ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
Years
  • 11
    Publication Date: 2024-04-23
    Description: With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore cross- cutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge.The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-04-23
    Description: Climate change is destabilizing permafrost landscapes, affecting infrastructure, ecosystems, and human livelihoods. The rate of permafrost thaw is controlled by surface and subsurface properties and processes, all of which are potentially linked with each other. However, no standardized protocol exists for measuring permafrost thaw and related processes and properties in a linked manner. The permafrost thaw action group of the Terrestrial Multidisciplinary distributed Observatories for the Study of the Arctic Connections (T-MOSAiC) project has developed a protocol, for use by non-specialist scientists and technicians, citizen scientists, and indigenous groups, to collect standardized metadata and data on permafrost thaw. The protocol introduced here addresses the need to jointly measure permafrost thaw and the associated surface and subsurface environmental conditions. The parameters measured along transects include: snow depth, thaw depth, vegetation height, soil texture, and water level. The metadata collection includes data on timing of data collection, geographical coordinates, land surface characteristics (vegetation, ground surface, water conditions), as well as photographs. Our hope is that this openly available dataset will also be highly valuable for validation and parameterization of numerical and conceptual models, and thus to the broad community represented by the T-MOSAiC project.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    ELSEVIER GMBH
    In:  EPIC3Protist, ELSEVIER GMBH, 173(125911), pp. 1-9, ISSN: 1434-4610
    Publication Date: 2024-04-23
    Description: To explore the potential of urban settings as habitats for testate amoebae, five historical parks in Potsdam (Germany) were sampled at different sites. A total of 32 sampling sites was chosen in proximity to deciduous (Acer, Castanea, Fagus, Tilia, Platanus, Quercus) and coniferous (Fraxinus, Picea, Pinus, Tsuga) trees. Meadows and creeks were also sampled. The overall taxonomic record comprises 76 species and sub-species. High species numbers of 〉20 per sample were found in meadows and below Fagus, Tilia, and Quercus trees. The species richness per park ranges from 33 to 46 taxa. Most species belong to the eurybiontic ecological group, although litter-inhabiting and hygrophilic and hydrophilic species were also present. Common species found in more than 50% of all samples (superdominants) belong to the genera Centropyxis, Cyclopyxis, Euglypha, and Trinema. Interestingly, the rare Frenopyxis stierlitzi which inhabits tree hollows was found as a recently described species in a new genus Frenopyxis BOBROV & MAZEI 2020 in the Babelsberg Park. The studied testate amoebae are characterized by a high degree of morphological and morphometric plasticity. Therefore, the study of testate amoebae in urban settings will reveal new insights into their ecology and enhance the definition of morphometric variability for single species.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-04-23
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-04-23
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung
    In:  EPIC3Expeditionsprogramm Polarstern, Bremerhaven, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 40 p., pp. 1-40
    Publication Date: 2024-04-23
    Repository Name: EPIC Alfred Wegener Institut
    Type: Expedition program , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-04-22
    Description: thesis
    Description: DFG, SUB Göttingen
    Keywords: ddc:556 ; ddc:551 ; Uweinat ; Kamil ; Magmatische Gesteine
    Language: German
    Type: doc-type:book
    Format: 2016
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Selbstverlag Fachbereich Geowissenschaften, FU Berlin
    In:  Herausgeberexemplar
    Publication Date: 2024-04-22
