Skip to main content
Log in

Simultaneous measurement and joint probability distributions in quantum mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The problem of simultaneous measurement of incompatible observables in quantum mechanics is studied on the one hand from the viewpoint of an axiomatic treatment of quantum mechanics and on the other hand starting from a theory of measurement. It is argued that it is precisely such a theory of measurement that should provide a meaning to the axiomatically introduced concepts, especially to the concept of observable. Defining an observable as a class of measurement procedures yielding a certain prescribed result for the probability distribution of the set of values of some quantity (to be described by the set of eigenvalues of some Hermitian operator), this notion is extended to joint probability distributions of incompatible observables. It is shown that such an extension is possible on the basis of a theory of measurement, under the proviso that in simultaneously measuring such observables there is a disturbance of the measurement results of the one observable, caused by the presence of the measuring instrument of the other observable. This has as a consequence that the joint probability distribution cannot obey the marginal distribution laws usually imposed. This result is of great importance in exposing quantum mechanics as an axiomatized theory, since overlooking it seems to prohibit an axiomatic description of simultaneous measurement of incompatible observables by quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton, 1955).

  2. N. Bohr, inAlbert Einstein: Philosopher-Scientist, P. Schilpp, ed. (Tudor, 1949), pp. 201–241.

  3. W. Heisenberg,The Physical Principles of Quantum Theory (Chicago, 1930);Z. Physik 43, 172 (1927).

  4. J. L. Park and H. Margenau,Int. J. Theor. Phys. 1, 211 (1968).

    Google Scholar 

  5. J. L. Park,Phil. of Science 35, 205, 389 (1968).

    Google Scholar 

  6. L. E. Ballentine,Rev. Mod. Phys. 42, 358 (1970).

    Google Scholar 

  7. L. S. Mayants, W. Yourgrau, and A. J. van der Merwe,Ann. d. Physik 7. Folge 33, 21 (1976).

    Google Scholar 

  8. J. M. Jauch,Foundations of Quantum Mechanics (Addison-Wesley, Reading, Mass., 1968).

    Google Scholar 

  9. J. Bub,The Interpretation of Quantum Mechanics (Reidel, Dordrecht, 1974).

    Google Scholar 

  10. J. M. Jauch,Synthese 29, 131 (1974).

    Google Scholar 

  11. D. I. Blokhintsev,Sov. Phys.—Uspekhi 11, 320 (1968); alsoThe Philosophy of Quantum Mechanics (Reidel, Dordrecht, 1968).

    Google Scholar 

  12. F. J. Belinfante,Measurements and Time Reversal in Objective Quantum Theory (Pergamon Press, 1975).

  13. A. Daneri, A. Loinger, and G. M. Prosperi,Nucl. Phys. 33, 297 (1962); L. Rosenfeld,Progr. Theor. Phys. Suppl. (Commemoration Issue for the 30th Anniversary of the Meson Theory by Dr. H. Yukawa)1965, 222.

    Google Scholar 

  14. P. A. Moldauer,Phys. Review D 5, 1028 (1972).

    Google Scholar 

  15. H. Margenau,The Nature of Physical Reality (McGraw-Hill, 1950), Chapter 18.

  16. E. Wigner,Phys. Rev. 40, 749 (1932).

    Google Scholar 

  17. L. Cohen,J. Math. Phys. 7, 781 (1966); G. S. Agarwal and E. Wolf,Phys. Rev. D 2, 2161, 2187, 2206 (1970).

    Google Scholar 

  18. L. Cohen,Phil. of Science 33, 317 (1966).

    Google Scholar 

  19. E. P. Wigner, inPerspectives in Quantum Theory, W. Yourgrau and A. van der Merwe, eds. (MIT Press, Cambridge, Mass., 1971), pp. 25–36.

    Google Scholar 

  20. M. D. Srinivas and E. Wolf,Phys. Rev. D 11, 1477 (1975).

    Google Scholar 

  21. P. R. Halmos,A Hilbert Space Problem Book (Van Nostrand, New York, 1967), p. 58.

    Google Scholar 

  22. D. J. Ross,Synthese 29, 373 (1974).

    Google Scholar 

  23. V. S. Varadarajan,Comm. Pure Appl. Math. XV, 189 (1962).

    Google Scholar 

  24. J. S. Bell,Rev. Mod. Phys. 38, 447 (1966); J. S. Bell, inRendiconti della Scuola Internazionale di Fisica -Enrico Fermi-, IL Corso (Academic Press, New York, 1971), p. 171.

    Google Scholar 

  25. L. S. Mayants,Found. Phys. 3, 413 (1973).

    Google Scholar 

  26. H. Margenau and R. N. Hill,Progr. Theor. Phys. 26, 722 (1961); E. P. Wigner,Am. J. Phys. 38, 1005 (1970).

    Google Scholar 

  27. L. S. Mayants,Found. Phys. 4, 335 (1974).

    Google Scholar 

  28. S. Kochen and E. P. Specker,J. Math. Mech. 17, 59 (1967).

    Google Scholar 

  29. H. J. Groenewold,Physica 12, 405 (1946).

    Google Scholar 

  30. N. G. de Bruijn,Nieuw Archief voor Wiskunde (3)XXI, 205 (1973); N. D. Cartwright,Physica 83A, 210 (1976).

    Google Scholar 

  31. G. Helmberg,Introduction to Spectral Theory in Hilbert Space (North-Holland, Amsterdam, 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Muynck, W.M., Janssen, P.A.E.M. & Santman, A. Simultaneous measurement and joint probability distributions in quantum mechanics. Found Phys 9, 71–122 (1979). https://doi.org/10.1007/BF00715052

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00715052

Keywords

Navigation