Skip to main content
Log in

Classical and quantum mechanical systems of Toda-lattice type

II. Solutions of the classical flows

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Solutions to the classical periodic and non-periodic Toda lattice type Hamiltonian systems are expressed in terms of an Iwasawa-type factorization of a “large” Lie group. The scattering of these systems is determined in the non-periodic case. For the generalized periodic Toda lattices a generalization of Kostant's formula is obtained using standard representations of affine Lie groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.E.: Foundations of mechanics (2nd edn.). Reading, MA: Benjamin/Cummings 1978

    Google Scholar 

  2. Adler, M.: On a trace functional for pseudo-differential operators and the symplectic structure of the Korteweg-deVries equation. Invent. Math.50, 219–248 (1979)

    Google Scholar 

  3. Adler, M., van Moerbeke, P.: Completely integrable systems, Euclidean Lie algebras, and curves. Adv. Math.38, 267–317 (1980)

    Google Scholar 

  4. Bernat, P. et al.: Représentations des groupes de Lie résolubles. Paris: Dunod 1972

    Google Scholar 

  5. Bourbaki, N.: Groupes et algébres de Lie. Chaps. II–III (Éléments de mathématique, Fasc. XXXVII). Paris: Hermann 1972

    Google Scholar 

  6. Bourbaki, N.: Groupes et algébres de Lie, Chaps. IV–VI (Éléments de mathématique, Fasc. XXXIV). Paris: Hermann 1968

    Google Scholar 

  7. Goodman, R., Wallach, N.R.: Whittaker vectors and conical vectors. J. Funct. Anal.39, 199–279 (1980)

    Google Scholar 

  8. Goodman, R., Wallach, N.R.: Classical and quantum-mechanical systems of Toda lattice type. I. Commun. Math. Phys.83, 355–386 (1982)

    Google Scholar 

  9. Goodman, R., Wallach, N.R.: Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle. J. Reine Angew. Math.347, 69–133 (1984)

    Google Scholar 

  10. Guillemin, V., Sternberg, S.: On the method of Symes for integrating systems of Toda type. Lett. Math. Phys. (to appear)

  11. Hancock, H.: Theory of elliptic functions. New York: Dover 1958

    Google Scholar 

  12. Helgason, S.: Differential geometry and symmetric spaces. New York: Academic Press 1962

    Google Scholar 

  13. Helgason, H.: Differential geometry, Lie groups, and symmetric spaces. New York: Academic Press 1978

    Google Scholar 

  14. Joseph, A.: The minimal orbit in a simple Lie algebra and its associated maximal ideal. Ann. Sci. École Norm. Sup. (4)9, 1–29 (1976)

    Google Scholar 

  15. Kostant, B.: The Solution to a generalized Toda lattice and representation theory. Adv. Math.34, 195–338 (1979)

    Google Scholar 

  16. Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math.16, 197–220 (1975)

    Google Scholar 

  17. Olshanetsky, M.A., Perelomov, A.M.: Explicit solutions of classical generalized Toda models. Invent. Math.54, 261–269 (1979)

    Google Scholar 

  18. Ratiu, T.: Involution theorems. In: Geometric methods in mathematical physics. Lecture Notes in Mathematics, Vol. 775. Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  19. Reyman, A.G., Semenov-Tian-Shansky, M.A.: Reduction of Hamiltonian systems, affine Lie algebras and Lax equations. Invent. Math.54, 81–100 (1979)

    Google Scholar 

  20. Reyman, A.G., Semenov-Tian-Shansky, M.A.: Reduction of Hamiltonian systems, affine Lie algebras and Lax equations. II. Invent. Math.63, 423–432 (1981)

    Google Scholar 

  21. Rutishauser, H.: Vorlesungen über numerische Mathematik (Bd. 2). Basel: Birkhäuser 1976

    Google Scholar 

  22. Semenov-Tian-Shansky, M.A.: Group-theoretical aspects of completely integrable systems. In: Twistor geometry and non-linear systems. Lecture Notes in Mathematics, Vol. 970. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  23. Symes, W.W.: Systems of Toda type, inverse spectral problems, and representation theory. Invent. Math.59, 13–51 (1980)

    Google Scholar 

  24. Symes, W.W.: Hamiltonian group actions and integrable systems. Physica D1, 339–374 (1980)

    Google Scholar 

  25. Wallach, N.R.: Harmonic analysis on homogeneous spaces. New York: Dekker 1973

    Google Scholar 

  26. Warner, G.: Harmonic analysis on semi-simple Lie groups. I. Berlin, Heidelberg, New York: Springer 1972

    Google Scholar 

  27. Whittaker, E.T., Watson, G.N.: A course of modern analysis. Cambridge: Cambridge University Press 1927

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Research partially supported by NSF Grant MCS 83-01582

Research partially supported by NSF Grant MCS 79-03153

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodman, R., Wallach, N.R. Classical and quantum mechanical systems of Toda-lattice type. Commun.Math. Phys. 94, 177–217 (1984). https://doi.org/10.1007/BF01209301

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01209301

Keywords

Navigation