    Description: Im nördlichen Bereich der Provinz Kantabrien (Nordspanien) wurden Sedimente der "Mittelkreide" (Oberalb und Cenoman) unter stratigraphischen, faziellen und sedimentologi sehen Gesichtspunkten bearbeitet. Strukturell gehört die Region zum Nordkantabrischen Becken (NCB), dessen Einsenkung mit tektonischen Bewegungen im mittleren Valangin beginnt. Das NCB ist eines der zahlreichen Sedimentbecken, die sich infolge des mesozoischen Riftings und Spreadings in der Biscaya auf dem iberischen Nordschelf bilden. Strukturgeologisch zeigt das NCB eine E/W-Ausrichtung zwischen zwei Hochgebieten im S und N (Cabuemiga-Rücken und Liencres-Hoch), die als "Santillana-Achse" bezeichnet wird. Im W grenzt das NCB an das Paläozoikum des Asturischen Massivs. Östlich Santander wird es strukturell und faziell durch die N/S-streichende Rio-Miera-Flexur vom hochsubs identen Basko-Kantabrischen Becken abgetrennt. Die Sedimentation im NCB wird stark von tektonischen Ereignissen im sich bildenden Biscaya-Ozeans beeinflußt, durch welche die Strukturierung der Schichtenfolge in sedimentäre Megasequenzen erfolgt. Im Alb und Cenoman können folgende Megasequenz-Grenzen erkannt werden, durch welche die Megasequenzen des Alb und Cenoman definiert werden: • Santander-Tectoevent (Cenoman/Turon-Grenzbereich) • Vraconian Tectoevent (hohes Oberalb) • "Mittelalb-Ereignis" ("break-up unconformity", [?hohes] Unteralb). Das Mittelalb-Ereignis fuhrt im Arbeitsgebiet zum Zerbrechen der faziell wenig differenzierten Urgon-Karbonatplattformen des Clansay (Oberapt/Unteralb) in ostvergente Kippschollen. In den entstehenden N/S-orientierten Halbgräben werden im Mittelaib fluvio-deltaische Klastika abgelagert, während auf den Hochschollen eine Verkarstung erfolgt. Im tiefen Oberalb initiiert ein transgressiver Puls die weit verbreitete Ablagerung mariner Sedimente im NCB. Dieses transgressive Ereignis ist in ganz Iberien nachzuweisen. Im Laufe des Oberalb kommt es zu einem Onlap mariner Sedimente auch auf den ehemals emergenten Hochschollen und zu einem Ausgleich des durch das Mittelalb-Ereignis erzeugten Paläoreliefs. Durch weit verbreitete Emersion des NCB's infolge tektonischer Bewegungen im oberen Oberalb (Vraconian Tectoevent) wird die sedimentäre Megasequenz des Alb beendet. Die sedimentäre Megasequenz des Cenoman beginnt im Alb/Cenoman-Grenzbereich mit der Progradation deltaischer Klastika. Die im NCB der Santillana-Achse folgend von W nach E kanalisiert werden. Dieses "Santillana-Delta" mündet im Bereich Galizano/Langre östlich Santander in das Basko-Kantabrische Becken und verzahnt sich dort mit den Prodelta-Sedimenten des Valmaseda-Deltas ("Schwarzer Flysch" der Bilbao-Region). Die differentielle Subsidenz im NCB in Folge des Vraconian Tectoevents wird von den Delta-Sedimenten ausgeglichen. Im tiefen Untercenoman (untere Mantelliceras mantelli-Zone) gestaltet eine bedeutende transgressive Faziesentwicklung das gesamte NCB in einen vollmarinen, karbonatisch dominierten Ablagerungsraum um. Dieser transgressive Puls dürfte mit der "Untercenoman-Transgression" sensu lato korrelieren. Im Cenoman können folgende Ammoniten-Biozonen erkannt werden: • Obercenoman: Eucalycoceras pentagonum-Zone, und Metoicoceras geslinianum-Zone [pars] • Mittel cenoman: [Cunningtoniceras inerme-Zone], Acanthoceras rhotomagense-Zone und A. jukesbrownei-Zone • Untercenoman: Mantelliceras mantelli-Zone und M. dixoni-Zone. Das höchste Obercenoman (oberer Teil der geslinianum-Zone und die Neocardioceras juddii-Zone) fehlt im NCB. In der oberen mantelli-Zonc des NCB etabliert sich in weiten Bereichen die flachmarine Karbonat-Fazies der Altamira-Plattform, die sich östlich der Rio-Miera-Flexur mit mächtigen Beckensedimenten (Mergel, Knollenkalke, Kalk/Mergel-Rhythmite) verzahnt. Im Mittel- bis unteren Obercenoman wird die Altamira-Plattform in drei Schritten von E nach W "ertränkt". Die prominenten Drowning-Unconformities (mineralisierte Hartgründe mit Ammoniten) werden dabei stufenweise nach W jünger. Im Obercenoman (pentagonum-Zono) ist die gesamte Altamira-Plattform ertränkt und weite Teile des NCB werden in die Beckensedimentation einbezogen. Die Ablagerungsgeschichte des Cenoman wird durch das