Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The dielectric constant approach to speciation and ion pairing at high temperature and pressure

Abstract

Fluids in the Earth's crust commonly contain, in addition to the solvent, H2O, high concentrations of other volatiles (such as CO2, CH4 or N2) and/or salts (such as NaCl, KC1 or CaCl2). The solubility of minerals in these fluids is of prime importance for understanding metasomatic processes. Many theoretical and empirical relations have been proposed to account for various aspects of solubility behaviour and speciation. Here we show that quartz solubility behaviour in solutions where the activity of H2O is reduced from unity is easily modelled from knowledge of changes in the dielectric constant of the solvent. The approach may be generalized to all neutral aqueous species. We further demonstrate the usefulness of considering a modified form of the Fuoss equation1 for the calculation of the dielectric-constant dependence of ion pairing at high temperatures and pressures. This approach thus allows the prediction of speciation in complex fluids at high temperature and pressure for reduced activities of H2O.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fuoss, R. M. J. Am. chem. Soc. 80, 5059–5061 (1968).

    Article  Google Scholar 

  2. Fournier, R. O. & Potter, R. W. II Geochim. cosmochim. Acta 46, 1969–1974 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Sommerfeld, R. A. J. geophys. Res. 72, 4253–4257 (1967).

    Article  ADS  CAS  Google Scholar 

  4. Shettel, D. L. thesis, Pennsylvania State Univ. (1974).

  5. Novgorodov, P. G. Geokhimiya 10, 1484–1489 (1975).

    Google Scholar 

  6. Walther, J. V. & Orville, P. M. Am. Miner. 68, 731–741 (1983).

    CAS  Google Scholar 

  7. Crerar, D. A. & Anderson, G. M. Chem. Geol. 8, 107–122 (1971).

    Article  ADS  CAS  Google Scholar 

  8. Marshall, W. L. & Warakomski, J. M. Geochim. cosmochim. Acta 44, 915–924 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Marshall, W. L. Geochim. cosmochim. Acta 44, 925–931 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Anderson, G. M. & Burham, C. W. Am. J. Sci. 265, 12–27 (1967).

    Article  ADS  CAS  Google Scholar 

  11. Anderson, G. M. & Burham, C. W. Am. J. Sci. 283A, 283–297 (1983).

    Google Scholar 

  12. Dandurand, J. L. & Schott, J. J. sol. Chem. 16, 237–256 (1987).

    Article  CAS  Google Scholar 

  13. Schott, J. & Dandurand, J. L. in Chemical Transport in Metasomatic Processes (ed. Helgeson, H. C) 733–754 (Reidel, Dordrecht, 1987).

    Book  Google Scholar 

  14. Born Von, M. Z. Phys. 1, 45–48 (1920).

    Article  ADS  Google Scholar 

  15. Brønsted, J. N. J. Am. chem. Soc. 44, 877–880 (1922).

    Article  Google Scholar 

  16. Kirkwood, J. G. J. chem. Phys. 7, 911–919 (1939).

    Article  ADS  CAS  Google Scholar 

  17. Deul, R. thesis Univ. Karlsruhe (1984).

  18. Looyenga, H. Physica 31, 401–404 (1965).

    Article  ADS  CAS  Google Scholar 

  19. Flowers, G. C. Contr. Miner. Petrol. 69, 315–318 (1979).

    Article  ADS  CAS  Google Scholar 

  20. Pitzer, K. S. Proc. natn. Acad. Sci. U.S.A. 80, 4575–4576 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Bjerrum, N. J. Kgl. Danske Videnskab. Selskab. Math-fys. 7, 1–48 (1926).

    CAS  Google Scholar 

  22. Marshall, W. L. & Quist, A. S. Proc. natn. Acad. Sci. U.S.A. 58, 901–903 (1967).

    Article  ADS  CAS  Google Scholar 

  23. Quist, A. S. & Marshall, W. L. J. phys. Chem. 72, 1536–1544 (1968).

    Article  CAS  Google Scholar 

  24. Fournier, R. O. & Marshall, W. L. Geochim. cosmochim. Acta 47, 587–596 (1983).

    Article  ADS  CAS  Google Scholar 

  25. Marshall, W. L. & Mesmer, R. E. J. sol. Chem. 10, 121–127 (1981).

    Article  CAS  Google Scholar 

  26. Quist, A. S. & Marshall, W. L. J. phys. Chem. 72, 684–703 (1968).

    Article  CAS  Google Scholar 

  27. Frantz, J. D. & Marshall, W. L. Am. J. Sci. 282, 1666–1693 (1982).

    Article  ADS  CAS  Google Scholar 

  28. Frantz, J. D. & Marshall, W. L. Am. J. Sci. 284, 651–667 (1984).

    Article  ADS  CAS  Google Scholar 

  29. Franck, E. U. Z. phys. Chem. Neue Folge 8, 107–126 (1956).

    Article  CAS  Google Scholar 

  30. Franck, E. U. Z. phys. Chem. Neue Folge 8, 192–206 (1956).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walther, J., Schott, J. The dielectric constant approach to speciation and ion pairing at high temperature and pressure. Nature 332, 635–638 (1988). https://doi.org/10.1038/332635a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332635a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing