Skip to main content
Log in

A Micromechanical Model of Airway-Parenchymal Interdependence

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The forces of parenchymal interdependence in the lung are potent inhibitors of airway smooth muscle shortening, as evidenced by the marked dependence of bronchial responsiveness on lung volume. In this study we developed a mathematical-computer model of the effects of parenchymal interdependence on airway smooth muscle shortening. A three-dimensional network of cuboidal alveolar walls was tethered at its boundaries and surrounded a single airway with mechanical properties identical to the alveolar parenchyma. The walls were assigned highly nonlinear properties so that the pressure-volume behavior of the model matched that measured in dogs. Constriction of the airway was achieved by increasing the circumferential tension in the airway wall, and then solving the force-balance equations of the model to calculate the equilibrium configurations of the airway wall and all the interconnecting alveolar walls. The changes in airway resistance predicted by the model at various transpulmonary pressures (P tp were compared to those obtained by the alveolar capsule oscillator technique in dogs during induced bronchoconstriction at various P tp (Balassy et al., J. Appl. Physiol. 78:875–880, 1995). The model matched the data reasonably well at P tp values above about 0.5 kPa, but was too responsive at lower P tp We were able to make the model match the data at all P tpby including an additional stiffness term, such as might conceivably arise from the airway wall itself. ©

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, A., E. A. Cowley, J. H. T. Bates, and D. H. Eidelman. Airway-parenchymal interdependence following airway contraction in rat lung explants. J. Appl. Physiol.85:231-237, 1998.

    Google Scholar 

  2. Angus, G. E., and W. M. Thurlbeck. Number of alveoli in the human lung. J. Appl. Physiol.32:483-485, 1972.

    Google Scholar 

  3. Balassy, Z., M. Mishima, and J. H. T. Bates. Changes in regional lung impedance after intravenous histamine bolus in dogs: Effects of lung volume. J. Appl. Physiol.78:875-880, 1995.

    Google Scholar 

  4. Bates, J. H. T., A.-M. Lauzon, G. S. Dechman, G. N. Maksym, and T. F. Schuessler. Temporal dynamics of pulmonary response to intravenous histamine in dogs: Effects of dose and lung volume. J. Appl. Physiol.76:616-626, 1994.

    Google Scholar 

  5. Brown, X., and X. Mitzner. Effect of lung inflation and airway muscle tone on airway diameter in vivo. J. Appl. Physiol. 80:1581–1588.

  6. Davey, B. L. K., and J. H. T. Bates. Regional lung impedance from forced oscillations through alveolar capsules. Respir. Physiol.91:165-182, 1993.

    Google Scholar 

  7. Ding, D. J., J. G. Martin, and P. T. Macklem. Effects of lung volume on maximal methacholine-induced bronchoconstriction in normal humans. J. Appl. Physiol.62:1324-1330, 1987.

    Google Scholar 

  8. Ebina, M., T. Takahashi, T. Chiba, and M. Motomiya. Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma. Am. Rev. Respir. Dis.148:720-726, 1993.

    Google Scholar 

  9. Fukaya, H., C. J. Martin, A. C. Young, and S. Kaysura. Mechanical properties of alveolar walls. J. Appl. Physiol.25:689-695, 1968.

    Google Scholar 

  10. Gunst, S. J., D. O. Warner, T. A. Wilson, and R. E. Hyatt. Parenchymal interdependence and airway response to methacholine in excised dog lobes. J. Appl. Physiol.65:2490-2497, 1988.

    Google Scholar 

  11. Hajji, M. A., T. A. Wilson, and S. J. Lai-Fook. Improved measurements of shear modulus and pleural membrane tension of the lung. J. Appl. Physiol.47:175-181, 1979.

    Google Scholar 

  12. Hill, M. J., T. A. Wilson, and R. K. Lambert. Effects of surface tension and intraluminal fluid on mechanics of small airways. J. Appl. Physiol.82:233-239, 1997.

    Google Scholar 

  13. Horsfield, K., W. Kemp, and S. Philips. An asymmetrical model of the airways of the dog lung. J. Appl. Physiol. 52:21–26, 1982.

    Google Scholar 

  14. Kenyon, C. M., and P. T. Macklem. Modelling parenchymal shear modulus using a force balance analysis for large strains. Am. Rev. Respir. Dis.147:A963, 1993.

    Google Scholar 

  15. Kimmel, E., and B. Budiansky. Surface tension and the dodecahedron model for lung elasticity. Trans. ASME, J. Biomech. Eng. 112:160–167, 1990.

