Skip to main content
Log in

Temperature dependence of liquid epoxy resin impregnation through polyester non-woven fabric

  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The temperature dependence of liquid epoxy resin impregnation under atmospheric pressure was measured under the condition that the impregnation was through polyester non-woven fabric sheets, sandwiched between two circular glass plates. It was expected that impregnation would take place to a small extent, because the pressure in the sheet increases to more than atmospheric pressure in the course of impregnation from the perimeter of the circular sheet toward its center, but the liquid resin impregnates to a great extent and impregnating velocity increases with a rise in temperature. This phenomenon can be analyzed by the Kozeny-Carman equation improved by the introduction of the theoretically calculated capillary force in the modeled fiber bed structure and a parameter to postulate gas solubility and diffusion into the liquid resin. An increase in the impregnating velocity with the temperature rise is caused by decrease in the resin viscosity, by increase of the capillary force pressure and by decrease in the gas pressure corrected by a parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carman, P. C., Trans. Inst. Chem. Eng. (London)15, 150 (1937).

    Google Scholar 

  2. Carman, P. C., J. Soc. Chem. Ind.57, 225 (1938).

    Google Scholar 

  3. Carman, P. C., ibid.58, 1 (1939).

    Google Scholar 

  4. Hatch, L. P., J. Appl. Mech.7, A-109 (1940).

    Google Scholar 

  5. Kaizuma, H., K. Ogawa, I. Yamakita, Nippon Kagakukaishi, 1975, (5), p. 935.

    Google Scholar 

  6. Fowler, J. L., K. L. Hertel, J. Appl. Phys.11, 496 (1940).

    Google Scholar 

  7. Nishikiori, S., Kogyo Kagakuzaishi74, 2355 (1971).

    Google Scholar 

  8. Wiggins, E. J., W. B. Campbell, O. Maass, Canadian J. Research17, 318 (1939).

    Google Scholar 

  9. Sullivan, R. R., K. L. Hertel, J. Appl. Phys.11, 761 (1940).

    Google Scholar 

  10. Sullivan, R. R., J. Appl. Phys.12, 503 (1941).

    Google Scholar 

  11. Cox, G. R., E. B. Stuart, Insulation, 33 (1961).

  12. Nishikiori, S., Nippon Kagakukaishi, 1974, (11), p. 2170.

    Google Scholar 

  13. Tanaka, K., M. Koishi, Shikizai49, 22 (1976).

    Google Scholar 

  14. Heertjes, P. M., N. W. F. Kossen, Powder Technol.1, 33 (1967).

    Google Scholar 

  15. Bruil, H. G., J. J. van Aartsen, Colloid & Polymer Sci.252, 32 (1974).

    Google Scholar 

  16. Tanaka, K., M. Koishi, Shikizai49, 473 (1976).

    Google Scholar 

  17. Miyasaka, K., T. Manabe, M. Koishi, Chem. Pharm. Bull.24, 2, 330 (1976).

    Google Scholar 

  18. Nakagaki, M., K. Osagawa, Bull. Chem. Soc. Japan.32, 344 (1959).

    Google Scholar 

  19. Chwastiak, S., J. Colloid and Interface Sci.42, 2, 298 (1973).

    Google Scholar 

  20. Miller, R., D. L. Clegg, Anal. Chem.23, 3, 407 (1951).

    Google Scholar 

  21. Kaizuma, H., I. Yamakita, Nippon Kagakukaishi, 1974, (7), p. 1356.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurematsu, K., Koishi, M. Temperature dependence of liquid epoxy resin impregnation through polyester non-woven fabric. Colloid & Polymer Sci 261, 834–845 (1983). https://doi.org/10.1007/BF01421437

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01421437

Key words

Navigation