Santander-Tectoevent in der oberen geslinianum-Zonc beendet, infolgedessen weite Teile des NCB trockenfallen. Selbst in hochsubsidenten Beckenprofilen ist der Cenoman/Turon-Grenzbereich durch eine Schicht lücke gekennzeichnet. Die fazielle Entwicklung der cenomanen Megasequenz ist durch die schubweise voranschreitende ("pulsierende") Cenoman-Transgression geprägt. Insgesamt können im Cenoman sechs Sequenzgrenzen (SB's) erkannt werden, durch die die Ablagerungssequenzen DS Ce I bis VI definiert werden. Ihre stratigraphischen Positionen sind: • SB Ce VI = obere geslinianum-Zonc • SB Ce V = Wende Mittel/Obercenoman • SB Ce IV = basale jukesbrownei-Zone • SB Ce III = hohe dixoni-Zone • SB Ce II = obere mantelli-Zone • SB Ce I = untere mantelli-Zone. Im regionalen Vergleich zeigt sich für das Cenoman eine gute Übereinstimmung mit sequentiellen Gliederungen aus dem Basko-Kantabrischen Raum. Überregionale Vergleiche dokumentieren, daß viele der Meeresspiegel-Bewegungen im Cenoman (z.B. SB Ce III, mfz in der rhotomagense-Zone, SB Ce IV, HST in der pentagonum-Zone) über weite Entfernungen korreliert werden können und wahrscheinlich eustatische Signale darstellen. Die Korrelation mit der "globalen Meeresspiegel-Kurve" (Exxon Chart) ist schlecht. Betrachtet man die im Cenoman im NCB abgelagerten Sedimente als "2nd-order cycle", so zeigt sich ein übergeordneter transgressiver Trend mit einem maximalen Onlap im Obercenoman innerhalb der mfz von DS Ce VI (pentagonum-Zone). Das NCB zeigt im Oberalb und Cenoman im biogeographischen Vergleich starke tethyale Einflüsse. Das Turrilites scheuchzerianus/Neohibolites ultimus-Evert. im tiefen Mittelcenoman des NCB korreliert in bio-, sequenz- und Isotopen-stratigraphischer Hinsicht mit dem Actinocamax primus-Event NW-Europas, womit eine eventstratigraphische Anbindung an das "temperierte" Cenoman erreicht werden kann.
    Description: Mid-Cretaceous (Upper Albian and Cenomanian) sediments in the northern part of the province of Cantabria (northern Spain) were investigated with the emphasis on stratigraphical and sedimentological aspects. Structurally, the area belongs to the North Cantabrian Basin (NCB), the depositional history of which started with distensional tectonic movements in the Mid-Valanginian. The NCB is one of the numerous sedimentary basins which developed on the north Iberian continental margin in consequence of the rifting and spreading in the Bay of Biscay during Mesozoic times. It is a gulf-like basin with an E/W-elongation ("Santillana axis"). In the south and in the north the NCB is bordered by the Cabuemiga Ridge and the Liencres High, respectively. To the west, the NCB is bordered by the Palaeozoic Asturian Massif; in the east, the N/S-trending Rio Miera Flexure forms a structural boundary to the strongly subsiding Basco-Cantabrian Basin. The depositional history of the NCB was strongly influenced by tectonic events which can be related to the evolving Biscay Ocean. These tectoevents give rise to a gross subdivison of the succession into sedimentary megasequences. Three tectonically induced megasequence boundaries can be recognized in the Albian and Cenomanian, defining the Albian and Cenomanian megasequences: • Santander-Tectoevent (Cenomanian/Turonian boundary interval) • Vraconian Tectoevent (late Late Albian) • "Middle Albian event" (break-up unconformity, [?late] Early Albian). The "Middle Albian event" caused a disintegration of the widespread Urgonian Clansay platforms (Late Aptian/Early Albian) into a palaeo-relief of eastward-dipping tilted blocks. In the N/S trending halfgrabens, fluvio-deltaic clastics were deposited during the Middle Albian, whereas the exposed tilted block crests were karstified. A strong transgressive pulse flooded the NCB in the early part of the Late Albian, giving rise to the widespread deposition of marine Upper Albian sediments. This transgressive event can also be recognised in southern Iberia and Portugal. During the later part of the Late Albian, the emergent crestal areas of the tilted blocks were onlapped by marine sediments, resulting in the filling-up of the Middle Albian palaeo-relief. Tectonic movements