolbox), together with corresponding metadata json and line-shot quicklook png files. The point cloud data includes as variables: surface elevation (referenced to DTU mean sea surface height), surface reflectance, and echo width. The degraded GPS altitude data 〉85°N may cause undulations in the along-track surface elevations, which are not corrected for in this data product.
    Keywords: 20200212_01; Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_24-31; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 42 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2024-04-24
    Description: This data set provides high-resolution geolocated point clouds of sea-ice or snow surface elevation for mapping temporal and spatial evolution of sea-ice conditions such as freeboard, roughness, or the size and spatial distributions of surface features. The surface elevation data are referenced to the DTU21 mean sea surface height and are not corrected for sea-ice drift during acquisition. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The point cloud data are stored in 5-min along-track segments in a custom binary format, for which we provide a python-based parsing tool in awi-als-toolbox (https://github.com/awi-als-toolbox/awi-als-toolbox), together with corresponding metadata json and line-shot quicklook png files. The point cloud data includes as variables: surface elevation (referenced to DTU mean sea surface height), surface reflectance, and echo width. The degraded GPS altitude data 〉85°N may cause undulations in the along-track surface elevations, which are not corrected for in this data product.
    Keywords: 20200321_01; Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/3; PS122/3_32-70; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 48 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2024-04-24
    Description: This data set provides high-resolution geolocated point clouds of sea-ice or snow surface elevation for mapping temporal and spatial evolution of sea-ice conditions such as freeboard, roughness, or the size and spatial distributions of surface features. The surface elevation data are referenced to the DTU21 mean sea surface height and are not corrected for sea-ice drift during acquisition. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The point cloud data are stored in 5-min along-track segments in a custom binary format, for which we provide a python-based parsing tool in awi-als-toolbox (https://github.com/awi-als-toolbox/awi-als-toolbox), together with corresponding metadata json and line-shot quicklook png files. The point cloud data includes as variables: surface elevation (referenced to DTU mean sea surface height), surface reflectance, and echo width. The degraded GPS altitude data 〉85°N may cause undulations in the along-track surface elevations, which are not corrected for in this data product.
    Keywords: Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122_4_45_37_2020063002; PS122/4; PS122/4_45-37; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 36 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2024-04-24
    Description: This data set provides high-resolution geolocated point clouds of sea-ice or snow surface elevation for mapping temporal and spatial evolution of sea-ice conditions such as freeboard, roughness, or the size and spatial distributions of surface features. The surface elevation data are referenced to the DTU21 mean sea surface height and are not corrected for sea-ice drift during acquisition. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The point cloud data are stored in 5-min along-track segments in a custom binary format, for which we provide a python-based parsing tool in awi-als-toolbox (https://github.com/awi-als-toolbox/awi-als-toolbox), together with corresponding metadata json and line-shot quicklook png files. The point cloud data includes as variables: surface elevation (referenced to DTU mean sea surface height), surface reflectance, and echo width. The degraded GPS altitude data 〉85°N may cause undulations in the along-track surface elevations, which are not corrected for in this data product.
    Keywords: Airborne laser scanning; Arctic; Arctic Ocean; Binary Object; DATE/TIME; Flight number; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122_4_46_36_2020070701; PS122/4; PS122/4_46-36; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 28 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Gridded segments of sea-ice or snow surface elevation and freeboard from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Hutter et al., 2022; doi:10.1594/PANGAEA.950339), where the individual 30-second segments of the small scale grid flights have been combined into merged grids. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The merged data are stored in netCDF and geotiff format. The data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate. The merged grids include all data variables of the gridded 30-s segments: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. Also the calculated elevation offset correction term is provided for each flight as a csv file.
    Keywords: 20200123_02; Airborne laser scanning; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_21-78; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Gridded segments of sea-ice or snow surface elevation and freeboard from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Hutter et al., 2022; doi:10.1594/PANGAEA.950339), where the individual 30-second segments of the small scale grid flights have been combined into merged grids. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The merged data are stored in netCDF and geotiff format. The data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate. The merged grids include all data variables of the gridded 30-s segments: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. Also the calculated elevation offset correction term is provided for each flight as a csv file.
    Keywords: 20200217_02; Airborne laser scanning; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_25-8; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Gridded segments of sea-ice or snow surface elevation and freeboard from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Hutter et al., 2022; doi:10.1594/PANGAEA.950339), where the individual 30-second segments of the small scale grid flights have been combined into merged grids. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The merged data are stored in netCDF and geotiff format. The data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate. The merged grids include all data variables of the gridded 30-s segments: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. Also the calculated elevation offset correction term is provided for each flight as a csv file.
    Keywords: Airborne laser scanning; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/3; PS122/3_32-42; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Gridded segments of sea-ice or snow surface elevation and freeboard from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Hutter et al., 2022; doi:10.1594/PANGAEA.950339), where the individual 30-second segments of the small scale grid flights have been combined into merged grids. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The merged data are stored in netCDF and geotiff format. The data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate. The merged grids include all data variables of the gridded 30-s segments: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. Also the calculated elevation offset correction term is provided for each flight as a csv file.
    Keywords: Airborne laser scanning; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122_4_45_112_2020070401; PS122/4; PS122/4_45-112; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Gridded segments of sea-ice or snow surface elevation and freeboard from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Hutter et al., 2022; doi:10.1594/PANGAEA.950339), where the individual 30-second segments of the small scale grid flights have been combined into merged grids. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The merged data are stored in netCDF and geotiff format. The data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate. The merged grids include all data variables of the gridded 30-s segments: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. Also the calculated elevation offset correction term is provided for each flight as a csv file.
    Keywords: Airborne laser scanning; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122_4_44_78_2020061601; PS122/4; PS122/4_44-78; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Gridded segments of sea-ice or snow surface elevation and freeboard from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Hutter et al., 2022; doi:10.1594/PANGAEA.950339), where the individual 30-second segments of the small scale grid flights have been combined into merged grids. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The merged data are stored in netCDF and geotiff format. The data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate. The merged grids include all data variables of the gridded 30-s segments: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. Also the calculated elevation offset correction term is provided for each flight as a csv file.
    Keywords: Airborne laser scanning; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/5; PS122/5_61-62; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Gridded segments of sea-ice or snow surface elevation and freeboard from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Hutter et al., 2022; doi:10.1594/PANGAEA.950339), where the individual 30-second segments of the small scale grid flights have been combined into merged grids. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The merged data are stored in netCDF and geotiff format. The data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate. The merged grids include all data variables of the gridded 30-s segments: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. Also the calculated elevation offset correction term is provided for each flight as a csv file.
    Keywords: Airborne laser scanning; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/5; PS122/5_61-190; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2024-04-24
    Description: This data set is a higher-processing-level version of Gridded segments of sea-ice or snow surface elevation and freeboard from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Hutter et al., 2022; doi:10.1594/PANGAEA.950339), where the individual 30-second segments of the small scale grid flights have been combined into merged grids. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The merged data are stored in netCDF and geotiff format. The data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data 〉85°N. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate. The merged grids include all data variables of the gridded 30-s segments: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. Also the calculated elevation offset correction term is provided for each flight as a csv file.
