Skip to main content
Log in

Monovalent cation permeabilities of the potassium systems in the crab giant axon

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Permeability ratios for pairs of monovalent cations permeating the two potassium systems proposed for the giant axon of the crabCarcinus maenas (M. E. Quinta-Ferreira, E. Rojas & N. Arispe,J. Membrane Biol. 66:171–181, 1982b) were estimated from measurements of the reversal potential of the currents under voltage-clamp conditions. With K+ inside the axon, permeability ratios from the reversal potential of the currents through the late channel are:P Rb/P K=0.9,\(P_{NH_4 } \)/P K<0.2 andP Cs/P K=0.18. With Cs+ inside the ratios are:P K/P Cs=8.7,P Rb/P Cs=7.1 and\(P_{NH_4 } \)/P Cs=2.4. The analysis of the inward currents carried by Rb+ or NH +4 showed similar reversal potentials for the early transient component and the late sustained component. Whence, the sequence of permeabilities for the two types of potassium channels is:P K>P Rb>\(P_{NH_4 } \)>P Na=P Cs. The time constants for the activation of the two components recorded either in K-, Rb-, or NH4-artificial seawater are twice as large as the corresponding time constants measured in Na-artificial seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelman, W.J., Palti, Y. 1969. The influence of external potassium on the inactivation of sodium currents inthe giant axon of the squidLoligo pealei.J. Gen. Physiol. 53:685–703

    PubMed  Google Scholar 

  • Baker, P.F., Hodgkin, A.L., Meves, H. 1964. The effect of diluting the internal solution on the electrical properties of a perfused giant axon.J. Physiol. (London) 170:541–560

    Google Scholar 

  • Bezanilla, F., Armstrong, C.M., 1972. Negative conductance caused by entry of sodium and caesium ions into the potassium channels of squid giant axons.J. Gen. Physiol. 60:588–608

    Article  PubMed  Google Scholar 

  • Binstock, L., Lecar, H. 1969. Ammonium ion conductance in the squid giant axon.J. Gen. Physiol. 53:342–361

    PubMed  Google Scholar 

  • Boron, W.F., De Weer, P. 1976. Intracellular pH transients in squid axons caused by CO2, NH3 and metabolic inhibitors.J. Gen. Physiol. 67:91–112

    PubMed  Google Scholar 

  • Chandler, W.K., Meves, H. 1965. Voltage clamp experiments on internally perfused giant axons.J. Physiol. (London) 180:788–820

    Google Scholar 

  • Connor, J.A., Walter, D., McKown, R. 1977. Neural repetitive firing. Modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axonsBiophys. J. 18:81–102

    PubMed  Google Scholar 

  • Dubois, J. M. 1981. Evidence for the existence of three types of potassium channels in the frog Ranvier node membrane.J. Physiol. (London),318:297–316

    Google Scholar 

  • Frankenhaeuser, B. 1962. Instantaneous potassium currents in myelinated nerve fibers ofXenopus laevis.J. Physiol. (London) 160:46–53

    Google Scholar 

  • Goldman, D.E. 1943. Potential, impedance and rectification in membranes.J. Gen. Physiol. 27:37–60

    Article  Google Scholar 

  • Gorman, A.L.F., Woolum, J.C., Cornwall, C.M. 1982. Selectivity of the Ca-activated and light-dependent K channels for monovalent cations.Biophys. J. 38:319–322

    PubMed  Google Scholar 

  • Hagiwara, S., Eaton, D.G., Stuart, A.E., Rosenthal, N.P. 1972. Cation selectivity of the resting membrane of squid axon.J. Membrane Biol. 9:373–384

    Google Scholar 

  • Hille, B. 1973. Potassium channels in myelinated nerve: Selective permeability to small cations.J. Gen. Physiol. 61:669–686

    PubMed  Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952a. The dual effect of membrane potential on sodium conductance in the giant axon ofLoligo.J. Physiol. (London),116:497–506

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952b. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. (London) 117:500–544

    Google Scholar 

  • Hodgkin, A.L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (London) 108:37–77

    Google Scholar 

  • Marchais,D., Marty, A. 1979. Interaction of permeant ions with channels activated by acetylcholine inAplysia neurones.J. Physiol. (London) 297:9–45

    Google Scholar 

  • Moore, J.W., Anderson, N.G., Blaustein, M.P., Takata, M., Lettvin, J.Y., Pickard, W.F., Bernstein, T., Pooler, J. 1966. Alkali cation specificity of squid axon membrane.Ann. N. Y. Acad. Sci. 137:818–829

    PubMed  Google Scholar 

  • Mullins, L.J., Tiffert, G., Vassort, G., Whittembury, J. 1983. Effects of internal sodium and hydrogen ions and of external calcium ions and membrane potential on calcium entry in squid axons.J. Gen. Physiol. 338:295–319

    Google Scholar 

  • Nonner, W. 1968. A new voltage clamp method for Ranvier nodes.Pfluegers Arch. 309:176–192

    Google Scholar 

  • Quinta-Ferreira, M.E., Arispe N., Rojas, E. 1982a. Sodium currents in the giant axon of the crabCarcinus maenas.J. Membrane Biol. 66:159–169

    Google Scholar 

  • Quinta-Ferreira, M.E., Rojas, E., Arispe, N. 1982b. Potassium currents in the giant axon of the crabCarcinus maenas.J. Membrane Biol. 66:171–181

    Google Scholar 

  • Robinson, R.A., Stokes, R.H.. 1959. Electrolyte Solutions Butterworths, London (second edition)

    Google Scholar 

  • Rojas, E. 1975. Gating mechanism for the activation of sodium conductance in nerve membranes.Cold Spring Harbor Symp. Quant. Biol. XL:305–320

    Google Scholar 

  • Rojas, E., Atwater, I. 1968. An experimental approach to determine membrane charges in squid giant axons.J. Gen. Physiol. 51:131s-145s

    PubMed  Google Scholar 

  • Swenson, R.P., Armstrong, C.M. 1981. K channels close more slowly in the presence of external K and Rb.Nature (London) 291:427–429

    Google Scholar 

  • Tsien, R.W., Noble, D. 1969. A transition state theory approach to the kinetics of conductance changes in excitable membranes.J. Membrane Biol. 1:248–273

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinta-Ferreira, M.E., Soria, B. & Rojas, E. Monovalent cation permeabilities of the potassium systems in the crab giant axon. J. Membrain Biol. 84, 117–126 (1985). https://doi.org/10.1007/BF01872209

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872209

Key Words

Navigation