Skip to main content
Log in

Video fluorescence microscopic techniques to monitor local lipid and phospholipid molecular order and organization in cell membranes during hypoxic injury

  • Special Topic Articles
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Digitized video microscopy is rapidly finding uses in a number of fields of biological investigation because it allows quantitative assessment of physiological functions in intact cells under a variety of conditions. In this review paper, we focus on the rationale for the development and use of quantitative digitized video fluorescence microscopic techniques to monitor the molecular order and organization of lipids and phospholipids in the plasma membrane of single living cells. These include (1) fluorescence polarization imaging microscopy, used to measure plasma membrane lipid order, (2) fluorescence resonance energy transfer (FRET) imaging microscopy, used to detect and monitor phospholipid domain formation, and (3) fluorescence quenching imaging microscopy, used to spatially map fluid and rigid lipid domains. We review both the theoretical as well as practical use of these different techniques and their limits and potential for future developments, and provide as an illustrative example their application in studies of plasma membrane lipid order and topography during hypoxic injury in rat hepatocytes. Each of these methods provides complementary information; in the case of hypoxic injury, they all indicated that hypoxic injury leads to a spatially and temporally heterogeneous alteration in lipid order, topography, and fluidity of the plasma membrane. Hypoxic injury induces the formation of both fluid and rigid lipid domains; the formation of these domains is responsible for loss of the plasma membrane permeability barrier and the onset of irreversible injury (cell death). By defining the mechanisms which lead to alterations in lipid and phospholipid order and organization in the plasma membrane of hypoxic cells, potential sites of intervention to delay, prevent, or rescue cells from hypoxic injury have been identified. Finally, we briefly discuss fluorescence lifetime imaging microscopy (FLIM) and its potential application for studies monitoring local lipid and phospholipid molecular order and organization in cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Taylor and Y.-L. Wang (Eds.) (1989)Fluorescence Microscopy of Living Cells in Culture A&B (Methods in Cell Biology, Vol. 30), Academic Press, San Diego, California.

    Google Scholar 

  2. D. L. Taylor, M. Nederlof, F. Lanni, and A. S. Waggoner (1992) The new version of light microscopy,Am. Sci. 80, 322–335.

    Google Scholar 

  3. B. Herman and J. J. Lemasters (1993)Optical Microscopy: Emerging Methods and Applications, Academic Press, San Diego, California.

    Google Scholar 

  4. C. D. Stubbs and B. W. Williams (1992) Fluorescence in membranes, in J. R. Lakowicz (Ed.),Topics in Fluorescence Spectroscopy, Plenum Press, New York, pp. 231–272.

    Google Scholar 

  5. T. G. Dewey (1991) Fluorescence energy transfer in membrane biochemistry, in T. G. Dewey (Ed.),Biophysical and Biochemical Aspects of Fluorescent Spectroscopy, Plenum Press, New York, pp. 197–230.

    Google Scholar 

  6. W. T. Mason (1993)Fluorescent and Luminescent Probes for Biological Activity, Academic Press, San Diego, California.

    Google Scholar 

  7. J. J. Lemasters, J. DiGuiseppi, A. L. Nieminen, and B. Herman (1987) Blebbing, free Ca++ and mitochondrial membrane potential preceding cell death in hepatocytes;Nature 325, 78–81.

    Google Scholar 

  8. K. Florine-Casteel, J. J. Lemasters, and B. Herman (1991) Lipid order in hepatocyte plasma membrane blebs during ATP depletion measured by digitized video fluorescence polarization microscopy,FASEB J. 5, 2078–2084.

    Google Scholar 

  9. X. F. Wang, J. J. Lemasters, and B. Herman (1993) Plasma membrane architecture during hypoxic injury in rat hepatocytes measured by fluorescence quenching and resonance energy transfer imaging,Bioimaging 1, 30–39.

    Google Scholar 

  10. B. R. Lentz (1988) Membrane “fluidity” from fluorescence anisotropy measurements, in L. M. Loew (Ed.),Spectroscopic Membrane Probes, CRC Press, Boca Raton, Florida, Vol. I, pp. 13–44.

    Google Scholar 

  11. B. R. Lentz (1993) Use of fluorescent probes to monitor molecular order and motions within liposome bilayers,Chem. Phys. Lipids 64(1–3), 99–116.

    Google Scholar 

  12. R. C. Alvia, C. C. Curtain, and L. M. Gordon (1988)Lipid Domain and the Relationship to Membrane Function, Alan R. Liss, New York.

    Google Scholar 

  13. D. Axelrod (1989) Fluorescence polarization microscopy, in D. L. Taylor and Y.-L. Wang (Eds.),Methods in Cell Biology, Vol. 30, Academic Press, San Diego, California.

    Google Scholar 

  14. D. Axelrod (1989) Total internal reflection fluorescence microscopy, in D. L. Taylor and Y.-L. Wang (Eds.),Methods in Cell Biology, Vol. 30, Academic Press, San Diego, California.

    Google Scholar 

  15. C. Weber (1986) Solution spectroscopy and image spectroscopy in D. L. Tayloret al. (Eds.),Applications of Fluorescence in the Biomedical Sciences, Alan R. Liss, New York, pp. 601–615.

    Google Scholar 

  16. K. Florine-Casteel, J. J. Lemasters, and B. Herman (1990) Phospholipid order in gel- and fluid-phase cell size liposomes measured by digitized video fluorescence polarization microscopy,Biophys. J. 57, 1199–1215.

    Google Scholar 

  17. J. A. Dix and A. S. Verkman (1990) Mapping of fluorescence anisotropy in living cells by ratio imaging: Application to cytoplasmic viscosity,Biophys. J. 57, 231–240.

    Google Scholar 

  18. V. Borenstain and Y. Barenholz (1993) Characterization of liposomes and other lipid assemblies by multiprobe fluorescence polarization,Chem. Phys. Lipids 64(1–3), 117–127.

    Google Scholar 

  19. D. Axelrod (1979) Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,Biophys. J. 26, 557–574.

    Google Scholar 

  20. R. P. Haugland (1992)Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes, Junction City, Oregon.

  21. J. W. Kok and D. Hoekstra (1993) Fluorescent lipid analogues: Applications in cell and membrane biology, in W. T. Mason (Ed.),Fluorescent and Luminescent Probes for Biological Activity, Academic Press, San Diego, California.

    Google Scholar 

  22. M. Malmqvist (1993) Biospecific interaction analysis using biosensor technology,Nature 361, 186–187.

    Google Scholar 

  23. J. B. Pawley (1990)Handbook of Biological Confocal Microscopy, Plenum Press, New York.

    Google Scholar 

  24. E. W. Hansen, R. Allen, and M. F. Riley (1985) Laser scanning phase modulation microscope,J. Microsc. 140, 371–381.

    Google Scholar 

  25. D. A. Beach, K. S. Wells, and C. Bustamante (1987) Differential polarization microscope using an image dissector camera and phase-lock detection,Rev. Sci. Instrum. 58, 1987–1995.

    Google Scholar 

  26. B. Herman (1989) Resonance energy transfer microscopy, in D. L. Taylor and Y.-L. Wang (Eds.),Methods in Cell Biology, Vol. 30, Academic Press, San Diego, California, pp. 219–243.

    Google Scholar 

  27. R. M. Clegg (1995) Fluorescence resonance energy transfer (FRET), in X. F. Wang and B. Herman (Eds.),Fluorescence Image Spectroscopy and Microscopy, Wiley, New York.

    Google Scholar 

  28. L. Shyer (1978) Fluorescence energy transfer as a spectroscopic rule,Annu Rev. Biochem. 47, 819–846.

    Google Scholar 

  29. P. Wu and L. Brand (1994) Review: Resonance energy transfer: Methods and applications,Anal. Biochem. 218, 1–13.

    Google Scholar 

  30. P. S. Uster (1993).In situ resonance energy transfer microscopy: Monitoring membrane fusion in living cells, in N. Duzgunes (Ed.),Membrane Fusion Techniques Part B, Academic Press, San Diego, California, Vol. 221, pp. 239–246.

    Google Scholar 

  31. D. E. Wolf, A. P. Winiski, A. E. Ting, and R. E. Pagano (1992) Determination of the transbilayer distribution of fluorescent lipid analogues by nonradiative fluorescence resonance energy transfer,Biochemistry 31, 2865–2873.

    Google Scholar 

  32. S. R. Adams, A. T. Harootunian, and R. Y. Tsien (1991) Fluorescence ratio imaging of cyclic AMP in single cells,Nature 394(21), 694.

    Google Scholar 

  33. J. E. Sunderland and J. Storch (1993) Effect of phospholipid headgroup composition on the transfer of fluorescent long-chain free fatty acids between membranes,Biochim. Biophys. Acta 1168, 307–314.

    Google Scholar 

  34. M. Chalfie, Y. Tu, and D. C. Prasher (1994) Green fluorescent proteins as a marker for gene expression,Science 263, 802–805.

    Google Scholar 

  35. E. Betzig and R. Chichester (1993)Science 262, 1422.

    Google Scholar 

  36. R. Kopelman and W. Tan (1993) Near-field optics: Imaging single molecules,Science 262, 1382–1384.

    Google Scholar 

  37. M. R. Eftink (1991) in J. R. Lakowicz (Ed.),Topics in Fluorescence Spectroscopy II, Plenum Press, New York.

    Google Scholar 

  38. M. R. Eftink (1991) in T. G. Dewey (Ed.),Biophysical and Biochemical Aspects of Fluorescent Spectroscopy, Plenum Press, New York.

