Skip to main content
Log in

The Pauli Principle and the Restricted Primitive Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The restricted primitive model is an electrically neutral, classical model consisting of hard spheres charged either +q or −q. We show that, by appropriately selecting the diameter of the hard spheres, the pressure when q=0 can be made equal to that for a fluid of Maxwell–Boltzmann point ions and an ideal Fermi gas of electrons. We compare the series expansion of these classical and quantum systems and find that, except for intermediate de Broglie density and moderate to strong electrical interaction strength, the restricted primitive model gives a reasonable representation of the pressure of the corresponding quantum system. Much of the current interest, however, has been focused on the above, excepted region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. See, for example, H. L. Friedman, Ionic Solution Theory (Interscience Pubs., New York, 1962).

    Google Scholar 

  2. D. A. McQuarrie, Statistical Mechanics (Harper and Row, New York, 1976), Chap. 15.

    Google Scholar 

  3. G. Stell and J. L. Lebowitz, J. Chem. Phys. 49:3706 (1968).

    Google Scholar 

  4. G. Stell and K. C. Wu, J. Chem. Phys. 63:491 (1975).

    Google Scholar 

  5. B. Larsen, Chem. Phys. Lett. 27:47 (1976); J. M. Caillol, J. Chem. Phys. 100:2161 (1994); G. Orkoulas and A. Z. Panagiotopoulos, J. Chem. Phys. 101:1452 (1994); J. M. Caillol, D. Levesque, and J. J. Weis, Phys. Rev. Letts. 77:4039 (1996). 241 Pauli Principle and Restricted Primitive Model.6. See, for example, M. E. Fisher, and Y. Levin, Phys. Rev. Letts. 71:3826 (1993); Y. Levin, X.-j. Li, and M. E. Fisher, Phys. Rev. Letts. 73:2716 (1994); Phys. Rev. Letts. 74:3374 (1995); S.-N. Lai and M. E. Fisher, J. Chem. Phys. 103:8144 (1995); B. P. Lee and M. E. Fisher, Phys. Rev. Letts. 76:2906 (1996); Europhys. Lett. 39:661 (1997); Y. Levin and M. E. Fisher, Physica A 225:164 (1996); M. E. Fisher and B. P. Lee, Phys. Rev. Letts. 77:3561 (1996); D. M. Zuckerman, M. E. Fisher, and B. P. Lee, Phys. Rev. E 56:6569 (1997); S. Berkiranov and M. E. Fisher, Phys. Rev. Letts. 81:5836 (1998).

    Google Scholar 

  6. B. Hafskjold and G. Stell, in Studies in Statistical Mechanics, Vol. 8, J. L. Lebowitz and E. W. Montroll, eds. (North-Holland, Amsterdam, 1982), p. 175.

    Google Scholar 

  7. G. A. Baker, Jr., G. Gutiérrez, and M. de Llano, Ann. Phys. (NY) 153:283 (1984).

    Google Scholar 

  8. K. W. Kratky, Physica A 87:584 (1977).

    Google Scholar 

  9. F. H. Ree, Phys. Rev. 155:84 (1967).

    Google Scholar 

  10. G. D. Scott and D. M. Kilgour, J. Phys. D 2:863 (1969).

    Google Scholar 

  11. W. M. Visscher and M. Bolsterli, Nature 239:504 (1972).

    Google Scholar 

  12. See, for example, G. A. Baker, Jr., and P. R. Graves-Morris, PadéApproximants, 2nd ed., Encyclopedia of Mathematics and its Applications, Vol. 59, G.-C. Rota, ed. (Cambridge University Press, New York, 1996).

    Google Scholar 

  13. K. Huang, Statistical Mechanics (Wiley, New York, 1963).

    Google Scholar 

  14. G. A. Baker, Jr. and J. D. Johnson, Condensed Matter Theories, Vol. 2, V. C. Aguilera-Navarro, ed. (Plenum Press, New York, 1990), p. 1.

    Google Scholar 

  15. See, for example, S. Borofsky, Elementary Theory of Equations (Macmillan, New York, 1950).

    Google Scholar 

  16. G. A. Baker, Jr. and J. D. Johnson, Physica A 265:129 (1999).

    Google Scholar 

  17. P. Debye and E. Hückel, Z. Phys. 24:185 (1923).

    Google Scholar 

  18. See also, N. Bjerrum, Kgl. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 7:1 (1926).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, G.A., Johnson, J.D. The Pauli Principle and the Restricted Primitive Model. Journal of Statistical Physics 100, 233–242 (2000). https://doi.org/10.1023/A:1018647930248

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018647930248

Navigation