Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural and mechanistic mapping of a unique fumarate reductase

Abstract

The 1.8 Å resolution crystal structure of the tetraheme flavocytochrome c3, Fcc3, provides the first mechanistic insight into respiratory fumarate reductases or succinate dehydrogenases. The multi-redox center, three-domain protein shows a 40 Å long 'molecular wire' allowing rapid conduction of electrons through a new type of cytochrome domain onto the active site flavin, driving the reduction of fumarate to succinate. In this structure a malate-like molecule is trapped in the enzyme active site. The interactions between this molecule and the enzyme suggest a clear mechanism for fumarate reduction in which the substrate is polarized and twisted, facilitating hydride transfer from the reduced flavin and subsequent proton transfer. The enzyme active site in the oxidized form is completely buried at the interface between the flavin-binding and the clamp domains. Movement of the cytochrome and clamp domains is postulated to allow release of the product.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 2Fo - Fc difference electron density.
Figure 2: Structural features of Fcc3.
Figure 3: The active site of Fcc3.
Figure 4: Reaction mechanisms at the Fcc3 active site.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Pealing, S.L., Black, A.C., Manson, F.D.C., Ward, F.B., Chapman, S.K. & Reid, G.A. Biochemistry 32, 3829–3829 (1993).

    Article  CAS  Google Scholar 

  2. Gordon, E.H.J., Pealing, S.L., Chapman, S.K., Ward, F.B. & Reid, G.A. Microbiology-UK 144, 937–945 (1998).

    Article  CAS  Google Scholar 

  3. Ackrell, B.A.C., Johnson, M.K., Gunsalus, R.P. & Cecchini, G. in Chemistry and Biochemistry of Flavoenzymes (ed Muller, F.) 229–297 (CRC Press, Boca Raton, Florida; 1992).

    Google Scholar 

  4. Reid, G.A., et al. Biochem. Soc. Trans. 26, 418–421 (1998).

    Article  CAS  Google Scholar 

  5. Iverson, T.M., Luna-Chavez, C., Cecchini, G. & Rees, D.C. Science 284, 1961–1966 (1999).

    Article  CAS  Google Scholar 

  6. Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. Nature 376, 660–669 (1995).

    Article  CAS  Google Scholar 

  7. Zhang, Z.L., et al. Nature 392, 677–684 (1998).

    Article  CAS  Google Scholar 

  8. Mattevi, A., Obmolova, G., Kalk, K.H., van Berkel, W.J.H. & Hol, W.G.J. J. Mol. Biol. 230, 1200–1215 (1993).

    Article  CAS  Google Scholar 

  9. Mittl, P.R.E. & Schulz, G.E. Protein Sci. 3, 799–809 (1994).

    Article  CAS  Google Scholar 

  10. Yeh, J.I., Claiborne, A. & Hol, W.G.J. Biochemistry 35, 9951–9957 (1996).

    Article  CAS  Google Scholar 

  11. Mattevi, A. et al. Structure 7, 1–9 (1999).

    Article  Google Scholar 

  12. Woehl, E. & Dunn, M.F. Biochemistry 38, 7118–7130 (1999).

    Article  CAS  Google Scholar 

  13. Madej, T., Gibrat, J.F. & Bryant, S.H. Proteins Struct. Func. Genet. 23, 356–369 (1995).

    Article  CAS  Google Scholar 

  14. Flores, T.P., Moss, D.S. & Thornton, J.M. Protein Engineering 7, 31–37 (1994).

    Article  CAS  Google Scholar 

  15. Holm, L. & Sander, C. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  16. Turner, K.L., Doherty, M.K., Heering, H.A., Armstrong, F.A., Reid, G.A. & Chapman, S.K. Biochemistry 38, 3302–3309 (1999).

    Article  CAS  Google Scholar 

  17. Xia, Z.X. & Mathews, F.S. J. Mol. Biol. 212, 837–863 (1990).

    Article  CAS  Google Scholar 

  18. Schroder, I., Gunsalus, R.P., Ackrell, B.A.C., Cochran, B. & Cecchini, G. J. Biol. Chem. 266, 13572–13579 (1991).

    CAS  PubMed  Google Scholar 

  19. Pealing, S.L., Cheesman, M.R., Reid, G.A., Thomson, A.J., Ward, F.B. & Chapman, S.K. Biochemistry 34, 6153–6158 (1995).

    Article  CAS  Google Scholar 

  20. Igarashi, N. et al. Nature Struct. Biol. 4, 276–284 (1997).

    Article  CAS  Google Scholar 

  21. Pealing, S.L. et al. J. Struct. Biol. 127, 76–78 (1999).

    Article  CAS  Google Scholar 

  22. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  23. Collaborative Computational Project Number 4, Acta.Crystallogr. D 50, 760–763 (1994).

  24. Terwilliger, T.C. & Berendzen, J. Acta Cryst. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  25. Cowtan, K. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 31, 34–38 (1994).

    Google Scholar 

  26. Widmer, A. WITNOTP (Novartis A.G., Basel, Switzerland; 1999).

    Google Scholar 

  27. Brunger, A.T., et al. Acta Crystallogr. D 54, 905–921 (1999).

    Article  Google Scholar 

  28. Sheldrick, G.M. SHELX-97 (University of Goettingen, Germany, 1997).

    Google Scholar 

  29. Esnouf, R.M. J. Mol. Graphics 15, 132–136 (1997).

    Article  CAS  Google Scholar 

  30. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Mattevi for the l-aspartate oxidase coordinates, R. Baxter, S. Flitsch, D. Gerloff and S. Webster for helpful discussion and D. Alexeev and A. Gonzalez for help in X-ray data collection. We thank the BBSRC and EMBL for access to synchrotron radiation sources at Daresbury and Hamburg. This work was funded by the UK Biotechnology and Biological Sciences Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm D. Walkinshaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, P., Pealing, S., Reid, G. et al. Structural and mechanistic mapping of a unique fumarate reductase. Nat Struct Mol Biol 6, 1108–1112 (1999). https://doi.org/10.1038/70045

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/70045

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing