Skip to main content
Log in

The continuous-spin Ising model, g0∶φ4d field theory, and the renormalization group

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We have used the method of high-temperature series expansions to investigate the critical point properties of a continuous-spin Ising model and g0∶φ4d Euclidean field theory. We have computed through tenth order the hightemperature series expansions for the magnetization, susceptibility, second derivative of the susceptibility, and the second moment of the spin-spin correlation function on eight different lattices. Our analysis of these series is made using integral and Padé approximants. In three dimensions we find that hyperscaling fails for sufficiently Ising-like systems; the strong coupling limit of g0∶φ43 depends on how the ultraviolet cutoff is removed. The level contours of the renormalized coupling constant for this model in theg 0, correlation-length plane exhibit a saddle point. If the ultraviolet cutoff is removed beforeg 0→ ∞, the usual field theory results and the renormalization-group fixed point with hyperscaling is obtained. If the order of these limits is reversed, the Ising model limit where hyperscaling fails and the field theory is trivial is obtained. In four dimensions, we find that hyperscaling fails completely; g0∶φ44 is trivial for all g0 when the ultraviolet cutoff is removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Widom,J. Chem. Phys. 43:3892, 3898 (1965); L. P. Kadanoff,Physics 2:263 (1966).

    Google Scholar 

  2. M. E. Fisher,Rep. Prog. Phys. 30:615 (1967).

    Google Scholar 

  3. G. Stell, inProceedings of the International School of Physics “Enrico Fermi,” Critical Phenomena, Course LI, M. S. Green, ed. (Academic, New York, 1971), p. 188, and references therein. See also G. Stell,Phys. Rev. B 5:981 (1972).

    Google Scholar 

  4. M. E. Fisher, inProceedings of the Twenty-Fourth Nobel Symposium on Collective Properties of Physical Systems, Aspenäsgården, Sweden, 1973, B. Lundquist and S. Lundquist, eds. (Academic, New York, 1973), p. 16.

    Google Scholar 

  5. L. P. Kadanoff, inProceedings of the International School of Physics “Enrico Fermi,” Critical Phenomena, Course LI, M. S. Green, ed. (Academic, New York, 1971), p. 100; L. P. Kadanoff, inPhase Transitions and Critical Phenomena, C. Domb and M. S. Green, eds. (Academic, New York, 1976), Vol. 5A, p. 1.

    Google Scholar 

  6. C. Domb, inPhase Transitions and Critical Phenomena, C. Domb and M. S. Green, eds. (Academic, New York, 1974), Vol. 3, p. 357.

    Google Scholar 

  7. L. P. Kadanoff,Phys. Rev. 188:859 (1969).

    Google Scholar 

  8. J. Stephenson,J. Math. Phys. 5:1009 (1964).

    Google Scholar 

  9. B. M. McCoy and T. T. Wu,The Two-dimensional Ising Model (Harvard University Press, Cambridge, Massachusetts, 1973), pp. 186–199.

    Google Scholar 

  10. B. M. McCoy, C. A. Tracy, and T. T. Wu,Phys. Rev. Lett. 38:793 (1977); B. M. McCoy and T. T. Wu,Phys. Rev. D 18:1243, 1253, 1259 (1978);Scientia Sinica XXII:1021 (1979).

    Google Scholar 

  11. G. A. Baker, Jr.,Phys. Rev. B 15:1552 (1977).

    Google Scholar 

  12. D. S. Gaunt and M. F. Sykes,J. Phys. A 12:L25 (1979); D. S. Gaunt, M. F. Sykes, and S. McKenzie,J. Phys. A 12:A871 (1979).

    Google Scholar 

  13. B. G. Nickel and B. Sharpe,J. Phys. A 12:1819 (1979).

    Google Scholar 

  14. J. J. Rehr,J. Phys. A 12:L179 (1979); J. Zinn-Justin,J. Phys. (Paris) 40:969 (1979); S. McKenzie,J. Phys. A 12:L185 (1979); J. W. Essam and M. E. Fisher,J. Chem. Phys. 38:802 (1963).

    Google Scholar 

  15. P. C. Hohenberg, inMicroscopic Structure and Dynamics of Liquids, J. Dupuy and A. J. Dianoux, eds. (Plenum, New York, 1979).

    Google Scholar 

  16. J. V. Sengers and J. M. H. Levelt Sengers, inProgress in Liquid Physics, C. A. Croxton, ed. (Wiley, Chichester, U.K., 1978), p. 103.

    Google Scholar 

  17. R. B. Griffiths,Phys. Rev. Lett. 24:715 (1970); J. M. Kincaid and E. G. D. Cohen,Phys. Rep. 22C:57 (1975).

    Google Scholar 

  18. K. G. Wilson and J. Kogut,Phys. Rep. 12C:75 (1974).

    Google Scholar 

  19. E. Brezin, J. C. LeGuillou, and J. Zinn-Justin, inPhase Transitions and Critical Phenomena, C. Domb and M. S. Green, eds. (Academic, New York, 1976), Vol. 6, p. 127.

    Google Scholar 

  20. K. Symanzik,J. Math. Phys. 7:510 (1966).

    Google Scholar 

  21. G. A. Baker, Jr.,J. Math. Phys. 16:1324 (1975).

    Google Scholar 

  22. M. A. Moore,Lett. Nuovo Cimento 3:275 (1972); C. DiCastro,Rev. Nuovo Cimento 1:199 (1971).

    Google Scholar 

  23. K. Symanzik, inLocal Quantum Field Theory, R. Jost, ed. (Academic, New York, 1969), p. 152.

    Google Scholar 

  24. J. D. Bjorken and S. D. Drell,Relativistic Quantum Fields (McGraw-Hill, New York, 1965).

    Google Scholar 

  25. N. N. Bogolubov and D. V. Shirkov,Introduction to the Theory of Quantized Fields (Interscience, New York, 1959).

    Google Scholar 

  26. T. H. Berlin and M. Kac,Phys. Rev. 86:821 (1952).

    Google Scholar 

  27. G. Caginalp, Theφ4 Lattice Field Theory as an Asymptotic Expansion about the Ising Limit, The Rockefeller University, preprint (1979); F. Constantinescu,Phys. Rev. Lett. 43:1632 (1979); C. M. Bender, F. Cooper, G. S. Garalnik, and D. Sharp,Phys. Rev. D 19:865 (1979).

  28. J. Glimm and A. Jaffe, The Coupling Constant in a φ4 Field Theory, The Rockefeller University, preprint (1979).

  29. W. Ford and G. E. Uhlenbeck, inStudies in Statistical Mechanics, J. de Boer, ed. (North-Holland, Amsterdam, 1962), Vol. 1, p. 119.

    Google Scholar 

  30. R. Schrader,Phys. Rev. B 14:172 (1976); G. A. Baker, Jr., and S. Krinsky,J. Math. Phys. 18:590 (1977).

    Google Scholar 

  31. R. Schrader,Commun. Math. Phys. 49:131 (1976);50:97 (1976);Ann. Inst. Henri Poincaré 26:295 (1977); R. Schrader and E. Tränkle, A Possible Constructive Approach toφ 44 IV, Free University of Berlin, preprint (1980).

    Google Scholar 

  32. G. A. Baker, Jr., B. G. Nickel, M. S. Green, and D. Meiron,Phys. Rev. Lett. 36:1351 (1976); G. A. Baker, Jr., B. G. Nickel, and D. Meiron,Phys. Rev. B 17:1365 (1978).

    Google Scholar 

  33. J. C. LeGuillou and J. Zinn-Justin,Phys. Rev. Lett. 39:95 (1977).

    Google Scholar 

  34. M. Wortis, inPhase Transitions and Critical Phenomena, C. Domb and M. S. Green, eds. (Academic, New York, 1974), Vol. 3, p. 114.

