Skip to main content
Log in

Unidirectional saturation spectroscopy, II

General lifetimes, interpretations and analogies

  • Invited Paper
  • Published:
Applied physics Aims and scope Submit manuscript

Abstract

The general probe absorption coefficient derived in Part I is specialized to homogeneous- and inhomogeneous-broadening limits and illustrated as the dipole lifetime is increased from 0 to values comparable to the level lifetimes. This progression reveals the relation between pulsation dips of the short-dipole lifetime limit and the dynamic Stark effect in general. Interpretations of the coherent interactions involved are given in terms of modulator and Raman effects and of dressed atoms. The single-probe unidirectional pulsation dip is shown to be a special case of the grating dip in which the fringe spacing becomes infinite. Analogies with three-level systems are given in which both two and three-level cases are seen to obey an “equal-area theorem”, and to involve level crossing. Some comparison is made with corresponding spectroscopy in which spontaneous emission provides the probe radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.SargentIII, P.E.Toschek, H.-G.Danielmeyer: Appl. Phys11, 55 (1976)

    Article  ADS  Google Scholar 

  2. J.Hambenne, M.SargentIII: Phys. Rev. A13, 784 (1976)

    Article  ADS  Google Scholar 

  3. E.V.Baklanov, V.P.Chebotayev: Zh. Eksp. Teor. Fiz.61, 922 (1971) [Sov. Phys. JETP34, 490 (1972)]

    Google Scholar 

  4. M.SargentIII: Appl. Phys.9, 127 (1976)

    Article  ADS  Google Scholar 

  5. S.H.Autler, C.H.Townes: Phys. Rev.100, 703 (1955)

    Article  ADS  Google Scholar 

  6. A.Schabert, R.Keil, P.E.Toschek: Appl. Phys.6, 181 (1975)

    Article  ADS  Google Scholar 

  7. An equation reference like (I. 11) refers to Eq. (11) of Ref. 1

  8. The population differenceD is traditionally taken to decay at the rate −D/T 1 to its equilibrium valueD eq in the absence of the applied field interaction contribution (represented by\(\dot D_v \)), that is,\(\dot D = - (D - D_{eq} )/T_1 + \dot D_v \). An upper level populationN a decaying with the rateγ a N a to a non-decaying ground lower levelb causes the populationN b to correspondingly increase at the same rate. Hence the population differenceD=N a N b decays at double that rate, namely\(\dot D = - 2\gamma _a N_a + \dot D_v = - \gamma _a (D + N) + \dot D_v \), whereN=N a +N b . This givesT 1=1/γ a } andD eq=−N

  9. M.Sargent III: “Relaxation of Hot Holes in p-Ge”, to be published

  10. W.R.Bennett,Jr.: Phys. Rev.126, 580 (1962)

    Article  ADS  Google Scholar 

  11. T.Hänsch, P.E.Toschek: IEEE J. Quant. Electr. QE-4, 530 (1968).

    Article  Google Scholar 

  12. Gain has also been predicted with completely modulated light: see S.Feneuille, M.-G.Schweighofer, G.Oliver: J. Phys., to be published

  13. M.SargentIII, M.O.Scully, W.E.Lamb,Jr.:Laser Physics (Addison-Wesley Publ. Co., Reading, Mass 1974) Chap. 9

    Google Scholar 

  14. M.SargentIII: InApplications of Lasers to Atomic and Molecular Physics, Proc. Les Houches Summer School, Ed. by R. Balian and S. Haroche (North-Holland Publ. Co., Amsterdam 1976)

    Google Scholar 

  15. P.E.Toschek: In——, Proc. Les Houches Summer School, Ed. by R. Balian and S. Haroche (North-Holland Publ. Co., Amsterdam 1976) Les Houches lectures, pp. cit., [14]

    Google Scholar 

  16. C.Cohen-Tannoudji: 1968Cargèse Lectures in Physics 2, Ed. M.Lévy (Gordon and Breach, New York)

    Google Scholar 

  17. S.Haroche: Ann. Phys. Paris6, 189 (1971). See also K.Kolwas, M.Kolwas: Opt. Comm.17, 149 (1976) for a treatment involving AM modulated light