    Google Scholar 

  39. E. London (1982) Investigation of membrane structure using fluorescence quenching by spin-labels,Mol. Cell. Biochem. 45, 181–188.

    Google Scholar 

  40. B. Herman, A. L. Nieminen, G. J. Gores, and J. J. Lemasters (1988) Irreversible injury in anoxic hepatocytes precipitated by an abrupt increase in plasma membrane permeability,FASEB J. 2, 146–151.

    Google Scholar 

  41. D. C. Harrison, J. J. Lemasters, and B. Herman (1991) A pHdependent phospholipase A2 contributes to loss of plasma membrane integrity during chemical hypoxia in rat hepatocytes,Biochem. Biophys. Res. Commun. 174, 654–659.

    Google Scholar 

  42. X. F. Wang, J. Gordon, J. J. Lemasters, and B. Herman (1994) Phospholipid A2 activity and its contribution to plasma membrane lipid lateral diffusibility during chemical hypoxia in rat hepatocytes,Biophys. J., in preparation.

  43. G. J. Gores, A. L. Nieminen, B. E. Wray, B. Herman, and J. J. Lemasters (1989) Intracellular pH during ‘chemical hypoxia’ in cultured rat hepatocytes: Protection by intracellular-acidosis against the onset of cell death,J. Clin. Invest. 83, 386–396.

    Google Scholar 

  44. R. W. Gross (1992) Myocardial phospholipases A2 and their membrane substrates,Trends Cardiovasc. Med. 2, 115–121.

    Google Scholar 

  45. J. DiGuiseppi, R. Inman, A. Ishihara, K. Jacobson, and B. Herman (1985) Application of digitized fluorescence microscopy to problems in cell biology,BioTechniques 3, 395.

    Google Scholar 

  46. T. T. Tsay, R. Inman, B. Wray, B. Herman, and K. Jacobson (1990) Characterization of low-light-level cameras for digitized video microscopy,J. Microsc. 160, 141–159.

    Google Scholar 

  47. B. Herman and S. M. Fernandez (1982) Fluorescent pyrene derivative of concanavalin A: Preparation and spectroscopic characterization,Biochemistry 21, 3271–3275.

    Google Scholar 

  48. M. Ludwig, N. F. Hensel, and R. J. Hartzman (1992) Calibration of a resonance energy transfer imaging system,Biophys. J. 61, 845–857.

    Google Scholar 

  49. H. M. McConnell, K. L. Wright, and B. G. McFarland (1972) The fraction of the lipid in a biological membrane that is in a fluid state,Biochem. Biophys. Res. Commun. 47, 273–281.

    Google Scholar 

  50. X. F. Wang, A. Periasamy, D. M. Coleman, and B. Herman (1992) Fluorescence lifetime imaging microscopy: Instrumentation and applications,Crit. Rev. Anal. Chem. 23, 369–395.

    Google Scholar 

  51. X. F. Wang, A. Periasamy, J. Gordon, and B. Herman (1994) Fluorescence lifetime imaging microscopy (FLIM) and its applications, inTime-Resolved Laser Spectroscopy in Biochemistry, SPIE Proceedings 2137, in press.

  52. J. R. Lakowicz and K. W. Berndt (1991) Lifetime-selective fluorescence imaging using an RF phase-sensitive camera,Rev. Sci. Instrum. 62, 1727–1734.

    Google Scholar 

  53. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson (1992) Fluorescence lifetime imaging of calcium using Quin-2,Cell Calcium 13(3), 131–147.

    Google Scholar 

  54. A. Periasamy, X. F. Wang, P. Wodnicki, G. Gordon, and B. Herman (1995) High-speed fluorescence microscopy: Lifetime imaging in the biomedical science,J. Micros. Soc. Am. in press.

  55. T. W. Gadella, T. M. Jovin, and R. M. Clegg (1994) Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale,Biophys. Chem. 48, 221–239.

    Google Scholar 

  56. X. F. Wang, T. Uchida, D. M. Coleman, and S. Minami (1991) A two-dimensional fluorescence lifetime imaging system using a gated image intensifier,Appl. Spectrosc. 45, 360–366.

    Google Scholar 

  57. T. Oida, Y. Sato, and A. Kusumi (1993) Fluorescence lifetime imaging microscopy (flimscopy): Methodology development and application to studies of endosome fusion in single cells,Biophys. J. 64, 676–685.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X.F., Florine-Casteel, K., Lemasters, J.J. et al. Video fluorescence microscopic techniques to monitor local lipid and phospholipid molecular order and organization in cell membranes during hypoxic injury. J Fluoresc 5, 71–84 (1995). https://doi.org/10.1007/BF00718784

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00718784

Key words

Navigation