Skip to main content
Log in

Nested regional simulation of climate change over the Alps for the scenario of a doubled greenhouse forcing

  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Summary

Simulated temperature and precipitation changes over western Europe for a scenario of doubled atmospheric concentrations of CO2 are presented. The simulations are performed using a Limited Area Model LAM (RegCM2) nested into a General Circulation Model (ECHAM3). Both model components are operated at very high spatial resolutions — approximately 120 km for the GCM and 20 km for the LAM; the LAM domain encompasses a region of 1100 × 1100 km squared. Climatologies for five January and five July periods have been simulated. Average surface (2 m) temperatures are found to increase by 1.4 K in winter (January) and 3.9 K in summer (July); this latter figure is, however, largely dependent on a positive bias in the summer temperature fields of the driving GCM. Average precipitation changes are generally small in absolute values, but exhibit considerable spatial variability. Large precipitation amounts are seen to be shifted towards higher elevations with a corresponding reduction in the ‘upwind’ areas. The results are discussed taking into account the ‘predictive skill’ of the modelling system, which is derived from comparing the simulated present day temperature and precipitation fields to the corresponding climatological information. A method is introduced to assess the reliability of climate scenario predictions — such as those discussed here — on the basis of this predictive skill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beniston, M., 1994:Mountain Environments in Changing Climate. London, New York: Routledge. 492 pp.

    Google Scholar 

  • Beniston, M., Rebetez, M., Giorgi, F., Marinucci, M. R., 1994: Features of regional climate in Switzerland.Theor. Appl. Climatol. 49, 135–159.

    Google Scholar 

  • Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the Northern hemisphere.J. Atmos. Sci. 33, 1607–1623.

    Google Scholar 

  • Bossert, J. E., Kao, C. E., Roads, J. O., Xhen, S. C., Ueyoshi, K., 1992: Regional scale simulations of the western U.S. climate.Proc. Third Symp. on Global Change Studies, Atlanta, Amer. Meteor. Soc., 24–28.

  • Briegleb, B. P., 1992: Delta-Edigton approximation for solar radiation in the NCAR community climate model.J. Geophys. Res. 97, 7603–7612.

    Google Scholar 

  • Cohen, S. J., 1990: Bringing the global warming issue closer to home: the challenge of regional impact studies.Bull. Amer. Meteor. Soc. 71, 520–526.

    Google Scholar 

  • Cubasch, U., Hasselmann, K., Hoeck, H., Meier-Reimer, E., Mikolajewicz, U., Santer, B.D., Sausen, R., 1992: Timedependent greenhouse warming computations with a coupled ocean-atmosphere model.Climate Dynamics 8, 55–69.

    Google Scholar 

  • Davies, H. C., Turner, R. E., 1977: Updating prediction models by dynamical relaxation: An examination of the technique.Quart. J. Roy. Meteor. Soc. 103, 225–245.

    Google Scholar 

  • Dickinson, R. E., Errico, R. M., Giorgi, F., Bates, G. T., 1989: A regional climate model for the western United States.Climatic Change 15, 383–422.

    Google Scholar 

  • Dickinson, R. E., Henderson-Sellers, A., Kennedy, P. J., 1993: Biosphere-Atmosphere Transfer Scheme (BATS) Version 1E as coupled to the NCAR community climate model. Boulder:NCAR Technical Note, NCAR/TN-387 + STR, 72pp.

  • Dümenil, L., Todini, E., 1992: A rainfall runoff scheme for use in the Hamburg climate model. In: O'Kane, J. P. (ed)Advances in numerical Hydrology. A tribute of James Dooge. European Geophysical Society Series on Hydrological Sciences 1. Amsterdam: Elsevier Science Publishers B. V., 129–157.

    Google Scholar 

  • Frei, C., 1995: An Alpine precipitation climatology based on high-resolution rain-gauge observations.MAP newsletter 3, 46–47.

    Google Scholar 

  • Frei, C., Schär, C., 1996: Precipitation climate of the European alps as deduced from High-Resolution Rain-Gauge observations.Int. J. Climatol. (submitted).

  • Giorgi, F., 1990: On the simulation of regional climate using a limited area model nested in a general circulation model.J. Climate 3, 941–963.

    Google Scholar 

  • Giorgi, F., Marinucci, M. R., Visconti, G., 1990: Use of a limited area model nested in a general circulation model for regional climate simulations over Europe.J. Geophys. Res. 95, 18,413–18,431.

    Google Scholar 

  • Giorgi, F., Marinucci, M. R., 1991: Validation of a regional atmospheric model over Europe: sensitivity of wintertime and summertime simulations to selected physics parametrizations and lower boundary conditions.Quart. J. Roy. Meteor. Soc. 117, 1171–1206.

    Google Scholar 

  • Giorgi, F., Marinucci, M. R., Visconti, G., 1992: A 2×CO2 climate change scenario over Europe generated using a limited area model nested in a general circulation model. II: Climate change scenario.J. Geophys. Res. 97, 10,011–10,028.