    Google Scholar 

  18. S.Feneuille: J. Phys. B7, 1981 (1974), esp. Fig. 1

    Article  ADS  MathSciNet  Google Scholar 

  19. P.Pringsheim:Fluorescence and Phosphorescence, (Interscience Publishers, New York 1949)

    Google Scholar 

  20. W.Holzer, W.F.Murphey, H.J.Bernstein: J. Chem. Phys.52, 399 (1970)

    Article  Google Scholar 

  21. For Δn 2>2, two interactions of the saturator light must take place consecutively, thus contributing only to ordinary saturation

  22. L.S.Vasilenko, V.P.Chebotayev, A.V.Shishayev: Sov. Phys. JETP Lett.12, 161 (1970)

    Google Scholar 

  23. B.Cagnac, G.Grynberg, F.Biraben: J. de Physique34, 845 (1973)

    Google Scholar 

  24. E.V.Baklanov, V.P.Chebotayev: Zh. Eksp. Teor. Fiz.60, 552 (1971) [Sov. Phys. JETP33, 300 (1971)]

    Google Scholar 

  25. T.Hänsch, P.E.Toschek: Z. Physik236, 213 (1970)

    Article  Google Scholar 

  26. J.B.Feldman, M.S.Feld: Phys. Rev. A5, 899 (1972)

    Article  ADS  Google Scholar 

  27. J.B.Feldman, M.S.Feld: Phys. Rev. A12, 1013 (1975)

    Article  ADS  Google Scholar 

  28. T.Yajima: J. Phys. Soc. Jap.16, 1594 (1961)

    Google Scholar 

  29. K.Shimoda, T.Shimizu: Progr. in Quantum Electronics2, 45 (1972)

    Article  Google Scholar 

  30. H.R.Schlossberg, A.Javan: Phys. Rev.150, 267 (1966)

    Article  ADS  Google Scholar 

  31. M.SargentIII, W.E.Lamb,Jr., R.L.Fork: Phys. Rev.164, 450 (1967)

    Article  ADS  Google Scholar 

  32. B.Decomps, M.Dumont: Compt. Rend. B265, 249 (1967)

    Google Scholar 

  33. M.SargentIII: Phys. Rev. A14, 524 (1976)

    Article  ADS  Google Scholar 

  34. See, e.g., G.W.Series: InQuantum Optics, Proc. Scottish Universities Summer School in Physics, 1969, Ed. by S.M.Kay and A.Maitland (Academic Press, New York 1970) p. 395

    Google Scholar 

  35. W.Hanle: Z. Physik30, 93 (1924)

    Article  Google Scholar 

  36. G.W.Series: Proc. Phys. Soc.89, 1017 (1966)

    Article  Google Scholar 

  37. W.Heitler:The Quantum Theory of Radiation (Oxford University Press, London 1954)

    MATH  Google Scholar 

  38. A.Smekal: Z. Physik34, 81 (1925)

    Article  Google Scholar 

  39. This point in the context of saturation spectroscopy was called to our attention by Paul Liao. An outline of the diagonalization procedure was given in C.Cohen-Tannoudji, B.Diu, F.Laloë:Méchanique quantique, ComplémentF IV, Sec. 2b (Hermann, Paris 1973)

  40. B.R.Mollow: Phys. Rev.188, 1969 (1969)

    Article  ADS  Google Scholar 

  41. C.Cohen-Tannoudji: InLaser Spectroscopy, Proc. 2nd Intern. Laser Spectroscopy Conf., Megève, France, 1975 (Springer, Berlin, Heidelberg, New York 1975) p. 324

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work performed as a Humboldt awardee in Germany.

Work supported in part by the Space and Missiles Systems Organization, Los Angeles, California.

Work supported by the Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sargent, M., Toschek, P.E. Unidirectional saturation spectroscopy, II. Appl. Phys. 11, 107–120 (1976). https://doi.org/10.1007/BF00920589

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00920589

PACS Codes

Navigation