Skip to main content
Log in

Sound speed measurements on gas mixtures of natural gas components using a cylindrical resonator

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A description of a fixed-path length acoustic resonator which uses electrostatic transducers for sound generation and detection is given. Also, a summary of the measurements on 13 binary and 4 multicomponent gas mixtures of natural gas components is given. Data were obtained at pressures to 10 MPa for five isotherms at 25 K increments from 250 to 350 K. The binary mixtures are primarily methane-rich, with either ethane, nitrogen, carbon dioxide, or propane as the second constituent. The multicomponent mixture compositions represent four naturally occurring natural gas mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Miller, Flow Measurement Engineering Handbook, 2nd ed. (McGraw-Hill, New York, 1989).

    Google Scholar 

  2. B. T. Arnberg, J. Basic Eng. (D) 84:447 (1980).

    Google Scholar 

  3. A. R. Colclough, Metrologia 9:75 (1973).

    Google Scholar 

  4. R. J. Quinn, A. R. Colclough, and T. R. D. Chandler, Phil. Trans. Roy Soc. (London) A283:367 (1967).

    Google Scholar 

  5. D. H. Smith and R. G. Harlow, Br. J. Appl. Phys. 14:102 (1963).

    Google Scholar 

  6. M. B. Ewing, M. L. McGlashan, and J. P. M. Trusler, J. Chem. Thermodyn. 18:511 (1986).

    Google Scholar 

  7. M. R. Moldover, J. B. Mehl, and M. Greenspan, J. Acoust. Soc. Am. 79:278 (1986).

    Google Scholar 

  8. M. R. Moldover, J. P. M. Trusler, T. J. Edwards, J. B. Mehl, and R. S. Davis, J. Res. Natl. Bur. Stand. (U.S.) 93:85 (1988).

    Google Scholar 

  9. M. B. Ewing, A. R. H. Goodwin, M. L. McGlashan, and J. P. M. Trusler, J. Chem. Thermodyn. 19:721 (1987).

    Google Scholar 

  10. C. R. Tallman, I.S.A. Trans. 17 (No. 1):97 (1978).

    Google Scholar 

  11. C. Carey, J. Bradshaw, E. Lin, and E. H. Carnevale, Arnold Engineering Development Center, Arnold Air Force Station, TN 37389, Report No. AEDC-TR-33, available NTIS AD-779772 (1974).

  12. J. C. Hubbard and I. F. Zartman, Rev. Sci. Instr. 10:389 (1939).

    Google Scholar 

  13. T. H. Quigley, Phys. Rev. 67:298 (1945).

    Google Scholar 

  14. B. E. Gammon and D. R. Douslin, Proceedings, Fifth Symposium of Thermophysical Properties (Am. Soc. Mech. Eng., 1970), p. 107.

  15. H. Plumb and G. Cataland, Metrologia 2:127 (1966).

    Google Scholar 

  16. M. Greenspan and M. C. Thompson, Jr., J. Acoust. Soc. Am. 25:92 (1953).

    Google Scholar 

  17. W. G. Schneider and G. J. Thiessen, Can. J. Res. 28A:509 (1950).

    Google Scholar 

  18. M. C. Henderson and Peselnick, J. Acoust. Soc. Am. 29:1074 (1953).

    Google Scholar 

  19. D. T. Grimsrud and J. H. Werntz, Jr., Phys. Rev. 157:181 (1967).

    Google Scholar 

  20. K. F. Herzfeld, Phys. Rev. 53:899 (1938).

    Google Scholar 

  21. G. Kirchoff, Ann. Phys. 134:177 (1864); also H. Helmholtz, Verhandl. Naturhist. Med. Ver. Heidelberg 3:6 (1868); but for convenience see Ref. 3.

    Google Scholar 

  22. J. F. Ely and H. J. M. Hanley, Ind. Eng. Chem. Fund. 20:323 (1981).

    Google Scholar 

  23. B. A. Younglove and R. D. McCarty, J. Chem. Thermodyn. 12:1121 (1980).

    Google Scholar 

  24. Polypyromelitimide (PPMI) film has a high breakdown voltage and mechanical stability in our temperature range of 250 K to 350 K.

  25. “Instruction and Applications,” Fig. 2.26, p. 36, Bruel & Kjaer, 185 Forest St., Marlborough, Mass. 01752, Jan. 1973.

  26. Films of polyethylene terepthalate (PETP) occasionally broke down under the stress of the higher voltages.

  27. G. C. Straty and B. A. Younglove, Rev. Sci. Instr. 43:156 (1972).

    Google Scholar 

  28. R. D. Goodwin, J. Res. Natl. Bur. Stand (U.S.) 65C:231 (1961).

    Google Scholar 

  29. The cryostat and pressure cell have been used in liquid sound speed and dielectric constant measurements; see B. A. Younglove, J. Acoust. Soc. Am. 38:433 (1965).

    Google Scholar 

  30. B. A. Younglove and N. V. Frederick, To be published as an NIST Technical Note.

  31. K. E. Starling, M. Mannan, J. L. Savidge, S. Sadasivan, T. B. Reid, Jr., K. Gangadhar, and M. A. Drass, Appendix C, Final Report, Oct. 1984–Sept. 1987, Prepared for Gas Research Institute, Contract No. 5084-260-1010.

  32. A. R. H. Goodwin, Thermophysical Properties from the Speed of Sound Thesis (Department of Chemistry, University of London, London, 1988), pp. 363–374.

    Google Scholar 

  33. B. E. Gamman, Report to Gas Research Institute.

  34. M. R. Moldover, Unpublished work.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Younglove, B.A., Frederick, N.V. Sound speed measurements on gas mixtures of natural gas components using a cylindrical resonator. Int J Thermophys 11, 897–910 (1990). https://doi.org/10.1007/BF00503582

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00503582

Key words

Navigation