in the latest Albian (Vraconian tectoevent), causing emergence in wide parts of the NCB, terminated the Albian Megasequence. The Cenomanian megasequence started in the Albian/Cenomanian boundary interval with progradation of deltaic clastics, which were channelized (following the Santi liana-axis) into an eastward direction. This "Santillana Delta" flowed into the Basco-Cantabrian Basin east of Santander, where an interfingering with the prodeltaic sediments of the Valmaseda Delta ("Black Flysch" of the Bilbao area) took place. The differential subsidence in the NCB due to the Vraconian tectoevent was compensated by the deltaic sedimentation. In the lower part of the Mantelliceras mantelli Zone, a transgressive pulse flooded the NCB and led to the deposition of marine, predominantly calcareous sediments. This transgressive event is thought to correlate with the "Early Cenomanian transgression" sensu lato. In the Cenomanian succession of the NCB, the following ammonite zones can be recognized: • Late Cenomanian: Eucalycoceras pentagonum Zone and Metoicoceras geslinianum Zone [pars] • Middle Cenomanian: [Cunningtoniceras inerme Zone], Acanthoceras rhotomagense Zone and A. jukesbrownei Zone • Early Cenomanian: Mantelliceras mantelli Zone and M. dixoni-Zone. The upper part of the Upper Cenomanian (upper part of the geslinianum Zone and the Neocardioceras juddii Zone) is missing in the NCB. In the upper part of the mantelli Zone, deposition of the shallow marine carbonate sediments of the Altamira Platform became established over large areas of the NCB. In the strongly subsiding area east of the Rio Miera Flexure, thick successions of basinal sediments (marls, nodular limestones, marl/limestone rhythmites) were deposited contemporaneously. During the Middle to early Late Cenomanian, the Altamira Platform was drowned in three successive steps from east to west. The developing drowning unconformities (condensed, mineralized hardgrounds with ammonites) young towards the west, resulting in a backstepping of the Altamira Platform. In the Late Cenomanian (pentagonum Zone), all former sites of shallow marine carbonate deposition were drowned. The depositional history of the Cenomanian was terminated in the higher part of the geslinianum Zone when tectonic movements of the Santander tectoevent caused widespread emersion of the NCB. The resulting Cenomanian/Turonian boundary hiatus can be recognized both in the condensation horizons on top of the submerged platform as well as in the basinal successions. The facies development of the Cenomanian Megasequence is dominated by the pulsatory nature of the "Cenomanian transgression". Within the Cenomanian succession of northern Cantabria, six sequence boundaries can be recognized, which define six depositional (3rd-order) sequences (DS Ce I - VI). The stratigraphic positions of the sequence boundaries (SB) are as follows: • SB Ce VI = upper geslinianum Zone • SB Ce V = Middle/Late Cenomanian boundary interval • SB Ce IV = basal jukesbrownei Zone • SB Ce III = upper dixoni Zone • SB Ce II = upper mantelli Zone • SB Ce I = lower mantelli Zone. Comparison of this sequential subdivision with regional cycle charts from the Basco-Cantabrian area reveals good agreement, whereas correlation with the "global sea-level curve" (Exxon Chart) is poor. The extent to which many of the sea-level events in the Cenomanian (e.g. SB Ce III, mfz within the rhotomagense Zone, SB Ce IV, HST in the pentagonum Zone) can be correlated between basins elsewhere in Europe and Tunisia suggests that they were probably of eustatic nature. Considering the Cenomanian Megasequence as a "2nd-order cycle", an overall transgressive trend occurs throughout the Cenomanian; maximum coastal onlap was reached during the maximum flooding of DS Ce VI (pentagonum Zone). Palaeobiogeographically, the NCB shows strong tethyan affinities in the Late Albian and Cenomanian. The Turrilites scheuchzerianus/Neohibolites ultimus event in the early Middle Cenomanian permits a correlation with the Actinocamax primus event of the temperate Cenomanian of northern Europe by means of bio-, sequence and isotope stratigraphy.
    Description: Los sedimentos del Cretácico medio (Albiense superior/Cenomaniense) en la parte septentrional de la Provincia de Cantabria han sido estudiados, centrándose en aspectos estratigráficos y sedimentolögicos. El área de estudio pertenece estructural mente a la Cuenca Norcantábrica (NCB), cuya historia depositional comenzó con movimientos tectónicos distensivos en el Valanginiense medio. La NCB es una de las numerosas cuencas sedimentarias que se desarrollaron en el margen continental norteibérico como consecuencia del "rifting" y apertura del golfo de Vizcaya durante el Mesozoico. Es una cuenca con forma de golfo con una elongatión E/W ("Eje de Santillana"). Los límites septentrional y meridional de la NCB son el "Liencres High" y el Escudo de Cabuemiga respectivamente. Hacia el Oeste, la NCB queda confinada por el Macizo Paleozoico Asturiano; en el Este, el límite estructural conocido como Flexión del Río Miera de dirección N/S, la separa de la Cuenca Vasco-cantábrica mucho más subsidente. La historia deposicional de la NCB estuvo fuertemente influenciada por eventos tectónicos que pueden ser relacionados con la evolution del oceano de Vizcaya. Estos tectoeventos dieron lugar a una gruesa subdivision de la sucesión en megasecuencias sedimentarias. Tres límites de megasecuencias, que están inducidos por la tectónica, pueden ser reconocidos en el Albiense y Cenomaniense, definiendo respectivamente las megasecuencias albienses y cenomanienses: • Tectoevento de Santander (intervalo límite del Cenomaniense/Turoniense) • Tectoevento Vraconiense (Albiense superior tardío) • "Evento del Albiense medio" (discordancia de ruptura, Albiense inferior [?tardio]). El "Evento del Albiense medio" causo una desintegración de las plataformas urgonianas clansayenses (Aptiense superior/Albiense inferior), que estaban muy extendidas en paleorelieves de bloques basculados hacia el Este. Se produjo durante el Albiense medio una sedimentatión clástica fluvio-deltaica en los semi-grabenes, de dirección N/S, mientras que las cimas expuestas de los bloques basculados sufrieron procesos de karstificatión. Un fuerte pulso transgresivo inundó la NCB al comienzo del Albiense superior, dando lugar al depósito de sedimentos marinos en el Albiense superior due alcanzaron una muy amplia extensión. Durante la parte superior del Albiense superior las crestas de los bloques basculados fueron recubiertas por sedimentos marinos, indicando el equilibrio del paleorelieve en el Albiense medio. Los procesos tectónicos al final del Albiense superior (Tectoevento Vraconiense), que causaron la emersión de amplias zonas de la NCB, terminan la megasecuencia albiense. La megasecuencia cenomaniense comenzó en el limite Albiense/Cenomaniense con la progradatión de material clástico deltaico que fue canalizado (siguiendo el Eje de Santillana) hacia el Este. Dicho delta ("Delta de Santillana") discurria al Este de Santander hacia la Cuenca Vasco-cantabrica, interfiriendo con los sedimentos de prodelta del Delta de Valmaseda ("Flysch Negro"). En la parte inferior de la zona de Mantelliceras mantelli, un pulso transgresivo inundó la NCB y permitió el depósito de sedimentos marinos, predominantemente calcáreos. Este evento transgresivo puede ser correlacionado con la "transgresión del Cenomaniense initial" sensu lato. En la sucesion Cenomaniense de la NCB pueden ser reconocidas las siguientes zonas: • Cenomaniense superior: Zona de Eucalycoceras pentagonum y la Zona de Metoicoceras geslinianum [pars] • Cenomaniense medio: [Zona de Cunningtoniceras inerme], Zona de Acanthoceras rhotomagense y Zona de A. jukesbrownei • Cenomaniense inferior: Zona de Mantelliceras mantelli y Zona de M. dixoni. La parte superior del Cenomaniense superior (parte superior de la zona de M. geslinianum y la Zona de Neocardioceras judii) está ausente en la NCB. Los sedimentos marino-someros de naturaleza carbonatada de la "Plataforma de Altamira" comenzaron a depositarse en amplias zonas de la NCB en la parte superior de la zona de mantelli. Al Este de la Flexión de Río Miera, en un área fuertemente subsidente, fueron depositadas contemporáneamente potentes sucesiones de sedimentos de cuenca (margas, calizas nodulares y ritmitas de marga/caliza). Durante el Cenomaniense medio hasta la base del Cenomaniense superior, la Plataforma de Altamira fue inundada desde el Este al Oeste en tres intervalos sucesivos. El desarrollo de discordancias de inundatión ("drowning unconformities" = series condensadas, "hardgrounds" mineralizados con ammonites) resultan más recientes hacia el Oeste, concluyendo en un basculamiento hacia atrás de la Plataforma de Altamira. En el Cenomaniense superior (Zona de pentagonum) todos los anteriores lugares caracterizados por el depósito de carbonates marino-someros fueron anegados. La historia deposicional del Cenomaniense acabó en la parte alta de la zona de geslinianum, cuando movimientos tectonicos del Tectoevento de Santander causaron la emersión generalizada de la NCB. El hiato resultante puede ser reconocido en los horizontes condensados a techo de las plataformas sumergidas e igualmente en las sucesiones de cuenca. El desarrollo de facies del Cenomaniense está dominado por el carácter de pulsos que tuvo la "transgresión cenomaniense". Seis límites de secuencia pueden reconocerse dentro de la sucesión cenomaniense del norte de Cantabria, los cuales definen seis secuencias deposicional es de tercer orden (DS Ce I-VI). La positión estratigráfica de los límites de secuencia (SB) son los siguientes: • SB Ce VI = parte superior de la Zona de geslinianum • SB Ce V = intervalo límite del Cenomaniense medio/superior • SB Ce IV = base de la Zona de jukesbrawnei • SB Ce III = parte superior de la Zona de dixoni • SB Ce II = parte superior de la Zona de mantelli • SB Ce I = parte inferior de la Zona de mantelli. Una comparación de esta subdivisión secuencial con las tablas de ciclos regionales del reino vasco-cantábrico revela una buena correlatión, mientras que la correlatión con la "tabla global" ("Exxon chart") es pobre. La correlatión entre varias cuencas sugiere una causa eustática para los numerosos eventos de cambios del nivel del mar en el Cenomaniense (por ejemplo SB Ce III, mfz dentro de la Zona de rhotomagense, SB Ce IV, HST en la Zona de pentagonum). Considerando la megasecuencia del Cenomaniense como un "ciclo de segundo orden", una tendencia transgresiva general ocurrió a lo largo del Cenomaniense, el máxirno "onlap" costero fue alcanzado durante la máxima inundatión de la DS Ce VI (Zona de pentagonum). Desde el punto de vista paleobiogeográfico, la NCB muestra fuertes afinidades tethyales en el Albiense superior y el Cenomaniense. El "Evento de Turrilites scheuchzerianus/Neohibolites ultimus" al comienzo del Cenomaniense medio permite una correlation con el "Evento de Actinocamax primus" del Cenomaniense de la Provincia templada norteuropea.
    Description: thesis
    Description: DFG, SUB Göttingen
    Keywords: ddc:560 ; Sedimentationsbecken ; Kreide ; Event-Stratigraphie ; Biostratigraphie ; Sequenzstratigraphie ; Albium ; Cenomanium ; Fazies ; Stratigraphie ; Geologische Korrelation ; Paläobiologie ; Paläontologie
    Language: German
    Type: doc-type:book
    Format: 278
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-04-22
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  EPIC3Population and Environment, 43(1), pp. 22-38, ISSN: 0199-0039
    Publication Date: 2024-04-22
    Description: Permafrost thaw is a challenge in many Arctic regions, one that modifies ecosystems and affects infrastructure and livelihoods. To date, there have been no demographic studies of the population on permafrost. We present the first estimates of the number of inhabitants on permafrost in the Arctic Circumpolar Permafrost Region (ACPR) and project changes as a result of permafrost thaw. We combine current and projected populations at settlement level with permafrost extent. Key findings indicate that there are 1162 permafrost settlements in the ACPR, accommodating 5 million inhabitants, of whom 1 million live along a coast. Climate-driven permafrost projections suggest that by 2050, 42% of the permafrost settlements will become permafrost-free due to thawing. Among the settlements remaining on permafrost, 42% are in high hazard zones, where the consequences of permafrost thaw will be most severe. In total, 3.3 million people in the ACPR live currently in settlements where permafrost will degrade and ultimately disappear by 2050.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...