    Keywords: Airborne laser scanning; Arctic Ocean; Binary Object; DATE/TIME; Flight number; Freeboard; HELI; Helicopter; IceSense; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAIC-HELI; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/5; PS122/5_62-67; Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties; Sea ice; Surface Elevation
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_10-113; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 35130 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_24-70; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 384 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_6-118; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 6918 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/3; PS122/3_29-14; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 32922 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_6-16; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 16284 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_7-18; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 9570 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_7-55; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 26550 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_9-22; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 11568 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_18-19; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 5010 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_18-89; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 33066 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_20-23; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 30360 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_22-107; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 30210 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_23-116; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 35922 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_23-29; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 9822 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_24-97; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 12228 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_25-44; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 726 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_22-45; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 27828 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/3; PS122/3_29-65; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 17220 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/3; PS122/3_30-69; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 8400 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/3; PS122/3_31-17; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 6306 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/3; PS122/3_31-75; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 59178 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2024-04-24
    Description: Fluorometric data on chlorophyll a concentration, Fluorescent Dissolved Organic Matter (FDOM) concentration, and optical backscatter were measured by a triplet fluorometer (ECO-Puck BBFL2SSC, Wetlabs) attached to a remotely operated vehicle (ROV) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Data use manufacturer calibration.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Chlorophyll a; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Fluorescence, dissolved organic matter; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Optical backscattering coefficient, 700 nm; Polarstern; PS122/3; PS122/3_32-33; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Scattering fluorescence sensor, WETLabs, ECO Puck Triplet, BBFL2-SLO; Sea ice; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 103796 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/3; PS122/3_32-34; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 906 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2024-04-24
    Description: Fluorometric data on chlorophyll a concentration, Fluorescent Dissolved Organic Matter (FDOM) concentration, and optical backscatter were measured by a triplet fluorometer (ECO-Puck BBFL2SSC, Wetlabs) attached to a remotely operated vehicle (ROV) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Data use manufacturer calibration.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Chlorophyll a; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Fluorescence, dissolved organic matter; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Optical backscattering coefficient, 700 nm; Polarstern; PS122/3; PS122/3_34-20; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Scattering fluorescence sensor, WETLabs, ECO Puck Triplet, BBFL2-SLO; Sea ice; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 174980 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2024-04-24
    Description: Fluorometric data on chlorophyll a concentration, Fluorescent Dissolved Organic Matter (FDOM) concentration, and optical backscatter were measured by a triplet fluorometer (ECO-Puck BBFL2SSC, Wetlabs) attached to a remotely operated vehicle (ROV) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Data use manufacturer calibration.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Chlorophyll a; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Fluorescence, dissolved organic matter; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Optical backscattering coefficient, 700 nm; Polarstern; PS122/3; PS122/3_36-112; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Scattering fluorescence sensor, WETLabs, ECO Puck Triplet, BBFL2-SLO; Sea ice; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 55294 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2024-04-24
    Description: Fluorometric data on chlorophyll a concentration, Fluorescent Dissolved Organic Matter (FDOM) concentration, and optical backscatter were measured by a triplet fluorometer (ECO-Puck BBFL2SSC, Wetlabs) attached to a remotely operated vehicle (ROV) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Data use manufacturer calibration.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Chlorophyll a; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Fluorescence, dissolved organic matter; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Optical backscattering coefficient, 700 nm; Polarstern; PS122/3; PS122/3_36-24; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Scattering fluorescence sensor, WETLabs, ECO Puck Triplet, BBFL2-SLO; Sea ice; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 211814 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2024-04-24
    Description: Fluorometric data on chlorophyll a concentration, Fluorescent Dissolved Organic Matter (FDOM) concentration, and optical backscatter were measured by a triplet fluorometer (ECO-Puck BBFL2SSC, Wetlabs) attached to a remotely operated vehicle (ROV) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Data use manufacturer calibration.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Chlorophyll a; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Fluorescence, dissolved organic matter; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Optical backscattering coefficient, 700 nm; Polarstern; PS122/3; PS122/3_38-91; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Scattering fluorescence sensor, WETLabs, ECO Puck Triplet, BBFL2-SLO; Sea ice; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 175500 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2024-04-24
    Description: Fluorometric data on chlorophyll a concentration, Fluorescent Dissolved Organic Matter (FDOM) concentration, and optical backscatter were measured by a triplet fluorometer (ECO-Puck BBFL2SSC, Wetlabs) attached to a remotely operated vehicle (ROV) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Data use manufacturer calibration.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Chlorophyll a; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Fluorescence, dissolved organic matter; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Optical backscattering coefficient, 700 nm; Polarstern; PS122/4; PS122/4_44-162; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Scattering fluorescence sensor, WETLabs, ECO Puck Triplet, BBFL2-SLO; Sea ice; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 85100 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2024-04-24
    Description: Fluorometric data on chlorophyll a concentration, Fluorescent Dissolved Organic Matter (FDOM) concentration, and optical backscatter were measured by a triplet fluorometer (ECO-Puck BBFL2SSC, Wetlabs) attached to a remotely operated vehicle (ROV) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Data use manufacturer calibration.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Chlorophyll a; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Fluorescence, dissolved organic matter; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Optical backscattering coefficient, 700 nm; Polarstern; PS122/4; PS122/4_46-177; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Scattering fluorescence sensor, WETLabs, ECO Puck Triplet, BBFL2-SLO; Sea ice; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 64430 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2024-04-24
    Description: Fluorometric data on chlorophyll a concentration, Fluorescent Dissolved Organic Matter (FDOM) concentration, and optical backscatter were measured by a triplet fluorometer (ECO-Puck BBFL2SSC, Wetlabs) attached to a remotely operated vehicle (ROV) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Data use manufacturer calibration.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Chlorophyll a; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Fluorescence, dissolved organic matter; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Optical backscattering coefficient, 700 nm; Polarstern; PS122/4; PS122/4_46-177; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Scattering fluorescence sensor, WETLabs, ECO Puck Triplet, BBFL2-SLO; Sea ice; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 39250 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2024-04-24
    Description: Fluorometric data on chlorophyll a concentration, Fluorescent Dissolved Organic Matter (FDOM) concentration, and optical backscatter were measured by a triplet fluorometer (ECO-Puck BBFL2SSC, Wetlabs) attached to a remotely operated vehicle (ROV) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Data use manufacturer calibration.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Chlorophyll a; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Fluorescence, dissolved organic matter; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Optical backscattering coefficient, 700 nm; Polarstern; PS122/5; PS122/5_60-165; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Scattering fluorescence sensor, WETLabs, ECO Puck Triplet, BBFL2-SLO; Sea ice; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 84850 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/5; PS122/5_60-166; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 32760 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/5; PS122/5_60-167; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 64176 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/5; PS122/5_60-28; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 72342 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/5; PS122/5_61-156; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 79488 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/5; PS122/5_61-200; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 72912 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2024-04-24
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Calculated; DATE/TIME; DEPTH, water; Digital precision altimeter, Tritech, PA500; Distance, relative, X; Distance, relative, Y; Distance to sea-ice bottom; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/5; PS122/5_62-65; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea ice draft; Sea-ice draft; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 59478 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2024-04-24
    Description: Fluorometric data on chlorophyll a concentration, Fluorescent Dissolved Organic Matter (FDOM) concentration, and optical backscatter were measured by a triplet fluorometer (ECO-Puck BBFL2SSC, Wetlabs) attached to a remotely operated vehicle (ROV) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Data use manufacturer calibration.
    Keywords: AWI_SeaIce; BEAST; Chlorophyll a; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Fluorescence, dissolved organic matter; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Optical backscattering coefficient, 700 nm; Polarstern; PS122/1; PS122/1_6-118; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Scattering fluorescence sensor, WETLabs, ECO Puck Triplet, BBFL2-SLO; Sea ice; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 28772 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2024-04-24
    Description: Fluorometric data on chlorophyll a concentration, Fluorescent Dissolved Organic Matter (FDOM) concentration, and optical backscatter were measured by a triplet fluorometer (ECO-Puck BBFL2SSC, Wetlabs) attached to a remotely operated vehicle (ROV) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Data use manufacturer calibration.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Chlorophyll a; DATE/TIME; DEPTH, water; Fluorescence, dissolved organic matter; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Optical backscattering coefficient, 700 nm; Polarstern; PS122/2; PS122/2_18-10; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Scattering fluorescence sensor, WETLabs, ECO Puck Triplet, BBFL2-SLO; Sea ice; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 11970 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2024-04-24
    Description: Fluorometric data on chlorophyll a concentration, Fluorescent Dissolved Organic Matter (FDOM) concentration, and optical backscatter were measured by a triplet fluorometer (ECO-Puck BBFL2SSC, Wetlabs) attached to a remotely operated vehicle (ROV) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Data use manufacturer calibration.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; Chlorophyll a; DATE/TIME; DEPTH, water; Distance, relative, X; Distance, relative, Y; Fluorescence, dissolved organic matter; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Optical backscattering coefficient, 700 nm; Polarstern; PS122/2; PS122/2_18-89; Quality flag, position; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Scattering fluorescence sensor, WETLabs, ECO Puck Triplet, BBFL2-SLO; Sea ice; Sea Ice Physics @ AWI; Survey ID
    Type: Dataset
    Format: text/tab-separated-values, 117358 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...