Skip to main content
Log in

A re-evaluation of the olivine-spinel geothermometer

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Irvine olivine-spinel geothermometer, as formulated by Jackson (1969), appears to yield magmatic temperatures when applied to plutonic rocks such as the Stillwater Complex but Evans and Wright (1972) have demonstrated that it gives temperatures in excess of 2,000 ° C when applied to volcanic assemblages. A re-evaluation of the geothermometer has shown that more realistic temperatures can be obtained for volcanic rocks by using a different free energy value of FeCr2O4 in the formulation. The revised geothermometer gives temperatures in the range 1,100–1,300 ° C for samples from Kilauea and 500–800 ° C for basic plutonic rocks from layered intrusions, indicating that Mg and Fe2+ have re-equilibrated at subsolidus temperatures in these intrusions as suggested by Irvine (1965). This theory was tested by heating uncrushed natural samples from layered intrusions to magmatic temperatures for periods ranging from two days to four weeks. The result was a marked increase in the Mg/Fe2+ ratio in the spinels and a decrease in the Mg/Fe2+ ratio in the olivines, confirming that considerable subsolidus re-equilibration had taken place in the unheated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arndt, N.T., Naldrett, A.J., Pyke, D.R.: Komatiitic and iron-rich tholeiitic lavas of Munro township, northeastern Ontario. J. Petrol. 18, 319–69 (1977) [30]

    Google Scholar 

  • Basu, A., MacGregor, I.D.: Chromite spinels from ultramafic xenoliths. Geochim. Cosmochim. Acta 39, 937–45 (1975) [29]

    Article  Google Scholar 

  • Bunch, T.E., Keil, K., Oslen, E.: Mineralogy and petrology of silicate inclusions in iron meteorites. Contrib. Mineral. Petrol. 25, 297–340 (1970) [28]

    Article  Google Scholar 

  • Campbell, I.H.: A study of macro-rhythmic layering and cumulate processes in the Jimberlana Intrusion, Western Australia. Part I: Upper layered series. J. Petrol. 18, 183–214 (1977)

    Google Scholar 

  • Chan, J.C., Alcock, C.B., Jacob, K.T.: Electrochemical measurement of the oxygen potential of the system Fe-Al2O3-FeAl2O4 in the temperature range 750–1,600 ° C. Can. Met. Quart. 12, 439–43 (1973)

    Google Scholar 

  • Evans, B.W., Frost, B.R.: Chrome-spinel in progressive metamor-phism — a preliminary analysis. Geochim. Cosmochim. Acta 39, 959–72 (1975)

    Article  Google Scholar 

  • Evans, B.W., Wright, T.L.: Composition of liquidus chromite from the 1959 (Kilauea Iki) and 1965 (Makaopuhii) eruptions of the Kilauea volcano. Am. Mineral. 57, 217–30 (1972) [1]

    Google Scholar 

  • Fudali, R.F., Noonan, A.F.: Gobabeg, a new chondrite: the coexistence of equilibrated silicates and unequilibrated spinels. Meteoritics 1, 31–39 (1975) [27]

    Google Scholar 

  • Fujii, T.: Fe-Mg partitioning between olivine and spinel. Carnegie Inst. Geophys. Lab. Rep. 1976–1977, 563–9 (1978)

  • Green, D.H.: The petrogenesis of the high-temperature peridotite intrusion in the Lizard area, Cornwall. J. Petrol. 5, 134–88 (1964) [25]

    Google Scholar 

  • Hill, R.E.T., Roeder, P.L.: The crystallisation of spinel from basaltic liquid as a function of oxygen pressure. J. Geol. 82, 709–29 (1974)

    Article  Google Scholar 

  • Himmelberg, G., Loney, R.A.: Vulcan peak alpine-type harzburgite, Southwestern Oregon. Geol. Soc. Am. Bull. 84, 1585–1600 (1973) [24]

    Article  Google Scholar 

  • Irvine, T.N.: Chromian spinel as a petrogenetic indicator. I. Theory. Can. J. Earth Sci. 2, 648–72 (1965)

    Google Scholar 

  • Irvine, T.N.: Chromian spinel as a petrogenetic indicator. II. Petrologic application. Can. J. Earth. Sci. 4, 71–103 (1967)

    Article  Google Scholar 

  • Jackson, E.D.: Chemical variation in coexisting chromite and olivine in the chromitite zones of the Stillwater complex. Econ. Geol. Mon. 4, 41–71 (1969) [3]

    Google Scholar 

  • Jacob, K.T., Alcock, C.B.: The oxygen potential of the systems Fe+FeCr2O4+Cr2O3 and Fe+FeV2O4+V2O3 in the temperature range 750–1,600 ° C. Metal. Trans. 6B, 215–9 (1975) [16]