    Google Scholar 

  • Giorgi, F., Marinucci, M. R., Bates, G. T., 1993a: Development of a second generation regional climate model. I: Boundary layer and radiative transfer processes.Mon. Wea. Rev. 121, 2794–2813.

    Google Scholar 

  • Giorgi, F., Marinucci, M. R., Bates, G. T., De Canio, G., 1993b: Development of a second generation regional climate model. II: Convective processes and assimilation of lateral boundary conditions.Mon. Wea. Rev. 121, 2814–2832.

    Google Scholar 

  • Giorgi, F., Brodeur, C. S., Bates, G. T., 1994: Regional climate change scenarios over the United States produced with nested regional climate model.J. Climate 7, 375–399.

    Google Scholar 

  • Gregory, J. M., Mitchell, J. F. B., 1995: Simulation of daily variability of surface temperature and precipitation over Europe in the current 2×CO2 climates using the UMKO climate model.Quart. J. Roy. Meteor. Soc. 121, 1451–1476.

    Google Scholar 

  • Holtslag, A. A. M., Boville, B. A., 1993: Local versus non local boundary-layer diffusion in a global climate model.J. Climate 10, 1825–1842.

    Google Scholar 

  • Jones, R. G., Murphy, J. M., Nogeur, M., 1995: Simulation of climate change over Europe using a nested regionalclimate model. I: Assessment of control climate, including sensitivity to location of lateral boundaries.Quart. J. Roy. Meteor. Soc. 121, 1413–1450.

    Google Scholar 

  • Kerschgens, M., Pilz, U., Raschke, E., 1978: A modified two-stream approximation for computations of the solar radiation budget in a cloudy atmosphere.Tellus 30, 429–435.

    Google Scholar 

  • Kida, H., Koide, T., Sasaki, H., Chiba, M., 1991: A new approach for coupling a limited area model to a GCM for regional climate simulations.J. Meteor. Soc. Japan 69, 723–728.

    Google Scholar 

  • Legates, D. R., Willmott, C. J., 1990a: Mean seasonal and spatial variability in gauge-corrected global precipitation.Int. J. Climatol. 10, 111–127.

    Google Scholar 

  • Legates, D. R., Willmott, C. J., 1990b: Mean seasonal and spatial variability in global surface air temperature.Theor. Appl. Climatol. 41, 11–21.

    Google Scholar 

  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere.Bound.-Layer Meteor. 17, 187–202.

    Google Scholar 

  • Lüthi, D., Cress, A., Davies, H. C., Frei, C., Schär, C., 1996: Interannual variability of regional climate simulations.Theor. Appl. Climatol. 53, 185–209.

    Google Scholar 

  • Marinucci, M. R., Giorgi, F., 1992: A 2×CO2 climate change scenario over Europe generated using a limited area model nested in a general circulation model. I: Present day simulation.J. Geophys. Res. 97, 9989–10,009.

    Google Scholar 

  • Marinucci, M. R., Giorgi, F., Beniston, M., Wild, M., Tschuck, P., Ohmura, A., Bernasconi, A., 1995: High resolution Simulations of January and July climate over the western Alpine region with a nested regional climate modeling system.Theor. Appl. Climatol. 51, 119–138.

    Google Scholar 

  • McGregor, J. L., Walsh, K., 1994: Climate change simulation of Tasmanian precipitation using multiple nesting.J. Geophys. Res., (in press).

  • Roeckner, E., Arpe, K., Bengtsson, K. L., Brinkop, S. Dümenil, E., Esch, K. E., Lunkeit, F., Ponater, M., Rockel, B., Sausen, R. M., Schlese, U., Schubert, S., Windelband, M., 1992: Simulation of the present day climate with the ECHAM model. Impact of model physics and resolution.Max Planck Institute for Meteorology Report, No. 93.

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parametrization in large-scale models.Mon. Wea. Rev. 117, 1779–1800.

    Google Scholar 

  • Wild, M., Dümenil, L., Schulz, J.-P., 1996a: Regional climate simulation with a high resolution GCM: surface hydrology.Climate Dynamics 12, 755–774.

    Google Scholar 

  • Wild, M., Ohmura, A., Gilgen, H., Roeckner, E., Giorgetta, M., 1996b: Improved Representation of Surface and Atmospheric Radiation Budgets in the ECHAM4 General Circulation Model. Max Planck Institute for Meteorology.Report No.200, 32 pp.

  • Zdunkowski, W. G., Welch, R. M., Korb, G., 1980: An investigation of the structure of typical two-stream methods for the calculation of solar fluxes and heating rates in clouds.Beitr. Phys. Atmos. 53, 147–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 14 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotach, M.W., Marinucci, M.R., Wild, M. et al. Nested regional simulation of climate change over the Alps for the scenario of a doubled greenhouse forcing. Theor Appl Climatol 57, 209–227 (1997). https://doi.org/10.1007/BF00863614

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00863614

Keywords

Navigation