Skip to main content
Log in

Earth-based gravitational wave detection from pulsars

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The main features of continuous gravitational radiation bathing the Earth has been evaluated for a set of 558 pulsars. In particular, the maximum gravitational wave background and the maximum gravitational wave emission have been evaluated for each source and compared with the projected sensitivities of the planned Earth based very long baseline interferometric antennas for gravitational wave detection, like VIRGO and LIGO. This study shows that such detectors have a good chance of detecting gravitational waves emitted from this class of astrophysical sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation (W. H. Freeman, San Francisco).

    Google Scholar 

  2. Thorne, K. S. (1992). InRecent Advances in General Relativity, A. Janis and J. Porter eds. (Birkhauser, Boston), p.196.

    Google Scholar 

  3. Blair, D. G. (1992).The Detection of Gravitational Waves (Cambridge University Press, Cambridge).

    Google Scholar 

  4. Saulson, P. R. (1994).Fundamentals of Interferometric Gravitational Wave Detectors (World Scientific Press, New Jersey).

    Google Scholar 

  5. Bradaschiaet al. (1989).Proposal for the construction of a Very Large Baseline Interferometric Antenna Virgo for Gravitational Wave Detection, Proposal to the INFN, Italy and CNRS, France (INFN and CNRS).

    Google Scholar 

  6. Vogt, R. E., Drever, R. W., Raab, F. J., Thorne, K. S. (1989).Proposal for the Construction of a Large Interferometric Detector of Gravitational Waves, Proposal to the National Science Foundation (California Institute of Technology).

  7. Hough, J.et al. (1989). “Proposal for a joint German-British Interferometric Gravitational Wave Detector.” Report No. MPQ 147, Max-Planck-Institut für Quantenoptik, Munich.

    Google Scholar 

  8. Barone, F., Milano, L., Pinto, I., Recano, F. (1988).Astron. Astrophys. 199, 161.

    Google Scholar 

  9. Barone, F., Milano, L., Pinto, I., Russo, G. (1988).Astron. Astrophys. 203, 322.

    Google Scholar 

  10. Barone, F., Di Fiore, L., Milano, L., Russo, G. (1992).Gen. Rel. Grav. 24, 323.

    Article  Google Scholar 

  11. Narayan, R., Ostriker, J. P. (1990).Astrophys. J. 352, 222.

    Article  Google Scholar 

  12. Kulkarny, S. R., Narayan, R., Romani, R.W. (1990).Astrophys. J. 356, 174.

    Article  Google Scholar 

  13. Manchester, R. N., Taylor, J. H., Lyne, A. G. (1993).Astrophys. J. Suppl. Ser. 88, 529.

    Article  Google Scholar 

  14. New, K. C. B., Chanmugan, G., Johnson, W. W., Tohline, J. E. (1995).Astrophys. J. 450, 757.

    Article  Google Scholar 

  15. Manchester, R. N., Taylor, J. H. (1981).Astrophys. J. 86, 1953.

    Google Scholar 

  16. Clifton, T. R., Lyne, A. G. (1986).Nature 320, 43.

    Article  Google Scholar 

  17. Wolszczan, A.,et al. (1989).Nature 337, 531.

    Article  Google Scholar 

  18. Wolszczan, A., Anderson, S., Kulkarny, S. R., Prince, T. (1989).IAU Circular n.4880.

  19. Wolszczan, A. (1990).IAU Circular n.5073.

  20. Biggs, J. D., Lyne, A. G. (1990).IAU Circular n.4988.

  21. D'Amico, N. (1990).Nuovo Cimento 103, 540.

    Google Scholar 

  22. Manchester, R. N., et al. (1991).Nature 352, 219.

    Article  Google Scholar 

  23. Manchester, R. N. (1992).Phil. Trans. R. Soc. London A 341, 1660.

    Google Scholar 

  24. Thorne, K. S. (1969).Astrophys. J. 158, 1.

    Article  Google Scholar 

  25. Thorne, K. S. (1969).Astrophys. J. 158, 997.

    Article  Google Scholar 

  26. Ipser, R. (1970).Astrophys. J. 166, 175.

    Article  Google Scholar 

  27. Douglas, D. H., Braginsky, V. B. (1979). InGeneral Relativity: An Einstein Centenary Survey, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge).

    Google Scholar 

  28. Press, W. L., Thorne, K. S. (1972).Ann. Rev. Astron. Astrophys. 10, 335.

    Article  Google Scholar 

  29. Groth, L. (1975). InNeutron Star, Black Holes and Binary X-Ray Sources, H. Gursky and R. Ruffini eds. (Reidel, Dordrecht).

    Google Scholar 

  30. Zimmermann, M. (1978).Nature 271, 525.

    Article  Google Scholar 

  31. Pandharinpande, V. R., Pines, D., Smith, R. A. (1976).Astrophys. J. 208, 550.

    Article  Google Scholar 

  32. Bao, G., Engvik, L., Hjorth-Jensen, M., Osnes, E., Ostgaard, E. (1994).Nucl. Phys. A 575, 707.

    Google Scholar 

  33. Bao, G., Østgaard, E., Dybvik, B. (1994).Int. J. Mod. Phys. D 3, 813.

    Google Scholar 

  34. Manchester, R. N., Taylor, J. H. (1977).Astrophys. J. 215, 85.

    Google Scholar 

  35. Pines, D., Shaham, J. (1974).Nature 248, 483.

    Article  Google Scholar 

  36. Araujo, J. C. N., Freitas-Pacheco, J. A., Cattani, M., Horvath, J. E. (1994),Mon. Not. R. Astr. Soc. 271, 131.

    Google Scholar 

  37. Rufa, M., Schattner, J., Maruhn, H., Stoeckler, H., Greiner, W. (1990).Phys. Rev. C 42, 2469.

    Google Scholar 

  38. Pines, D., Shaham, J. (1974).J. Comm. Astrophys. Space Phys. 2, 37.

    Google Scholar 

  39. Melosh, H. J. (1969).Nature 24, 781.

    Google Scholar 

  40. Chau, W. Y. (1970).Astrophys. J. 147, 664.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velloso, W., Barone, F., Calloni, E. et al. Earth-based gravitational wave detection from pulsars. Gen Relat Gravit 28, 613–631 (1996). https://doi.org/10.1007/BF02105070

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02105070

Keywords

Navigation