    Google Scholar 

  16. Lai-Fook, S. J., R. E. Hyatt, J. R. Rodarte, and T. A. Wilson. Behavior of artificially produced holes in lung parenchyma. J. Appl. Physiol. 43:648–655, 1977.

    Google Scholar 

  17. Lai-Fook, S. J. A continuum mechanics analysis of pulmonary vascular interdependence in isolated dog lobes. J. Appl. Physiol. 46:419–429, 1979.

    Google Scholar 

  18. Lambert, R. K., S. L. Codd, M. R. Alley, and R. J. Pack. Physical determinants of bronchial mucosal folding. J. Appl. Physiol.77:1206-1216, 1994.

    Google Scholar 

  19. Lambert, R. K., and P. D. Paré. Lung parenchymal shear modulus, airway wall remodeling, and bronchial hyperresponsiveness. J. Appl. Physiol.83:140-147, 1997.

    Google Scholar 

  20. Lauzon, A.-M., G. Dechman, and J. H. T. Bates. On the use of the alveolar capsule technique to study bronchoconstriction. Respir. Physiol.99:139-146, 1995.

    Google Scholar 

  21. Macklem, P. T., Bronchial hyperresponsiveness. Chest87:1585-1595, 1985.

    Google Scholar 

  22. Macklem, P. T. A theoretical analysis of the effect of airway smooth muscle load on airway narrowing. Am. J. Respir. Crit. Care Med.153:83-89, 1996.

    Google Scholar 

  23. Mead, J., T. Takishima, and D. Leith. Stress distribution in lungs: A model of pulmonary elasticity. J. Appl. Physiol.28:596-608, 1970.

    Google Scholar 

  24. Mishima, M., Z. Balassy, and J. H. T. Bates. Assessment of local lung impedance by the alveolar capsule oscillator in dogs: A model analysis. J. Appl. Physiol.80:1165-1172, 1996.

    Google Scholar 

  25. Moreno, R. H., C. Lisboa, J. C. Hogg, and P. D. Pare. Limitation of airway smooth muscle shortening by cartilage stiffness and lung elastic recoil in rabbits. J. Appl. Physiol.75:738-744, 1993.

    Google Scholar 

  26. Nagase, T., J. G. Martin, and M. S. Ludwig. Comparative study of mechanical interdependence: Effect of lung volume on raw during induced constriction. J. Appl. Physiol.75:2500-2505, 1993.

    Google Scholar 

  27. Robatto, F. M., S. Simard, H. Orana, P. T. Macklem, and M. S. Ludwig. Effect of lung volume on plateau response of airways and tissue to methacholine in dogs. J. Appl. Physiol.73:1908-1913, 1992.

    Google Scholar 

  28. Sasaki, H., F. G. Hoppin, Jr., and T. Takishima. Peribronchial pressure in excised dog lungs. J. Appl. Physiol.45:858-869, 1978.

    Google Scholar 

  29. Sasaki, H., and F. G. Hoppin, Jr. Hysteresis of contracted airway smooth muscle. J. Appl. Physiol.47:1251-1262, 1979.

    Google Scholar 

  30. Sorenson, H. W. Parameter Estimation. New York: Marcel Dekker, 1980, pp. 61–65.

  31. Stamenovic, D., and T. A. Wilson. A strain energy function for lung parenchyma. ASME J. Biomech. Eng.107:81-86, 1985.

    Google Scholar 

  32. Stamenovic, D., and J. C. Smith. Surface forces in lungs. III. Alveolar surface tension and elastic properties of lung parenchyma. J. Appl. Physiol.60:1358-1362, 1986.

    Google Scholar 

  33. Sugihara, T., C. J. Martin, and J. Hildebrandt. Length-tension properties of alveolar will in man. J. Appl. Physiol.30:874-878, 1971.

    Google Scholar 

  34. Wiggs, B. R., R. Moreno, J. C. Hogg, C. Hilliam, and P. D. Paré. A model of the mechanics of airway narrowing. J. Appl. Physiol.69:849-860, 1990.

    Google Scholar 

  35. Wiggs, B. R., C. A. Hrousis, J. M. Drazen, and R. D. Kamm. On the mechanism of mucosal folding in normal and asthmatic airways. J. Appl. Physiol.83:1814-1821, 1997.

    Google Scholar 

  36. Wilson, T. A. A continuum analysis of a two-dimensional mechanical model of the lung parenchyma. J. Appl. Physiol.33:472-478, 1972.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adler, A., Bates, J.H.T. A Micromechanical Model of Airway-Parenchymal Interdependence. Annals of Biomedical Engineering 28, 309–317 (2000). https://doi.org/10.1114/1.270

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.270

Navigation