    Article  Google Scholar 

  • Janaf thermodynamic tables, Second edition, C.R. Stull and H. Prophet, eds. Nat. Stand. Ref. Data Ser. 37, 1141 (1971) [17]

    Google Scholar 

  • King, E.G., Barany, R., Weller, W.W., Pankratz, L.B.: Thermodynamic properties of forsterite and serpentine. U.S. Bur. Mines Rept. Inv. 6962, 19 (1967)

    Google Scholar 

  • McLean, A., Ward, R.G.: Thermodynamics of hercynite formation. J. Iron Steel Inc. 204, 8–13 (1966) [20]

    Google Scholar 

  • Medaris, L.G.: High-pressure peridotites in southwestern Oregon. Geol. Soc. Am. Bull. 83, 41–58 (1972) [5]

    Google Scholar 

  • Medaris, L.G.: Coexisting spinels and silicates in alpine peridotites of the granulite facies. Geochim. Cosmochim. Acta 39, 947–58 (1975) [26]

    Article  Google Scholar 

  • Muller, F., Kleppa, O.J.: Thermodynamics of formation of chromite spinels. J. Inorg. Nucl. Chem. 35, 2673–8 (1973) [13]

    Article  Google Scholar 

  • Nafziger, R.H., Muan, A.: Equilibrium phase compositions and thermodynamic properties of olivines and pyroxenes in the system MgO-“FeO”-SiO2. Am. Mineral. 52, 1364–86 (1967)

    Google Scholar 

  • Novokhatskii, I.A., Lenev, L.M.: Thermodynamic properties of Cr2O3 and FeCr2O4 at high temperatures. Russ. J. Inorg. Chem. 11, 1078–81 (1966) [14]

    Google Scholar 

  • O'Hara, M.J.: Mineral facies in ultrabasic rocks. In: Ultramafic and related rocks (P.J. Wyllie, ed.), pp. 7–17. New York: John Wiley 1967

    Google Scholar 

  • Potter, E.A.: Silicate liquid inclusions in olivine crystals from Kilauea, Hawaii. Unpublished M.Sc. thesis, Queen's University (1975)

  • Rezukhina, T.N., Levitskii, V.A., Istomin, B.A.: Thermodynamic properties of FeCr2O4 from electrochemical measurements. Sov. Electrochem. 1, 404–7 (1965) [15]

    Google Scholar 

  • Rezukhina, T.N., Levitskii, V.A., Pozhegov, P.: Thermodynamic properties of iron aluminate. Russ. J. Phys. Chem. 37, 358–9 (1963) [21]

    Google Scholar 

  • Robie, R.A., Waldbaum, D.R.: Thermodynamic properties of minerals and related substances. U.S. Geol. Surv. Bull. 1259, pp. 256 (1968) [18]

    Google Scholar 

  • Schwerdtfeger, K., Muan, A.: Activities in olivine and pyroxenoid solid solutions of the system Fe-Mn-Si-O at 1,150 ° C. Trans. Metall. Soc. A.I.M.E. 236, 201–11 (1966)

    Google Scholar 

  • Shearer, J.A., Kleppa, O.J.: The enthalpies of MgAl2O4, MgSiO3, Mg2SiO4 and Al2SiO5 by oxide melt calorimetry. J. Inorg. Nucl. Chem. 35, 1073–7 (1973) [17]

    Article  Google Scholar 

  • Sinton, J.M.: Equilibration history of the basal alpine-type peridotite, Red Mountain, New Zealand. J. Petrol. 18, 216–46 (1977) [4]

    Google Scholar 

  • Speidel, D.H., Osborn, E.F.: Element distribution among coexisting phases in the system MgO-FeO-Fe2O3-SiO2 as a function of temperature and oxygen fugacity. Am. Mineral. 52, 1139–53 (1967)

    Google Scholar 

  • Tretjakow, J.D. Von, Schmalzried, H.: Zur Thermodynamik von Spinellphasen. Ber. Bunsenges. Phys. Chem. 69, 396–402 (1965) [12]

    Google Scholar 

  • Wood, B.J., Fraser, D.G.: Elementary thermodynamics for geologists. 303 p. London: Oxford Press 1976

    Google Scholar 

  • Wood, B.J., Nicholls, J.: The thermodynamic properties of reciprocal solid solutions. Contrib. Mineral. Petrol. 66, 389–400 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roeder, P.L., Campbell, I.H. & Jamieson, H.E. A re-evaluation of the olivine-spinel geothermometer. Contr. Mineral. and Petrol. 68, 325–334 (1979). https://doi.org/10.1007/BF00371554

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371554

Keywords

Navigation