    Google Scholar 

  35. J. P. Van Dyke and W. J. Camp,Phys. Rev. Lett. 35:323 (1975); J. P. Van Dyke and W. J. Camp, inMagnetism and Magnetic Materials—1973 G. D. Graham, Jr., and J. J. Rhyne, eds., AIP Conference Proceedings No. 18 (American Institute of Physics, New York, 1974), p. 878.

    Google Scholar 

  36. A. D. Hall,Commun. ACM 14:517 (1971).

    Google Scholar 

  37. G. A. Baker, Jr., H. E. Gilbert, J. Eve, and G. S. Rushbrooke, Brookhaven National Laboratory Report No. BNL 50053 (1967).

  38. M. F. Sykes, private communication.

  39. C. Domb and B. R. Heap,Proc. Phys. Soc. 90:985 (1967).

    Google Scholar 

  40. J. M. Kincaid, G. A. Baker, Jr., and L. W. Fullerton, Los Alamos Scientific Laboratory Report No. LA-UR-79-1575 (1979).

  41. C. Domb,Adv. Phys. 9:149, 245 (1960).

    Google Scholar 

  42. M. A. Moore,Phys. Rev. Lett. 23:861 (1969).

    Google Scholar 

  43. J. W. Essam and D. L. Hunter,J. Phys. C 1:392 (1968), and private communication.

    Google Scholar 

  44. R. K. Wehner and D. Baeriswyl,Physica 81A:129 (1975).

    Google Scholar 

  45. D. L. Hunter and G. A. Baker, Jr.,Phys. Rev. B 7:3346 (1973).

    Google Scholar 

  46. G. A. Baker, Jr. and D. L. Hunter,Phys. Rev. B 7:3377 (1973).

    Google Scholar 

  47. D. L. Hunter and G. A. Baker, Jr.,Phys. Rev. B 19:3808 (1979).

    Google Scholar 

  48. A. J. Guttman and G. S. Joyce,J. Phys. A 5:281 (1974); J. L. Gammel, inPadé Approximants and Their Applications, P. R. Graves-Morris, ed. (Academic, London, 1973); M. E. Fisher and H. Au-Yang,J. Phys. A 12:1677 (1979).

    Google Scholar 

  49. J. Glimm and A. Jaffe,Acta Phys. Austriaca Suppl. 16:147 (1976).

    Google Scholar 

  50. D. Isaacson,Commun. Pure Appl. Math. 29:531 (1976).

    Google Scholar 

  51. D. Marchesin, Ph.D. thesis, New York University (1975).

  52. C. M. Bender, F. Cooper, G. S. Guralnik, R. Roskies, and D. Sharp, inProceedings of Orbis Scientiae 80, A. Perlmutter, ed. (1980), to be published.

  53. J. P. Eckman, J. Magnen, and R. Sénéor,Commun. Math. Phys. 39:251 (1975); J. Dimock,Commun. Math. Phys. 35:347 (1974); J. Glimm, A. Jaffe, and T. Spencer, inConstructive Field Theory, G. Velo and A. Wightman, eds. (Springer, Berlin, 1973), p. 1.

    Google Scholar 

  54. J. M. H. Levelt Sengers, inProceedings of the Seventh Symposium on Thermophysical Properties, A. Cezairliyan, ed. (American Society of Mechanical Engineers, New York, 1977), p. 766.

    Google Scholar 

  55. J. Feldman and K. Osterwalder,Ann. Phys. (N.Y.) 97:80 (1976); J. Magnen and R. Sénéor,Ann. Inst. Henri Poincaré,24:95 (1976); J. Glimm and A. Jaffe,Fortschr. Phys. 21:327 (1973).

    Google Scholar 

  56. G. A. Baker, Jr.,Phys. Rev. Lett. 34:268 (1975); O. McBryan and J. Rosen,Commun. Math. Phys. 51:97 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported in part by the U.S. Department of Energy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, G.A., Kincaid, J.M. The continuous-spin Ising model, g0∶φ4d field theory, and the renormalization group. J Stat Phys 24, 469–528 (1981). https://doi.org/10.1007/BF01012818

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01012818

Key words

Navigation